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DYNAMICAL CORRELATIONS FROM MOBILE VORTICES IN
TWO-DIMENSIONAL EASY-PLANE FERROMAGNETS

F. G. He:tenst, A. R. Bishop, G. M. Wysin
Theoretical Division and Center for Nonlinear Studies
Los Alames National Laboratery
Los Alamos, NM 87545, USA
and
C. Kawabata
Okayama University Computer Center
Okayama, 700, Japan

Abstract

Assuming an ideal gas of unbound vortices above the Kosterlitz-
Thouless transition temperature, the dynamic form factors are calculated
for both the in-plane and out-of-plane correlations. In both cases
central peaks are predicted which are, however, produced by quite dif-
ferent mechanisms, depending on whether the correlations are globally or
locally sensitive to the presence of the vortices. For the in-plane
correlations the wavevector dependencies of the width and intensity of
the peaks are very well supported by the central peaks, which are
observed in a combined Monte Carlo-molecular dynamics simulation of the
XY-model. Therefore, the parameters of the theory (rms vortex velocity
and mean vortex-vortex separation) can be fitted and turn out to agree
rather well with independent theoretical estimates. Recent inelastic
neutron scattering experiments on the in-plane correlations for
Bacaziﬁsﬂﬁlz and szl:rtla' also show central peaks. Their temperature
and wavevector dependencies are consistent with our results, but their
widths are larger than the theoretical estimates. Therefore, these peaks
are interpreted to result, as least partially, from a gas of vortices.
For the out-of-plane correlations our simulations also show a central
peak. However, so far it cannot be identified unequiwvocally as.a vortex

contribution.
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1. Introduction

The increasing emergence of examples of well-characterized quasi-
two-dimensional (2-D) magnetic materials has been prompted by technical
advances in artificially structured, layered and surface-layer
materials. More recently there has also been renewed attention to ac-
curate inmelastic neutron scattering measurements at low frequencies and
long wavelengths in quasi 2-D magnets. It is therefore an appropriate

time for detailed studies of 2-D spin dynamics. One particularly inter-

esting case concerns materials with easy-plane symmetry, where we can
probe dynamics associated with strongly nonlinear collective structures
such as vortices and domains. For example, in pure easy-plane symmetry
we expect that a Knstarlitz-Thaulenal (K-T) type of topological phase
transition will occur, with vortex-antivortex pairs beginning to unbind
above a critical temperature Tc' In this regime it is then natural to
ask whether there are dynamical signatures of the low density of unbound
vortices. This is the principal concern of the present work.

Candidate materials are increasing rapidly and include: KZCuFﬂ,
RbECrCIﬁ. Eaﬁz{ﬂﬂa}z (M =Co, Ni, ...; X = As, P, ...) and other layered
magnets; 59 magnetically-intercalated graphites, e.g. Cnclz-GIC prepared
with wvarious stagingn;ﬁ and magnetic surface layers (e.g. magnetic
lipids or magnetic epitaxial layersj.? Treated within localized
(Heisenberg) spin models (below), the ratio of inter- to intra-plane

2 10'6.

magnetic coupling constant is typically 10 Furthermore, a
great variety of magnetic interactions can be tuned by varying the
material -- from ferromagnetic, to antiferromagnetic (e.g. EaHiZIPUﬂ}ZJ’

to competing nearest and next-nearest neighbors (e.g. Bac°2£§50&}2

These can have various degrees of (crystal field) symmetry-breaking in
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the easy plane, leading to domain patterns which compete with the
characteristic vortex structures of the easy-plane symmetry.

Clearly this field is very rich in terms of materials and raises
some fundamental questions with regard to nonlinear spin dynamics -- in
much the same way that quasi-1-D magnets have challenged theoretical

frameworks in the last decade.a‘g

Although dynamics asscociated with K-T
theory has been studied successfully in the topologically eguivalent
problems of 2-D su;n'zrfll.li.t:ls;,]n superconducting granular films,11 and 2-D
Josephson junction arrnys,l2 comparable studies have not been made for

13,14

2-D magnets, except for some renormalized spin-wave approaches
partial vortex-spinwave "phenomenologies" (below).

Since the scenario of vortex-antivortex pair unbinding introduced
by K-T has been so successful for thermodynamic properties, it is im-
portant to test its predictive power for dynamics. Therefore, we will
focus here on the phenomenology of an ideal, dilute gas of free vortices
above T_ moving in the presence of renormalized spin waves and screened
by the remaining vortex-antivortex bound pairs. Such an approach,
explicitly incorporating the nonlinear coherent excitations, is similar
in spirit to "soliton-gas" approaches for 1-D magnetsﬁ and has already
been advocated by Huher.15 However, he calculated only vortex autocor-
relation functions, leading to dynamic form factors without any wave-
vector dependence. Here we will calculate full form fatﬁnrs S(E,m}, and
compare them with recent simulatianslﬁ (Monte Carlo-molecular dynamics

