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Resonant electromagnetic modes are analyzed inside a dielectric cavity of equilateral triangular
cross section and refractive index n, surrounded by a uniform medium of refractive index n′. The field
confinement is determined only under the requirements needed to maintain total internal reflection
of the internal electromagnetic fields, matched to external evanescent waves. Two-dimensional
electromagnetics is considered, with no dependence on the coordinate perpendicular to the cross
section, giving independent transverse electric (TE) and transverse magnetic (TM) polarizations.
Generally, the mode spectrum becomes sparse and the minimum mode frequency increases rapidly
as the index ratio N = n/n′ approaches 2. For specified quantum numbers and N, the TM modes
are lower in frequency than the TE modes. Quality factors are estimated roughly by supposing
evanescent boundary waves leak cavity energy at the triangle vertices; diffractive effects are not
included. At index ratio large compared to a mode’s cutoff ratio, this method predicts greater field
confinement for TE polarization and higher quality factors than for TM polarization.
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I. INTRODUCTION

Confinement of electromagnetic fields only by to-
tal internal reflection (TIR) offers a path for design
of simple optical resonators or lasers with low volume
and low threshold power. To this end, various two-
dimensional (2D) geometries have been considered for
their different influence on the mode properties, includ-
ing disks,[1] cleaved[2] and etched[3] semiconductor tri-
angles, squares,[4, 5, 6] and zeolite ALPO4-5 hexagonal
crystals.[7, 8] The problem of equilateral triangle res-
onators (ETR) considered here is particularly interesting,
because the symmetry present allows for a considerable
simplification of the analysis. Good estimates for the
ETR mode wavefunctions, frequencies, and lifetimes (or
quality factors) are developed here, based on a set of six
plane waves within the resonator, matched to each other
by Fresnel factors, producing exterior evanescent waves.
The analysis assumes sufficiently high quality factors, so
that the resonant states found can be considered nearly
stationary states (rather than weak resonances or quasi-
modes).

Chang et al.[2] analyzed the ETR wavefunctions un-
der the assumption of Dirichlet boundary conditions
(DBC), using an exactly known solution[9], for trans-
verse magnetic (TM) polarization only. In the presence
of a dielectric–dielectric boundary, however, the fields do
not go to zero on the boundary, instead, the field con-
finement can be provided by TIR, assuming a refractive
index in the cavity, n, greater than that of the surround-
ings, n′. Huang et al.[10, 11, 12] made a more complete
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analysis for an ETR with dielectric boundary conditions,
approximately matching interior standing wave fields to
exterior evanescent waves. Mode frequencies and qual-
ity factors Q were estimated[11] from 1000 to as high as
20000, using the finite-difference time-domain technique
(FDTD) and Padé approximation[13], with the highest
Q values associated with TM polarization. On the other
hand, typical Q values from 20 – 150 were measured in
photoluminescence (PL) experiments[3] on GaInAs-InP
ETRs with edges from 5 – 20 µm. Recently I analyzed
the ETR modes using the DBC approximation[14], and
assuming the escape of evanescent boundary waves at the
triangle vertices as the primary decay mechanism, esti-
mated typical Q’s from 10 – 500, with the highest values
for TE polarization. Both of these theoretical approaches
involve approximations, thus, it is important to consider
an alternative description of the modes and clarify how
the polarization influences the mode lifetimes.

The DBC approximation applied previously[2, 14]
clearly does not describe the fields correctly at a
dielectric–dielectric boundary. The goal here is to use
the general knowledge of the modes from the DBC anal-
ysis, but do the correct matching of plane wave fields
inside the cavity with evanescent fields on the outside.
This matching is accomplished by employing the Fres-
nel reflection coefficients correctly for all the plane wave
components present in the cavity. It is assumed that all
the electromagnetic field components do not depend on a
z-coordinate perpendicular to the triangular cross section
(i.e., longitudinal wavevector kz = 0). Then Maxwell’s
equations and associated dielectric boundary conditions
lead to separated problems for TM and TE modes. Each
polarization is controlled by one component of the elec-
tromagnetic field that must be continuous across the
dielectric-dielectric boundary. For the TM modes, the
controlling wavefunction is the longitudinal electric field,
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ψ = Ez; for TE modes, it is the longitudinal magnetic
field, ψ = Hz. We use the definitions of TM and TE as
applied for waveguide modes, see 15, where “transverse”
means perpendicular to the waveguide axis (z-axis).

