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INTRODUCTION

The two-dimensional Heisenberg antiferromagnet has generated consid-
erable interest with respect to its applications for understanding copper-
oxide-based high temperature superconductors.! The model is described by a
Hamiltonian,
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where J > 0 and the sum is over nearest neighbor spin variables §,. While
analytic calculations of either ground state or dynamic properties are very
difficult for this and related nonlinear spin models, it is sometimes
possible to extract important information from numerical calculations. Some
success in obtaining ground state properties for the spin-1/2 model has
resulted from quantum Monte Carlo calculations.? However, the principle
interest here is in dynamics, for which quantum Monte Carlo calculations are
emerging but not yet well-developed. Nevertheless, progress in obtaining
quantities such as the dynamic structure function S(q,w) is occuring.?®

One important approach has been the dynamic scaling theory proposed by
Chakravarty, Halperin and Nelson (CHN).“* The CHN theory is based on a
mapping (following that of Haldane’) of the quantum Heisenberg antiferro-
magnet onto an equivalent quantum O0(3) nonlinear sigma model, whose prop-
erties are studied by including quantum fluctuations into a classical 0(3)
model. This equivalent classical model is a ferromagnetically coupled rotor
model, whose Hamiltonian is

H=1 Y1 0%k Y 0,0
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where Q, are the rotor variables with a kinetic energy in addition to the
near-neighbor potential energy. The mapping is based on an assumption of
low-energy perturbations about the classical antiferromagnetic ground state,
and therefore is plausible at adequately low temperature, low frequency, and
long wavelengths. The utility of the mapping is that it makes it possible
to employ a numerical calculation of classical dynamics of the rotor model
and then infer the corresponding quantum properties. This approach was
followed by Tyc, Halperin and Chakravarty,® who made a simulation of the



classical rotor model using Langevin dynamics, in an attempt to verify the
dynamic scaling assumptions.

A related calculation’ of dynamics is summarized here, but for the
direct evaluation of spin dynamics of the two-dimensional classical
Heisenberg antiferromagnet (Eq. 1). This excludes the quantum fluctuations
but at the same time avoids the mapping to the rotor model; in the continuum
limit the two models should be equivalent. Here we present a finite
temperature simulation of the spin dynamics to produce S(q,w), from which
the wavevector and temperature dependence of the spinwave frequency wg and
damping v, are estimated. These estimates are compared with the dynamic
scaling theory.

DYNAMIC SCALING IN THE HEISENBERG ANTIFEROMAGNET

The principle quantity of interest is the dynamic structure function
S(q,w), defined in terms of the space- and time-displaced correlation
function,
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The wavevector q is measured from the antiferromagnet Bragg point. 1In a
scaling regime, (long wavelengths, low temperatures and frequencies) the
scaling hypothesis assumes that there is an important physical length scale,
which is the correlation length ¢, and a corresponding important time scale
Tg, Oor, correlation time, and these depend only on the temperature.
Dynamical quantities measured at different temperatures will have their
frequency and wavelength dependencies determined by the scaled wavevector,
Q=q¢, and the scaled frequency, O=wr,, rather than on q, w and T separately.
More specifically, the CHN scaling assumption for S(q,w) is to write it in
the form,

S(g,w)=t, S(q) P (¢, wt,) 5)
where ®(Q,0) is an undetermined scaling function. The amplitude is
determined by the static structure function,

S(@)=5(8,5.)
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which itself displays scaling in the wavevector. Furthermore, the
correlation length and time were shown to be related by*
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where c is the long-wavelength spinwave velocity.

The form of the scaling function is assumed here to be a product of
Lorentzians,®

S(g,w)= Aq
' [(0+0 ) 2+y%) [(0-0 ) 2+y%] (8)

where the amplitude A;, the spinwave frequency w,, and the damping Yq are
parameters to be fit in the numerical simulation. If scaling holds, then
the spinwave frequency and damping must satisfy some scaling relationships,
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where Q(Q) and I'(Q) are temperature-independent scaling functions, and
wg = 2n/7,.

NUMERICAL SIMULATION AND RESULTS

For finite temperature dynamics,’ a classical Monte Carlo simulation
was used to generate initial states for an energy-conserving spin dynamics
integration of the equations of motion resulting from Hamiltonian (1). The
MC calculation was also used to obtain the correlation length, €. Dynamic
quantities were averaged over five initial states to produce an ensemble
average. The calculations were performed using a 100 x 100 square lattice
with periodic boundary conditions. A fourth order Runge-Kutta MD integra-
tion scheme was used, out to times t=250 #/JS.

Some typical results for S(q,w) are shown in Figure 1, together with
the corresponding least square fits to Eq. (8). Similar fits to sums of
Lorentzians were also made, but were not as'good, with the fitted curves
consistently being too low at low frequency and too high at high frequency.
The damping, verses temperature, is shown in Fig. 2. At the lower tempera-
tures, T < 0.5, the non-zero estimates of damping are due to the resolution
of the simulation. The damping rate increases rapidly with q and T. The
fitted spinwave frequency w, defined in Eq. (8) is shown verses wavevector in
Fig. 3a. Softening with temperature is clear.