17,18,5 __

(MC-MD)) as well as inelastic neutron scattering data both

simulations and experiments have found anomalous 'central peak"
structures (i.e. scattering intensity near w = 0) for T > Tc’ and_indeed
scattering from a vortex gas will be identified here as one mechanism

for such a central peak.
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In this paper we consider only the simplest situation of pure
easy-plane spin symmetry. (Results for more general cases will be
presented elsewhere.) However, dynamics mnecessarily involves some
out-of-plane spin motion. Therefore, we treat explicitly the aniso-

tropic Heisenberg model with classical Hamiltomian

- m.n m m.n
By T Q85 % sys +A5,5.] (1.1)

n
(m,n) y
where (m,n) label near-neighbor sites on a 2-D square lattice, J is a
ferromagnetic coupling constant, and the classical spin vector is §" =
(5:,5;,52}. The XY and isotropic Heisenberg limits correspond to A = 0
and 1, respectively. Note that A =0 does not correspond to the
"plapar" limit! where spins are strictly confined to the XY plane. How-
ever, critical properties for the in-plane spin components {Sx or 5?]
are still those of K-T theory -- e.g. with static spin-spin correlations

changing from exponential to power law as T is decreased below Tc' By

contrast the static correlations for the out-of-plane component (Sz] are

exponential both above and below Tc (possibly with higher order signa-

tures at TC and the specific heat maximum at T5 > TC].19 The variation

21

of T, with A is experimentally important. Both vortex theory”  and MC

resultszﬂ show that T  is only weakly-dependent on A except for A very
close to 1, when Tc =+ 0. Thus, even materials with very weak easy-plane
anisotropy (e.g., A ~ 0.99 in Kzﬁufﬁ} have a substantial K-T transition

temperature and 2-D fluctuation regime -- the true ordering,

—

sufficiently close to the actual tranmsition, is of course 3-D in real

materials. For the materials mentioned above, coupling constafts have

been estimated from fits to, e.g. linear spin wave theory, and A values

2=D

2 (A =0).

are in the range 0.4 - 0.99, where TE_D is still close to T
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We will need to make use later of thermodynamic results of K-T
theory. Assuming we can adopt planmar limit results as a guide, the
relevant information for our purposes primarily concerns the static

:urrelatinnszz'zS

S, ~ VP expr/tm) , 11 (1.2)

where £ is the correlation length and

/2

§(T) = £y exper /%), v= (1T /T, (1.3)

25 to be

gu is on the order of the lattice constant, and b has been found
quite temperature-dependent even for small t. The correlation length
can be further interpretedlu as half of the mean separation between free

vortices:
n (1) ~ 267 (1.4)

with n, the free vortex density. Of course, these should only be viewed
as order-of-magnitude relations, since the vortex creation energy itself
decreases as A increases‘21 and full thermodynamics of the anisotropic
Heisenberg model (1.1) are not available. Although such effects can be
partially included, we prefer to leave form (1.3) and compare it with
fits of £ to our numerical data (below). Ultimately a direct estimate
of n, from numerical simulations (following individual vortex dynamics)
may itself be possible, cf. ref. 26.

As in 1-D easy-plane magnets, careful distinction must be made
between in-plane and out-of-plane dynamic correlations. In addition to

the remarks concerning critical properties above, we will find-in sec-

tion 2 that a central peak for Sxx(a,w} is predicted to arise above Tc
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from a wvortex gas. The correlations reveal the mean vortex-vortex

separation 2{ and the rms vortex velocity u. These phenomenological

parameters are determined by fitting the width and intensity of the
predicted central peak to the corresponding quantities from our MC-MD
simulations. The results are compared with theoretical estimates: £
from (1.3) and u from the velocity autocorrelation function of Huber.15
(In our ;:rm:nli::zn'c.:i::-1'1.{‘“:|I of preliminary results we did not fit the
parameters but rather used the theoretical estimates.)

Besides the central peaks, our MC-MD results also show spin-wave
contributions. Above T these are strongly softened for § (consistent
with the "universal jump" predictiunz?), but not for Szz' Moreover,
there seem to be multi-magnon contributions, especially for Szz'

In section 3 our results are compared with recent inelastic neutron
scattering experiments. So far central peaks in Sx:(E.w) have been
reported for szﬁrﬁln (ref. 17) and Baﬂnziﬂsﬂﬁ}z (refs. 18, 5). We
discuss in detail the w-, g-, and temperature dependencies of the peaks.

In section &, Szz{a,w) is calculated assuming that the out-of-plane
structure of moving vortices can be approximated by the static struc-
ture. The width of the predicted central peak is consistent with our
MC-MD results, but not the intensity. We conclude that the velocity
dependence of the out-of-plane structure must be incorporated.

Section 5 contains a summary and a discussion of the limitations of
the present theory, and of possible modifications which take into
account the great variety of different interactions and symmqfries of

the real materials.
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2. In-Plane Correlations

We use a continuum description and spherical coordinates for a

general time-dependent spin configuration:

Sx(;,t} =5 Eﬂ$¢{;.t} sinB{;,t]

5,(7,t) = S cosB(T,t) (2.1)
with r = (x,y). Consider a single vortex at the origin:

8(x) = * tan”? (y/x) . (2.2)

The form of H{;] will be discussed in sectionm 4. The wvortex solutions

have the asymptotic properties

n -
3 [1+ exp{-rfrv}] y £ 1 (2.3a)
8 (r) =
. Dornm , =0 (2.3b)
with wvortex-core "radius" L 5: is localized and correlations are

sensitive to the vortex size and shape (section 4). By contrast, Sx

(and S?) are not localized, i.e. they have no spatial Fourier trans-

form. Therefore the in-plamne correlation function Sxx(?,t] = <Sx{?,t]
Sxfa.ﬂj> is only glnballg.sensitive to the presence of vortices, which
act to break long-range order in cosd. Thus the characteristic length
is the mean vortex-vortex separation 2£.