The exact solution for an ETR with Dirichlet bound-
ary conditions is a superposition of six plane waves of
equal strengths but different phases and wavevectors.
The waves undergo a −π phase shift when reflecting from
the faces, as required such that the incident and reflected
parts cancel exactly at the boundary. Any one of these
waves, when followed through a sequence of reflections
due to TIR, returns to its original direction after six re-
flections (see Fig. 1 of Ref. 14).

The situation is similar for the ETR with dielec-
tric boundary conditions or Maxwell boundary conditions
(MBC), where the correct field matching for Maxwell’s
equations must be applied. For either TE or TM po-
larization, I show that a combination of six plane waves
is still needed within the cavity, related to each other by
the reflections from the three cavity faces. For a resonant
mode whose fields are TIR-confined within the cavity, all
the waves must impinge on the faces at incident angles
greater than the critical angle θc, where

sin θc =
1
N

, N =
n

n′
. (1)

The generalization here compared to the DBC problem,
is that when reflected from the faces, the waves undergo
phase shifts determined by unit-modulus Fresnel coeffi-
cients, as well as being rotated in propagation direction.
The goal here is to determine the correct wavevectors and
complex amplitudes of these six plane waves such that a
fully self-consistent wavefunction is determined.

When incident on the faces from inside the cavity, the
waves produce evanescent waves in the exterior region
just outside the cavity. It is difficult to give an exact
description of the exterior fields, however, an approx-
imate description is possible provided the six interior
plane waves are incident on the cavity faces at angles
sufficiently greater than θc (generally, I assume large in-
dex ratio N). In that case, the penetration depth into
the exterior region d = |k′

⊥|−1, is much less than the cav-
ity size or edge a. Then, there are only strong evanes-
cent fields very close to the cavity, and a description of
these based on the transmission amplitude via Fresnel’s
equations is appropriate. The mode lifetime and Q are
estimated based on the assumption that the evanescent
boundary waves radiate out of the cavity when they reach
the triangle vertices. This is a “strong damping” approx-
imation, in the sense that the reflection or radiation of
boundary wave energy back into the cavity is assumed to
be insignificant. The approach ignores diffraction, hence,
it is expected to be most applicable when the cavity size
is much greater than the wavelength within the cavity,
as well as at large N.

The presentation proceeds as follows. First, the MBC
field matching of the six plane waves is described. Equa-
tions for allowed quantum indexes are found, giving solu-
tions for the mode wavevectors and wavefunctions. The

wavefunction description is general enough that it de-
scribes equally well the DBC, TM and TE problems,
or any other boundary condition whose reflection phase
shift is determined by incident angle. Lifetimes are esti-
mated using the boundary wave approach, and compared
to the simpler DBC theory and other analysis.

II. EM FIELDS DESCRIPTION

A. Six interior plane waves

Here I describe the notation for the interior waves (ψ),
with assumed frequency ω = c∗k, where c∗ = c/

√
εµ is

the light speed in the cavity, and the wavevector modu-
lus k is to be determined. The ETR has edge length a,
and xy coordinates are used where the origin is set at its
geometrical center, Fig. 1. An initial wave 1© is supposed
to emerge from lower edge b0 at an angle α1 = α rela-
tive to the x-axis, and hence has wavevector components
�k1 ≡ (kx, ky) = (k cosα, k sin α). Only certain values of
α will lead to a solution for an eigenmode of the cavity;
determination of the possible values of α is an essential
part of the solution presented here.

This initial wave 1© was formed by reflection of a wave
incident on boundary b0 at incident angle θi,1 = 90◦−α.
By consideration of the triangular geometry and using
the law of reflection, it is seen that the incident angle
when impinging on boundary b1 will be θi,2 = 60◦ − θi,1,
see Fig. 1. As the wave subsequently reflects from the
boundaries in ordered sequence b1, b2, b0, etc., the inci-
dent angles on each succeeding boundary simply oscillate
between only two values symmetrically above and below
60◦. Thus, without loss of generality, one can assume
α ≥ 60◦ for the remaining analysis, and take kx and ky

of wave 1© as both positive. The sequence of waves gen-
erated from wave 1©, by sequential reflections from b1,
b2, b0, b1 and so on, are labeled as waves 2©, 3©, 4©, 5©
and 6©. Finally, wave 6© emerges from b2 and impinges
on b0 to regenerate an amplitude of wave 1©. To produce
a consistent solution, this regeneration of wave 1© must
be in phase with the original wave 1©.