6.0 6.0
q=(0.1,0.1)7 T=0.65 q=(0.1,0.1)7 T=0.85

w =0.88 w =0.76
q q

Fig. 1 Typical S(q,w) data and curve fits for gq=(0.1,0.1)n/a at tempera-
tures T/JS%=0.65 and 0.85. The frequency is in units of JS/#. The data were
generated in the MCMD calculations described in the text. The dotted curve
is a least-squares fit to a product of Lorentzians [Eq. 8], using spin-wave
parameters shown. The dashed curve is a least-squares fit to a sum of
Lorentzians for comparison (parameters not shown).
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Fig. 2 The spin-wave linewidth Yq VS. temperature for selected wave vectors
q indicated in units of n/50a. The g¢=(0,0) data is used to give preliminary
estimates of the scaling frequency w,.
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Fig. 3a Spin-wave frequencies w; vs. q, obtained from least-square fits as
in Fig. 1. The MCMD data are compared with the zero-temperature dispersion,
and the dispersion used in Ref. 6 [solid curves, with §=2.5]. 3b) Scaled
spin-wave frequencies w /w, as a function of qf using data derived at
temperatures T/JS%2=0.62 (@), 0.65 (+), 0.70 (*), 0.75 (O), and 0.85 (x).
Values of w, for each temperature (Table 1, Ref. 7) were first estimated from
the g=0 linewidths in Fig. 2 and then corrected slightly such that the

scaled frequencies from different temperatures fall on the same curve.

SCALING

The scaling frequency, w,, is proportional to the gq=0 damping, 7go,
which can be read from Fig. 2 (open circles). Alternatively we can use the

relationship to define the correlation time’ 7,

f dt S(g=0, t)
i 8 (10)
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For T > 0.6, wg increases approximately linearly with temperature. We have
also found that the product, w,£, first increases with T, but then decreases
for T > 0.75, inconsistent with the CHN prediction, Eq.(7). This is
probably because these temperatures are out of the range of validity of the
CHN RG approach, which is an asymptotic theory (T - 0 ).

The resulting scaled spinwave frequency, wg/ws, is shown in Fig. 3b,
verses scaled wavevector, Q = q§, for a set of temperatures. The data at
different T fall roughly along one curve, which defines the unknown scaling
function, Q(Q), and gives strong evidence for a scaling description. The
damping rate verses Q determines I'(Q), but with less precision. 1In
principle, even ®(Q,Q) could be obtained by similar scaling methods but
becomes technically difficult.

SUMMARY

The correlation length was estimated from the spatial decay of equal-
time static correlations at long wavelengths (q =+ 0 limit of Ornstein-
Zernicke analysis). Correspondingly, the correlation time was estimated
from the temporal decay of long wavelength (q = 0) correlations. The
scaling theory is a long wavelength description but it should be kept in
mind that damped propagating spinwaves make sense only when the wavelength
is less than the correlation length (g>¢71).

For the relatively high temperatures studied here, the dynamic structure
function S(q,w) is well-approximated by a product of symmetrically located
Lorentzians. This implies that the spinwave correlacions behave as a damped
harmonic oscillator starting from rest with a finite initial displacement.
The scaling function ®(Q,Q1) is similarly described bwv a product of
Lorentzians. The spinwave frequency and damping were found to satisfy a
scaling form. These results are consistent with earlier simulations of the
classical rotor model.®

ACKNOWLEDGMENT

Extensive discussions with G. Reiter are gratefully acknowledged.

REFERENCES

1. §. Chakravarty, in "HTC: The Los Alamos Meeting," K. Bedell, D. Pines
and J.R. Schrieffer, ed., Addison-Wesley, Redwood, CA (1990).

2. H.-Q. Ding and M.S. Makivic’, Phys. Rev. Lett. 6&:1449 (1990); J.D.
Reger and A.P. Young, Phys. Rev. B37:5978 (1988).

3. S.R. White, D.J. Scalapino, R.L. Sugar and N.E. Bickers, Phys. Rev.
Lett. 63:1523 (1989); M. Jarrell and O. Biham, Phys. Rev. Lett.
63:2504 (1989).

4, S. Chakravarty, B.I. Halperin and D. Nelson, Phys. Rev. Lett. 39:2344

(1989) .

5. F.D.M. Haldane, Phys. Rev. Lett. 50:1153 (1983); Physics Letters 93A:464
(1983).

6. S. Tyc, B.I. Halperin and S. Chakravarty, Phys. Rev. Lett. 62:835
(1989) .

7. G.M. Wysin and A.R. Bishop, Phys. Rev. B42:810 (1990).

8. This form was suggested by calculations of G. Reiter (private
communication). A product of Lorentzians also describes S(q,w) for the
1-D XY model, as in Eq. 3.2 of D.R. Nelson and D.S. Fisher, Phys. Rev.
B16:4945 (1977).