Congider first the field cos ¢(;.t} in 5“ = 8 cosp sinf. As seen
in Fig. 1 for a particular case, every vortex that passes with'its cen-
ter between 0 and r in time t diminishes the correlations, Thanging

cos ¢ by a factor of (-1), independent of the direction of movement. In
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this sense vortices act like "2-D sign functions." Inclusion of the
field sin H(;,t] in §_, with 8 given by (2.3), shows that the change of
sign does not occur abruptly, but owver the distance 2rv. This means
that wvortices behave effectively as "2-D kinks" with half width T,
Considering length scales >> Ty the dominant effect of the moving wvor-
tices are the above-mentioned changes of sign. Thus an ideal vortex gas
gives

3 (;,t} = 52 (E052¢><{_1}H{r,t}}

XX

(2.4)

Here H(?.t} is the number of wvortices which pass an arbitrary, non-
intersecting contour connecting (6,0) and (;,t]; the average over casz¢
is 1/2, assuming a random spin configuration outside of the vortex
cores.

Expressions like (2.4) were evaluated by several authors for the
case of kinks in 1-D models (e.g. ¢ﬁ or sine-Gordon), see ref. 8 and
references cited therein. A very detailed investigation was made by
Dnroguvtsev,zg who also calculated such correlations numerically in two
dimensions. We have adopted his general procedure and, by implementing
several modifications, we identify certain cancellations which allow us

to calculate (2.4) analytically. We will demonstrate this for the 1-D

case, the generalization to higher dimensions will then be straight-
forward.
. For simplicity all kinks are first taken to have the same velocity

u. Considering the case x > ut > 0, we choose the velocity-independent
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contour (0,0) + (x,0) + (x,t), which is outside of the "light" cone

x =% ut. The contribution from the first part of this contour is
N(x,t "o 2
<" 23 () fpmp s 1) e . (2.5)
n, o

Because we assumed a dilute ideal gas, we have a Poisson distributien,

n
p{ni} =n, ifnﬂ! exp[-nﬂ}, where ny and n_ are the numbers of kinks in

[0,x] running te left and to right, respectively; EE and Er are the
average numbers. Kinks pass this part of the contour at the same time
(t=0) but at different positions, implying that these events are not
correlated. Thus gy and n_ are independent, and the two sums in (2.5)
can be calculated separately, giving exp{-zﬁi - EErJ = exp(=-x/E), for
(2.5). For the second part of the contour, (x,0) » (x,t), we obtain
formally the same expression as (2.5), but with ny the number of left-
running kinks in [x, x + ut], and . the number of right-running kinks
in [x - ut,x]. Kinks pass the same point at different times. Events
are correlated as long as t < xfu, which is just the case we are con-
sidering. Thus n, and n_ are not independent. Assuming n, =n_, then

£
{n2 + nr) is even, implying that there is no contribution from the

second part of the contour.

Now consider the second case, ut > x > 0. We choose the contour
(0,0) » (0,t) + (x,t), inside the light cone. The same type of argument
shows that the wvertical component (0,0) = (0,t) gives a cuntfihution,
whereas the horizontal part (0,t) + (x,t) does not =-- precisely opposite
to the first case. The result for (2.5) is exp(-ut/f), in contrast to

exp(=x/E) in the first case. Both cases can be combined into the final

result,
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N(x,t) Ix=ut| _ ]xfutli

B <(-1) > = exp {- P13 13 . (2.6a)

The 2-D calculation, where the wortices play the role of the kinks,
proceeds in a similar way (Appendix B). Including an average over all

. . -
velocities u = |u|, we have

TEDD b LTL0 N ['rEE‘| ' |f;zt|1 Ba) dul . (2.6b)
0

In order to obtain the wvelocity distribution we consider the
velocity U of a vortex at R which results from an equation of mutinn.15
U is proportional to 2 X F; here % is a unit vector perpendicular to the

e XY-plane and T is the net force due to the interactions with the other
vortices at ﬁu‘ These forces are proportional to R - ﬁu and decrease

with increasing distance. A perfectly symmetric array of the ﬁu would

yield a zero net force and thus zero velocity. However, the density of

vortices is homogeneous only on the average, locally the distribution is

random. Therefore, the deviations from the average U=0 follow a

- Gaussian normal distribution, i.e. we can assume a Maxwellian velocity
distribution P(E}. For the distribution P(u) of the moduli we get

P(u) ~u times a Gaussian (Appendix B). The integration over u in

(2.6b) eventually leads to

s (T,t) = 1 §% exp [~f - ig ngl erfc (5)} , (2.7)

ut i

where u is the root-mean-square velocity and erfc is the complementary
30

error function. Similarly to the 1-D case™ , there is an excellent
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analytic approximation for (2.7), which preserves not only the
integrated intensity (see below) but also the correct asymptotic
behavior for r or t =+ =, Namely,

2

+ 1 2 2.4
5, (F.0) = 1 8% e (-1G/02 + (0P}, (2.8)

with y = Jm u/(28). Using approximation (2.8), both the spatial and

temporal Fourier transforms can be performed, yielding (Appendix C)

2 2
8 vk

(2.9)
an? {w? + v+ (E)?)P

5
Sy (220) =

This is a (squared) Lorentzian central peak (c.p.) with gq-dependent width

@ =3 (2 - DIFE 1+ g)? (2.10)

and integrated intensity
s> 2

4 (2.11)
11+ (82

I(q) =

(Result (2.11) can be checked by performing the Fourier transform of
(2.7) with t = 0).