Considerations of the law of reflection together with
the equilateral geometry leads to the basic properties of
the six waves, as summarized in Table I. The xy compo-
nents of each wavevector are defined from the αl in the
usual way,

�kl = k(cos αl, sin αl). (2)

It is seen that pairs of wavevectors, [�k1, �k6], and [�k2, �k3]
and [�k4, �k5], are related to each other by changing α →
−α. Each pair is related to the others by 120◦ counter-
clockwise rotations around the ẑ-axis, denoted by oper-
ator R, which can be represented by the square matrix,

R =
(−1/2 −√

3/2√
3/2 −1/2

)
. (3)
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TABLE I: Definitions of the parameters of the plane waves

labeled by wavevectors �kl, within the triangular cavity. αl is

the angle that each �kl makes to the x-axis. R is the operator
for rotation through +120◦ around the ẑ-axis.

1© 2© 3© 4© 5© 6©
αl = α −α + 240◦ α + 240◦ −α + 120◦ α + 120◦ −α
�kl = �k1 R2 · �k6 R2 · �k1 R · �k6 R · �k1

�k1(−α)

The pair [�k1, �k6] can be considered the original waves,
from which the others are obtained. Wavevector �k6 is
simply obtained from �k1 by reflection across the x̂-axis.

Due to the triangular symmetry, and the unit-modulus
reflection coefficient under TIR, all six waves must have
equal magnitudes, but different phases. Then the net
wavefunction within the cavity is written as a sum over
the waves

ψ =
6∑

l=1

Ale
i�kl·�r (4)

where the Al are all of unit modulus, and ψ = Hz for TE
modes or ψ = Ez for TM modes. In both polarizations,
ψ must be continuous across the cavity boundary. The
TE and TM wavefunctions will not be the same, however,
due to the different phase shifts implied by the Fresnel
factors.

Now consider what happens to these waves in terms of
their interaction with the lower boundary, b0, which lies
parallel to x̂ at y = −a/(2

√
3). By appropriate symmetry

transformations, the effects on the other two boundaries
can be inferred. Three of the waves must be receding
from b0 and three must be approaching b0. Using the fact
that 60◦ ≤ α < 90◦, for example, writing α = 60◦ + ϑ,
where ϑ < 30◦, the respective angles of the �kl to the x̂-
axis are 60◦ − ϑ, 180◦ − ϑ, −60◦ + ϑ, 60◦ − ϑ, 180◦ + ϑ,
and −60◦ − ϑ. Those that fall in the range from 0◦ to
−180◦ (including shifts by multiples of 360◦) are incident
on b0. Thus, the waves 3©, 5© and 6© are incident on
b0. Their incident angles are obtained from the formula,
θi = 90◦ + αl, as −90◦ is the outward normal direction
to b0. Then waves 3©, 5© and 6© have incident angles on
b0,

θi,3 = α − 30◦, θi,5 = α − 150◦, θi,6 = 90◦ − α. (5)

One sees that θi,6 always has the smallest magnitude. θi,5

is less than zero because wave 5© has a negative wavevec-
tor component along x̂.

Extending such arguments to the other faces, the ray
diagram of Fig. 1 summarizes the results, showing the
incident angles of all the waves on each of the faces. It is
important to notice that the only incident angles in the
problem are the three of Eq. 5. For example, wave 1© is
incident on b1, but at incident angle θi,3. The symmetries
represented in Fig. 1 will be exploited to determine the
correct wave amplitudes.
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FIG. 1: xy coordinates, with origin at triangle center, and
boundaries b0, b1 and b2. Rays represent the six planes waves
propagating within the cavity, sketched for the value, α = 70◦.
The plane wave incident angles here determine the reflection
amplitudes and phases used in Table II.

TABLE II: Relations between the incident and reflected
wave amplitudes on the lower boundary (b0), the upper right
boundary (b1) and the upper left boundary (b2). The net re-
flection phase shifts are ∆l = δl − kly

a√
3
, where δl = δ(θi,l) is

the Fresnel reflection phase shift. See Fig. 1 for the geomet-
rical reasoning behind this table.