Note that I~ gz ~ nvil, as expected since the correlations are
diminished by the presence of the vortices. (In contrast to the
out-of-plane correlations where I, ~n,, see section 4). 2
We now compare the predictions of this phenomenological theory with

the results of our MC-MD simulation. For these simulations we hgye used

Hamiltonian (Landau) spin dynamics dgnfdt = {gn,HI with Hamiltonian

ABPO11-F
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(1.1) on an isotropic square lattice with a size up to 100 X 100, giving

9 used mll:II

accurate access to wave numbers > 0.02 m/a. The Hﬂ-algnrithml
MCS per spin to equilibrate 3 random initial configurations. Them MD
with 4th-order Runge-Kutta was applied, with timestep 0.04, sampling
time NS % 0.04, N5 =4, 8, 32, and total integration time 512 X
NS ¥ 0.04. This is in units where J = kB = a =35 =1. Further details
are given in Appendix D.

Figure 2 shows Sxx(a,w] from our HMC-MD simulations for the
XY-model. The spin waves are strongly softened for T > Tc’ consistent
with the theoretical predictionSZ? of a "universal jump" as well as with

2,17,18,5 However, the spin-wave softening l:iueplenul:'lslifl on q,

experiments.
i.e. on the length scale over which vortices are considered to be free
(c.f. the analogous situation in 2-D superfluidslu and 2-D Josephson
junction arra?slzl. Therefore we observe for small q only a central
peak; for large q broad spin-wave contributions can be distinguished
besides the c.p.

The predicted gq-dependence (2.10) of the c.p. width is very well
supported by the MD data (Fig. 3). For q >> Edl, we have Fx = 0.57 uq,
and a fit of u gives the numbers in Table 1; they can be compared with a

formula of the:ls obtained from the wvelocity autocorrelation functioen

using an equation of motion for free vortices:

2
2.2 k. T
=2 _n JS5a B'c
v

The logarithmic term can be approximated using (1.3), (1.4), anﬂ_gn = a,

With T~ 0.8 (ref. 19) we get e
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u = f—f—f exp(-b/y1) (b/yT + 0.58)1/% . (2.13)

This formula predicts a strong increase of u for small T and a nearly
constant behavior above about T = ﬁhz = 0.36, with b ~ 0.3 for this Tt
(see Ref. 25). This increase and the saturation both agree gqualita-
tively with the simulatinns,lﬁ but the absolute values for u are about a
factor of 2 smaller than observed (Table 1). Note however, that b(T) is
not well known for the lower temperatures in Table 1, and for gu only
the order of magnitude is known.

For q << §_l, (2.10) reduces to Fx = 0.57 u/E. Using (1.3) and
(2.13), the constant regime begins here at a much higher temperature,
: Pl 151:2, which is outside of the regime of our simulations. Since u is
already known, £ can now also be fitted; the agreement with the KT-
formula (1.3) is rather good (Table 1).

The correlation length can also be obtained by fitting (2.11) to
the c.p. intensity. Assuming a squared Lorentzian form, we estimate the
intensity by L2 l':(-’u(«.*'E--'1}]'-;lk TK . Sxx{q,ﬂ}. This can be compared with

tot _ o tot
= Sxx(q,t—ﬂ} and shows that I, for

the total intensity Ix
q << 3'1. essentially consists of a central peak with the g-dependence
of (2.11). This is consistent with theory: the Fourier transform of

(1.2) gives

L% @ ~1- 8 k? , forq«gl (2.14)

b4

-_—

this g-dependence is the same as that of the vortex contribution (2.11)
(apart from a constant factor). The spin-wave contributions (Appendix
E) have quite a different q-dependence, namely q-{i-n} (except for

q < D[L-ll, where L is the lattice size); the critical expunentz2 n is
ABPO11-F
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1/4 for T 2 Tc' The spin waves are important only for larger q -- for
q » §‘1 they exceed the vortex contributions which decrease like q-a.

Figure 4 shows that the predicted g-dependence (2.11) of Ix is
indeed observed for small q, which is consistent with our theory working
on a length scale >> L The fits for £ turn out to be close to those
obtained above (Table 1).

The absolute value of the intensity that we observe in the MC-MD
simulations is about a factor of 5 smaller than expected from (2.11).
This might be due to our neglect of effects from the finite size of the
vortices, e.g. the sin@ correlations have been omitted in (2.4).

For T » Tc we expect a simple diffusive central peak for the
hydrodynamic regime,15 i.e. for q £ “vlfz = [25]'1. Then the density of
free vortices is too high for our dilute gas approach.

Finally, we comment on Huber's rE3u1t532'15

for the in-plane corre-
lations. He also finds that the motion of free vortices diminishes the
correlations, but concludes that there is no qualitative effect on the
autocorrelation functions (in contrast teo the out-of-plane case).
However, our MC-MD data clearly show a distinct central peak. One

reason for this discrepancy may be that Huber assumed that ¢{;,t} -

¢{;,ﬂ) is small; this fails when a vortex passes the point T.

3. Comparison with Experiments

So far our theory has been tested by MC-MD simulations only for the
X¥-limit, A = 0. However, central peaks have been seen _in real
quasi-2-D magnetic materials with finite A, e.g. A~ 0.4 for

BaCoztﬂsﬂajz and A = 0.99 for KZCuF#. In this respect, it is important
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to note again that the transition temperature Tc decreases wvery little

19-21 only when A is very close to

with increasing A for a wide A range;
1 does Tc change considerably, and eventually goes to zero for A =+ 1 ==
neglecting 3-D ordering. Other properties can depend much more on A.

For example, the spin-wave frequencies from Hamiltonian (1.1) are (with

1)

I

w? = (4I5)%[(1 - L(cos g + cos a0 - 2 (cos q + cos a)]. (3.1)

%

2497 CCRERAITNE, Yo ipet

For q = (q
X y
2 2 1 4

W = @23)21a-1) 2+ 1 ¢4, (3.2)

and we expect a crossover from the linear dispersion of the XY model to
%
the quadratic dispersion of the isotropic Heisenberg model at q =~
2(1-h}1f2. (This definition differs by a factor of 42 from that of
ref. 2). We have made simulations for A = 0.8 which indeed show this
%

crossover at about q = 0.285 m/a -- see Figure 5.

The vortex-core radius r, in (2.3) also depends strongly on A, see

section 4. Because we have been working on a length scale large compared

to r , we expect our phenomenclogical vortex-gas theory to hold only for
g <<t =7t TR (433)

0.9. The

Fig. 6 shows the width of the central peak for A = 0.8 at T
predicted g-dependency (2.10) is seen in fact for q « r;l = 0..32 n/a.
For larger q the behavior is qualitatively similar to that observed in

our simulations for the isotropic Heisenberg model and will have to be
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explained by  another theory, presumably  including instanton
Extitations.BS‘Eh

A fit of Tx for q « 0.32n/a gives u = 0.45 and £ = 6.4a. The
smaller wvalue for u, compared to the XY limit, can be understood

21 which themselves induce the motion of

qualitatively: the interactions
the free vortices become smaller with increasing A and eventually go to
zero for A » 1.

Fortunately, the inelastic neutron scattering experiments that
have revealed central peaks have been made so far for very small q and
intermediate A-values. This means that our theory should hold in these
cases. Presently, the published experimental results are rather
incomplete. In particular, the out-of-plane correlations have not yet
been measured at all.

For Eatuz{ﬁsﬂﬁ}z a Lorentzian central peak has been fitted,w'5
The width is about 0.3 MeV at T = 6K for q = 0.02n/a. The theoretical
width from (2.10) is [, = 0.57 u/f, for q << £7'. For u we can take
Huber's formula (2.12) directly because the correlation length £ (and

3 In this way

thus nv] is known from quasi-elastic neutron scattering,a
we avoid using (1.3), where gn and b are not well known. From ref. 5 we
take LI 5.4 * 0.2K, an effective nearest-neighbor coupling constant
J=30%3K, and £ = 16A = 3.2a (for T = 6K) and obtain T, ~ 0.04 MeV.

Several important points have been neglected in tﬁe above compari-
son: the Co ' ions form a honeycomb lattice, whereas a square lattice
was assumed in Huber's formula; the correlation length has been
estimated from £ = (g“ . nga with &, = 9; and %J_= 3&; (for E = 6K).
This strong in-plane anisotropy has not yet been included in our.theory.

Surprisingly, the estimate £ = 3.2a corresponds to b = 0.4 (for gﬂ = a),

ABPO11-F
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which fits well to the wvalues of b used in Table 1 for this temperature
range. Last but not least, the spins 5§ = % for the Co™ ions certainly
should be treated gquantum mechanically (see below).

In addition to the absolute wvalues for Fx we can also compare with
its reported temperature dependence. Below Tc there is already a
central peak with a resolution-limited width of about 0.08 meV. Above
Tc there is a wvery strong increase of rx with temperature, and no
saturation is observed (for T < 6.5K). This behavior is qualitatively
gimilar te that of Tx = 0.57 Ef§ with u from (2.13) =- see the dis-
cussion in section 2. Our interpretation is that the observed central
peak comprises two parts: a weakly temperature-dependent contribution
plus a contribution from the unbound vortices above Tc‘ The former con=
tribution may result from ordered domains that are favored by the
in-plane symmetry-breaking fie1d5;35 a constant contribution would come
from, e.g. isotope or impurity effects.

In haﬂr51ﬂ the Cr*+{3d]¢ ions have spin 5 = 2 and lie in planar
square arrays. The coupling constant J is 14.4K = 1.24 meV. Tc = 45.5K
has been obtained from measurements of the susteptibilityﬁﬁ With
inelastic neutron scattering, a central peak has been measured which was
fitted to a product of twe Lorentzians, one for the w-dependence and one

u—
1 The width is about 0.05 meV for g = 0.014 A :

for the g-dependence.
at T = 51.08K. Unfortunately, different values for £ have been obtained
by different methods. The above mentioned fit yields a constant £ = 137
R = 27a for temperatures below the 3-D ordering temperatu:e_rTcan =
52.2K. Thus this correlation might be a 3-D effect; above 52.2K, §
decreases with increasing temperature. On the other hand, a fié;nf the

susceptibility to ¥ ~ Ez'n with £ from (1.3) yields an anomalously high
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value b = 2.3; this would give £ = 750a for T = 51K. However, this fit
was made in the temperature range 0.7 < T < 1.3, where the KT-formula
(1.3) probably no longer applies. Therefore, at the moment we can
identify only an upper bound for I' , considering £ = 27a to be a lower
bound. We obtain Fx[q =0) = 0.57 ﬁfﬁ < 0.007 meV. We still have to

consider here the (1+[£q}2)1f2

factor in (2.10) because of the large £;
this eventually gives Fx < 0.02 meV for q = 0.014 ;-1+

In contrast to Baaniﬁsﬂﬁ}z, there are also some reported features
about the g-dependence of FH, which can be compared with the prediction

3D, the width increases approximately linearly with

(2.10). For T < Tc
q; because of the large £ probably only the linear part of (2.10) (for
£q >> 1) is seen here (c.f. Fig. 3a). At T. the width is finite,
increasing quadratically with q for T > TCSD. There £ drops, therefore
the small-q behavior of (2.10), namely a constant plus a quadratic term,
might be seen. A more accurate comparison will be possible when data on

the g-dependence is available.