boundary incident θi reflected

b0 3©, A3 θi,3 = α − 30◦
4©, A4 = A3e

i∆3

b0 5©, A5 θi,5 = α − 150◦
2©, A2 = A5e

i∆5

b0 6©, A6 θi,6 = 90◦ − α 1©, A1 = A6e
i∆6

b1 1©, A1 θi,3 2©, A2 = A1e
i∆3

b1 3©, A3 θi,5 6©, A6 = A3e
i∆5

b1 4©, A4 θi,6 5©, A5 = A4e
i∆6

b2 5©, A5 θi,3 6©, A6 = A5e
i∆3

b2 1©, A1 θi,5 4©, A4 = A1e
i∆5

b2 2©, A2 θi,6 3©, A3 = A2e
i∆6

B. Field matching at the dielectric interface –
Maxwell boundary conditions

Now consider the reflections of the waves 3©, 5©, and 6©
from b0, starting with wave 6©. When wave 6© impinges
on b0, its reflection regenerates wave 1© and it also pro-
duces an exterior evanescent wave, denoted 6′©, of ampli-
tude F6 (measured on the boundary) and wavevector �k′

6,
with k6′,x = k6,x by Snell’s Law. Ignoring the other inte-
rior waves, we match incident wave 6© and reflected wave
1© to the exterior evanescent wave, 6′©. Matching the net
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FIG. 2: Dependence of the TIR Fresnel reflection phase shifts
on incident angle, for TM [Eq. (38)] and TE [Eq. (40)] po-
larization at the indicated refractive index ratios N, assuming
unit magnetic permeabilities.

ψ at y = −a/(2
√

3), we have terms all proportional to
the common phase factor, ei(kxx−ωt), where kx = k cosα,

A6e
ik6y ·( −a

2
√

3
) + A1e

ik1y ·( −a

2
√

3
) = F6. (6)

On the other hand, in the usual analysis of the reflection,
the correct boundary conditions for Maxwell’s equations
will relate the incident (ψinc.) and reflected (ψrefl.) ampli-
tudes, measured at the boundary, by a Fresnel reflection
factor r(θi),

ψrefl.

ψinc.
= r(θi) = eiδ(θi). (7)

Here δ(θi) is the phase shift experienced by the wave
upon reflection, for incident angle θi, in conditions of
TIR. The θi-dependence of the different Fresnel factors
appearing for TE and TM polarization is discussed sub-
sequently in Sec. III, see Fig. 2 for typical dependence
with dielectric boundary conditions.

Expressions (6) and (7) imply that the wave ampli-
tudes A6 and A1 have a relation,

r6 = eiδ6 =
A1e

−ik1y
a

2
√

3

A6e
−ik6y

a
2
√

3
=

A1

A6
e

ik6y
a√
3 . (8)

The phase factor involves the y-component of �k6, which
is the negative of the y-component of �k1. The subscripts
on r and δ indicate evaluating at the incident angle for
wave 6©, θi,6 = 90◦ − α. This allows us to write the
reflected and evanescent field amplitudes in terms of A6,

A1 = A6e
iδ6e

−ik6y
a√
3 , F6 = A6(1+eiδ6)e−ik6y

a
2
√

3 . (9)

An equivalent algebra applies for analyzing how wave
5© incident on b0 produces reflected wave 2©, and an

exterior evanescent wave 5′©, in terms of incident angle
θi,5 = α − 150◦, and associated phase shift, δ5. The re-
flected and exterior field amplitudes are

A2 = A5e
iδ5e

−ik5y
a√
3 , F5 = A5(1 + eiδ5)e−ik5y

a
2
√

3 .
(10)

Finally, wave 3© incident on b0 produces reflected wave
4© and evanescent wave 3′©, with similar expressions,

A4 = A3e
iδ3e

−ik3y
a√
3 , F3 = A3(1 + eiδ3)e−ik3y

a
2
√

3 .
(11)

The same type of analysis can be applied to the waves
incident on boundaries b1 and b2, using the incident an-
gles seen in Fig. 1. One can also use the symmetries under
120◦ rotations R, seeing that, for example, R · b0 = b1,
and R · �k6 = �k4, R · �k1 = �k5, implying that the phase
relationship between waves 6© and 1© on b0 is the same
as the relationship between 4© and 5© on b2. Similar ar-
guments apply to the other pairs of waves. The results
of this analysis are summarized in Table II, where the
phase factors relating the wave amplitudes are denoted
by

∆l ≡ δl − kly
a√
3
, l = 3, 5, 6. (12)

There are only three distinct incident angles in the prob-
lem, corresponding to the three fundamental θi of Eq. 5.
These factors ∆3, ∆5 and ∆6 are now the only quantities
needed to correctly match self-consistently the interior
fields, according to the nine equations in the last column
of Table II.