4, Out-of-Plane Correlations

In contrast to Sxx the out-of-plane correlation function SZZ(;.t}
is locally sensitive to the presence of vortices because Sz is localized
for a single vortex (see below).

We assume that an arbitrary configuration of the field E(?,t} in
Sz = S5 cosB can be represented by a sum of spin-wave and vortex
contributions. Above Tc‘ the latter contribution is taken to be
produced by a dilute gas of Hv unbound vortices with pusitiuﬁ; ﬁu and

AT -+
velocities u, .-
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N

v
B(r,t) = 3 6(r - R

-o.t) . (4.1
v=1 v }

v
Considering only incoherent scattering from independent vortices the
same superposition also holds for Ez

N

v
Sz{§,t} ~8 Z cos 8(r - K

-ut) . (4.2)
v=1 LA

Thermal averaging is incorporated by averaging with respect to the vor-
tex positions and velocities. In this way it is easily seen that
<Sz{;,t}> = 0, assuming that there is the same number of the two types
of vortices (%) in (2.3).

In the same way, Szz(;,t} = <sz(¥,tjsz(ﬁ,n]> is calculated as
+ 2 2. 32 + + +
§,,(¥,t) = n, §° [f 4°R d°u P(¥) cos B(r - R - ut) cos B(R) , (4.3)

where n, is the density of free vortices, and P{EJ is the single vortex
velocity distribution.

In our publication of preliminary rezults&ﬂ we have assumed that
the out-of-plane structure of a moving vortex can be approximated by the

static structure. This would mean that the function ﬂ{?] in the vortex

form factor

f[E} = [ er cos E[;}E-iqr (4.4)

does not depend on the wvelocity and is isotropic. In this case the

spatial Fourier transformation of (4.3) yields

(4.5)

#

2 R
+ _[5_ 2 2 +, =iqut
Szz(q,tl = (Zn) o, [£(q)|“ J d"u P(u)e
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Using again a Maxwellian Pfa], the temporal Fourier transformation gives

a dynamic form factor exhibiting a Gaussian central peak

2 n 2 2
Ezz(a’m} = =2 IE O exp{- = } - (4.6)
u

The c.p. width
r(a) = ug (4.7)

has a linear gq-dependence that is wvery well supported by our MC-MD

40

data. The c.p. intensity is

e -4 2 2
I(a) = 2m™° o, 8% 1£@)I° . (4.8)

[

In order to calculate the form factor (4.4) we have taken . B(r)

from the continuum theory of Hikami and Tsunetn21 for a static

vortex. The asymptotic solution is
8(r) = %fl t exp{-rfrv} . ra®r : (4.9)

with

r rET = alf2=x) . (4.10)

v

where A is the anisotropy parameter in the Hamiltomian (1.1) and a is
the lattice parameter. For qr,, « 1 the form factor {(4.4) can be
approximated analytically (Appendix A) by

?Tz Ez

v
= i et A
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For small q the resulting intensity Iz(q] is qualitatively consistent
with our MC-MD data for the XY model, but the absolute intensity
differs by one order of |11E|g1:|ultuu:h=_-.'ml

However, in the meantime it has been nutedhl that the theory of
Hikami and Tsunetu21 is incomplete because a certain term is missing
in their Hamiltonian; consequently the same holds for the Euler-Lagrange
equation for 8(r).

The correct equation for 8(r) is identical with the static limit of
the Landau-Liftshitz equation dgnfdt = Ign,H} in the continuum

Jp 61,42

lim The asymptotic solution is formally the same as (4.9), but

the vortex-core radius now is

\ \1/2
(n) . (6.12)

This difference, compared to (4.10), turns out to be decisive because
for A =0 we get = 0 and thus f(q) = 0. (This result has been
checked by a MD-simulation starting with a single vortex at rest;&l in
fact for A =0, and also for A « 0.8, no out-of-plane structure is

found, in contrast to 0.8 €< A < 1.)

The result f(gq) = 0 means that Szsz.W} would also vanish which is

in clear contradiction to our observation of a central peak in the MC-MD
simulations for the XY mndel.nu Therefore, we now conclude that the

static approximation for the out-of-plane structure of moving wortices

is not valid for A « 0.8, for 0.8 < A <1 it may be used as a first

approximation.
It will be necessary to solve the equations of motion. for a

single vortex, which exceeds the frame of this paper. Our theory for
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the in-plane correlations in not affected at all because we have only
used the fact that a moving vortex changes as B{?.t] by a factor of
(-1). However, the out-of-plane correlations are directly influenced

by the velocity dependence of B{?} and f{E}, Instead of (4.5), now

2 %
5,.(3,t) = (%ﬁ) n, [fau (B(qf,ufl BeuyE* (4.13)

must be calculated. For Szz{a,m) we expect again a Gaussian central
peak. However, the intensity Iz{a} = Szzia,t = 0) will be quite
different from (4.8) and (4.11). HMorpover it will be necessary to
improve the MC-MD data for the intemsity. So far our data still scatter
because it is difficult to subtract the softened spin-wave peak which
appears together with the central peakﬁﬂ (for the in-plane correlations
this problem occurs only for large q, see section 2).

Finally alternative c.p. mechanisms must be investigated which may
also produce central components in Szzfﬁ.m]: vortex-magnon interactions

ZE],

and multi-magnon difference processes (c.f. the 1-d case as well as

diffusive processes, which certainly become dominant for T % Tc in the

15 q<n 1!2*

hydrodynamic regime "

5. Conclusion

Qur wvortex-gas phenomenology predicts a Gaussian central peak for
the out-of-plane correlations, and a squared Lorentzian central peak for
the in-plane ones (in addition to the spin-wave peaks). Thﬁﬁcentral
peaks are produced by quite different mechanisms, depending on whether

the correlations are locally or globally sensitive to the preéénce of

vortices.
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For the in-plane correlations the g-dependencies of the width and
intensity of the central peak are in good agreement with the results
from our MC-MD simulations. There are two parameters in the phenome-
nology that can be fitted: the correlation length £ (half the average
distance between the vortices), and the r.m.s. velocity u. We obtain

values for the parameters that agree rather well with the KT-thenryl'Ez

5

for £, and Huber's theuryl for u, which uses an equation of motion feor
the vortices.

For the in-plane form factor, Lorentzian central peaks have been
measured by inelastic neutron scattering for two materials. From the
theory we obtain qualitatively the same wave vector and temperature
dependencies, but a smaller width. Of course, extrinsic damping and
pinning mechanisms will result in slower vortex timescales than our
estimates.

So far the experimental data have been fitted to an ad hoc formula,
namely to a product of a Lorentzian for the w-dependence and ancther
Lorentzian for the gq-dependence. A fit to our squared Lorentzian with
its q-dependent width may allow a detailed comparison between theory and
experiment and a measurement of the parameters u and £. However,
depending on the particular material, the present theory has to be
modified in order to take into account different lattice structures,
competing interactions, and in-plane anisotropies. Similarly to the 1-D
case,a?‘JE we expect that quantum effects will primarilng lead to
renormalizations of the parameters, but fundamental questions of quantum
dynamics remain here as in 1-D spin systems. For the out-of-plane
correlations the dynamic form factor has proven difficult to measure.
Our MC-MD simulations show a central peak. The width depends linearly

on g, as predicted. However, the intensity has not yet been calculated
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because the velocity dependence of the out-of-plane structure of
vortices has yet to be calculated.

Finally, in order to explain the absolute intensity of the central
peaks, alternative mechanisms, e.g. vortex-magnon interactions and
multi-magnon difference processes, must be included, as was necessary

28

for 1-D cases.
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Appendix A

In the form factor (4.4), the angular integration can be performed
to give

= -]

£(q) = 2n [ dr Jy(gr)cos 8(r)r (A1)
0

where .In is a Bessel function of the first kind. Extending the

asymptotic solution (4.9) to small r,

" -r,f'r“.T
cos B (r) ~ sin(; e ) (A2)

is a good approximation, since (A2) approaches one for r + 0, as
required by the correct solution (2.3b). Moreover, any error is
suppressed by the factor r in the integrand in (Al).

In order to obtain approximate analytical results, we expand (A2)

i
2

eventually (4.11), valid for qr, << 1;

to first order in exp{-rfrvj, which is small for r >> r_. This gives
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Appendix B

We assume that all vortices have the same velocity u = Iﬁl, and
average over u later. We want to show that the arguments used for the
calculation of (2.4) in the 1-D case also hold in higher dimensions.

Let an "event" be the passing of a vortex through a contour con-
necting {3,D} and f?,t}. We choose a contour consisting only of hori-
zontal or vertical lines in the space-time diagram. Events at the same
point T at different times {(i.e. on a vertical line) are correlated if
t € rfu, i.e. if the vertical line is outside the light cone r = ut. On
the other hand, events at the same time t but at different points P4
(horizontal lines) are correlated if r < ut (i.e. if events occur im-
side the light cone). Correlated events lead to a cancellation of
factors (-1) in (2.4). The cancellation is complete for an even number
of events, which is the case if we assume am isotropic velocity
distribution.

There are now two cases. For r > ut > 0, we choose the contour
(ﬁ,u] + {;,D} + {;,tJ. The second part is a vertical line outside the
light cone and therefore does not contribute. For the first part the

events are not correlated, and we can directly calculate

f('l)H(r't}} =3 (-1)%(n) = "2 e-rfg . (B1)
n

Here n is the number of vortices passing between 0 and r at time t = o,

n =r/(28) is their average number, and p(n) is the Poisson distribu-

tion. Similarly, in the second case (ut > r > 0) only the first part of

the contour (ﬁ.u] + [a,t] + {;,t} contributes and gives )
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> -
<('IJH{I,1]} = 1 (_I]mpfm} = E-Zm - e-utf£ ; {Eﬂ}
m
Here m is the number of vortices passing T = 0 within the time t and m the
average number.