III. DETERMINATION OF THE RESONANT
FREQUENCIES AND WAVEFUNCTIONS

The nine equations in the Table II can be summarized
as three basic ratios,

A4

A3
=

A2

A1
=

A6

A5
= ei∆3 , (13a)

A2

A5
=

A6

A3
=

A4

A1
= ei∆5 , (13b)

A1

A6
=

A5

A4
=

A3

A2
= ei∆6 , (13c)

Due to the simple structure, one sees the relation

A2A4A6

A1A3A5
= ei3∆3 = ei3∆5 = e−i3∆6 . (14)

This leads to two fundamental relations for these phases,

ei3(∆3+∆6) = 1, ei3(∆5+∆6) = 1. (15)
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Using all of the equations (13) together gives the relation,

ei(∆3+∆5+2∆6) = 1. (16)

Although these last three relations are not linearly inde-
pendent, all are required to describe the solution. The
first two imply introduction of some integers denoted as
n3 and n5, such that

∆3 + ∆6 =
2π

3
n3, ∆5 + ∆6 =

2π

3
n5. (17)

Eq. (16) leads to, on the other hand,

∆3 + ∆5 + 2∆6 = 2πn6, (18)

where n6 must also be an integer. Comparing these equa-
tions demonstrates the constraint,

n3 + n5 = 3n6, (19)

that is, the sum of n3 and n5 must be a multiple of 3.
However, not all possible choices of these integers will
lead to allowed solutions. Once the allowed quantum
numbers n3 and n5 are determined, the amplitude ratios
of the six plane waves will be determined.

Eqs. (17) and (18) merely give some sums of the ∆l

phase factors, whereas, we actually need to determine
each one separately, and more importantly, we need to
find the wavevector magnitude k. This is accomplished
by using their definitions (12) together with the cor-
responding y-components of the wavevectors, obtained
from (2). The necessary components are

k3y = k sin(α − 120◦) = −k

2
(sin α +

√
3 cosα), (20a)

k5y = k sin(α + 120◦) = −k

2
(sin α −

√
3 cosα), (20b)

k6y = k sin(−α) = −k sin α. (20c)

Then this leads to the ∆l combinations,

∆3 + ∆6 = (δ3 + δ6) +
1
2
ka(

√
3 sin α + cosα), (21a)

∆5 + ∆6 = (δ5 + δ6) +
1
2
ka(

√
3 sinα − cosα), (21b)

∆3 + ∆5 + 2∆6 = (δ3 + δ5 + 2δ6) +
√

3 ka sinα. (21c)

The last of these then determines ky ≡ k1y = k sin α.
Another combination involves only kx ≡ k1x = k cosα,

∆3 − ∆5 = (δ3 − δ5) + ka cosα =
2π

3
(n3 − n5). (22)

Then the basic wavevector components of wave 1© are
expressed as

kxa = ka cosα =
2π

3
(n3 − n5) − (δ3 − δ5), (23a)

kya = ka sinα =
1√
3

[2πn6 − (δ3 + δ5 + 2δ6)] . (23b)

Remembering that the Fresnel phase shifts δ(θi,l) depend
ultimately on α, via equations (5), the Eqs. (23) are seen
to be coupled transcendental equations for unknowns k
and α, assuming n3 and n5 are given. They can be solved
in various ways. A simple approach is to eliminate k, and
then determine the allowed α as the roots of the following
function,

p(α) =
[
2π

3
(n3 + n5) − (δ3 + δ5 + 2δ6)

]
cosα (24)

−
√

3
[
2π

3
(n3 − n5) − (δ3 − δ5)

]
sinα = 0.

In this last expression n6 was eliminated using the con-
straint (19). In the general case, it is not possible to solve
for α in closed form. On the other hand, some straight-
forward analysis of this function, together with numerical
evaluation indicates the region in which to look for the
quantum numbers n3 and n5.

Once α has been determined, the modulus of the
mode’s wavevector, k, can be found from either (23a)
or (23b), or by their combination, written in a form like
that for the known solution for the DBC case [Eq. (35)],

ka =
2π

3

{ [
n3 − n5 − 3

2π
(δ3 − δ5)

]2

+3
[
n6 − 1

2π
(δ3 + δ5 + 2δ6)

]2}1/2

. (25)

A. The resonant wavefunctions

Assuming α has been found (see below for DBC, TE
and TM cases), then kx, ky, and k or ω = c∗k are deter-
mined. In addition, Eqs. (12) determine the phase fac-
tors needed to express the complete wavefunction for any
mode, in terms of α via Eqs. (23) and (5). The quantum
numbers and Fresnel phase shifts give the ∆l as

∆3 =
1
3

[
2π

3
(2n3 − n5) + (δ3 + δ5 − δ6)