The cases (B1) and (B2) can be combined to give

q_IJN(‘E,t)} < |z - ut] _ |r+utly (B3)

EXp {- EE 2%

Using a Maxwellian velocity distribution, we get in the 2-D case
o 4 g i Ty
Blu) = 2 35 exp [-(u/@)?] (84)
u

for the distribution of the moduli. A straightforward integration

finally leads to (2.7).
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Appendix C

Performing the temporal Fourier transform of (2.8) first gives

52 r

s, (r,w) =2 —L g (ar) , (c1)
b5 2n Ygzﬂ 1

with ¢ = {12 + wg}kfyﬁ and Kl a modified Bessel function. For the 2-D

spatial transform we use polar coordinates and find31

2 -~

* 5 1 2
S (quw) = ——, —— [dr " K, (or) J. (qr) (c2)
Xx (zn}z ¥£2u 0 1 0

T T F(2,1; 1; = qzz’ﬂz) ’ (C3)
2 yE o

where Ju is a Bessel function of the first kind, and F a hypergeometric

function which reduces)! in this case to (1 + quuz}-z, leading

eventually to the result (2.9).
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Appendix D

The numerical calculations were performed on a CRAY-1 machine.
This enabled the use of a vectorized MC algorithm, by updating spins on
the even and odd sublattices separately. Periodic boundary conditions
were applied for both the MC and MD simulations.

The timestep used in the Runge-Kutta integration was 0.04, and 512
samples of the spin configuration were saved at time intervals of NS X
0.04, with NS =8, 16 or 32, depending on the frequency range of
interest. The space-time Fourier-transformed data was then smoothed
to reduce the neise due to statistical fluctuations, by convolution of a
five-point smoothing function f(w) with S{E,w}. (Five points on the
frequency grid were used.) The function f was taken as a discrete

approximation to a parabola.
flw) =1 - {wfw}z ,  w=(7/3) w |,

where AMw was the w-grid spacing, 2n/T, with T the total time of
integration. This makes the relative weights of the five points in the

convolution averaging procedure 0.27, 0.82, 1.0, 0.82 and 0.27.
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Appendix E

The spin-wave contribution to the in-plane static correlation func-
tion is Hr-ﬂ, where n(T) is a critical eupunent.22 Performing the
angular integrations in the Fourier transformation the intensity of the

spin-wave peak is

5W
X

1) ~ f dr 2™ 3 (qr) (E1)
1]

where .Iﬂ is a Bessel function of the first kind. In order to ensure a
finite result a cutoff is necessary. We choose to introduce a factor
exp(-€r) inte the integrand, with £ = 0(1'1], where L is the (linear)

size of the lattice. Then the integration yieldsSl

F(1-n/2,-1/2+n/2; 1; quisz**qz)]

I:“(qJ e 2
l:t‘. +q
where F is a hypergeometric function.

For T < Tc this can be compared directly with the total intensity

tot

IH

= Sxx(q,t = 0) from our MC simulations. For q = G(L_l] we indeed
see a size dependence that is qualitatively similar to that of (E2).
For q » L-1 the form (E2) reduces to I:w o q'ii‘ﬂJi this g-dependence is
reproduced very clearly by our MC data.

The case T > Tc is discussed in section 2.
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Table 1. Parameters u and £ obtained by fitting to the widths and
intensities of the central peaks in our MC-MD data for the XY model
(A =0), compared to independent theoretical predictions in the

last column (using T_=0.8, £ﬂ = a, and estimating b from Fig. 9 of

ref. 25).
E from
T =T/T -1 re(a) Eq. (2.13)
0.9 0.125 0.84 0.30(b=0.5)
1.0 0.25 0.91 0.47(b=0.4)
1% 0.375 0.91 0.56(b=0.3)
E/a from

T =T/T -1 r(a) I.(q) Eq. (1.3)
0.9 0.125 4.8 4.4 4.1(b=0.5)
1.0 0.25 3.0 2.4 2.2(b=0.4)
y P | 0.375 1.9 2.1 1.6(b=0.3)
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Figure Captions

Fig. 1.

Fig. 2

Fig. 3(a,b,c).

Fig. 4(a,b,c)

Fig. 5.

Fig. 6.
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(a) A vortex passes the origin at time t, the arrows indicate the
spins S. (b) the field Sx = Scos ¢ is changed by a factorof (—1),
independent of the direction of the motion.

Dynamic structure factor for in-plane correlations from MC-MD, g
in units of 2n/L, with lattice size L = 100 a. Temperature T = 0.5
(---)and 1.1 ( — ), with T. = 0.8. (The data are smoothed
according to Appendix D).

Width Iy of central peak in Sxx(d,w) for different temperatures T.
Data points and error bars result from estimating I'y from plots like
Fig. 5. Solid lines are fits to the width (3.8) of the squared
Lorentzian (3.7).

Intensity I, of central peak in Sy,(q,w) for different temperatures T.
Data points result from estimating Iy from plots like Fig. 5,
assuming a squared Lorentzian form. Solid lines are fits to (3.9) for
small q.

Spin-wave dispersion from MC-MD simulation of the anisotropic
Heisenberg model (1.1) for two temperatures (above and below T,.).
Lattice size L = 100 a. Solid lines are guides to the eye.

Width Iy of central peak in S;«(q,w) for the anisotripic Heisenberg
model (A = 0.8). Data points and error bars result from estimating
the width from plots like Fig. 2. Solid line ils a fit for small g to
(2.10).
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