]
, (26a)

∆5 =
1
3

[
2π

3
(2n5 − n3) + (δ3 + δ5 − δ6)

]
, (26b)

∆6 =
1
3

[
2π

3
(n3 + n5) − (δ3 + δ5 − δ6)

]
, (26c)
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all of which depend on a net phase factor,

ϕ(α) ≡ δ3 + δ5 − δ6. (27)

This allows evaluation of the wavefunction (4), simplified
by freely choosing the amplitude of wave 1© as

A1 =
1
2
A0 exp

{
−i

[
2π

9
(n3 + n5) +

1
6
ϕ

]}
, (28)

where A0 is the overall wavefunction amplitude.

ψ = A0

{
eikxx cos

[
kyy − 2π

9
(n3 + n5) − 1

6
ϕ

]

+ eik3xx cos
[
k3yy − 2π

9
(n5 − 2n3) − 1

6
ϕ

]

+ eik5xx cos
[
k5yy − 2π

9
(n3 − 2n5) − 1

6
ϕ

]}
, (29)

where the wavevectors of waves 1©, 3©, and 5© are needed,
e.g., from Eqs. (23) and using Table I,

k3x = −1
2
kx +

√
3

2
ky, k3y = −

√
3

2
kx − 1

2
ky. (30)

k5x = −1
2
kx −

√
3

2
ky , k5y =

√
3

2
kx − 1

2
ky, (31)

Note that if α = 60◦, then θi,3 = θi,6 = 30◦, making
δ3 = δ6, and hence, ϕ = δ5 = −π (grazing incidence for
wave 5©, TE or TM polarization). Putting α = 60◦ also
gives n3 = 2n5 + 3 (See III B below). These values cause
the wavefunction ψ to vanish; there are no modes with
α = 60◦ for the DBC, TE or TM cases, although it is
tempting to sketch such ray diagrams.

B. Equilateral triangle cavity with Dirichlet
boundary conditions

It is interesting to check the validity of the six-wave
analysis in the case of Dirichlet boundary conditions; this
also helps to locate the allowed n3 and n5 for Maxwell
boundary conditions. The net field on the boundary be-
comes zero when the Fresnel phase shifts are all taken to
be δl = −π (this is the limiting phase shift for grazing
incidence, in either TE or TM polarization). Then the
wavevector components reduce to

kxa =
2π

3
(n3 − n5), kya =

2π√
3
(n6 + 2). (32)

The original assumption, α ≥ 60◦, imposes the relation
tan α = ky/kx ≥ √

3. At the limiting value α = 60◦,
however, the net wavefunction ψ of Eq. (29) vanishes;
α = 60◦ is not allowed. There results n3 < 2n5 + 3

(equality maps to α = 60◦). Also it was implicitly as-
sumed that kx ≥ 0, hence, we require n3 ≥ n5. There-
fore, a given choice of n5 allows a limited range of n3,

n5 ≤ n3 < 2n5 + 3. (33)

Using values n5 ≥ 0 and evaluating the possible quan-
tum numbers, the well-known solutions for DBC are
recovered[2, 9, 16], in terms of shifted quantum numbers,

m ≡ (n3 − n5), n ≡ (n6 + 2). (34)

These must be both odd, or both even, with the restric-
tion m < n. Generally, we use these quantum numbers
to label the modes with dielectric boundary conditions,
in place of n3, n5. Then the DBC wavevector moduli are
reproduced from (25),

ka =
2π

3
{m2 + 3n2}1/2. (35)

Note that the prohibited solutions at α = 60◦ would
correspond to the prohibited case, m = n. It is straight-
forward to check that the (m < n) DBC wavefunctions
vanish on all the boundaries.

C. Maxwell boundary conditions: TM or TE
polarization

To define Eq. (24) for p(α) = 0, we require the Fresnel
phase shifts for MBC. For TM polarization, ψ = Ez , and
the Fresnel reflection coefficient for electric field polarized
perpendicular to the plane of incidence is needed. For
incident angle θi, the formula is[15]

ψrefl.

ψinc.
= eiδ =

√
ε
µ cos θi −

√
ε′
µ′ cos θ′√

ε
µ cos θi +

√
ε′
µ′ cos θ′

(TM). (36)

Unprimed electric permittivity ε and magnetic perme-
ability µ correspond to the cavity medium, whereas the
primed values are those outside the cavity; the refractive
indexes result from n =

√
εµ. Angle θ′ is the refraction

angle, a complex quantity obtained from Snell’s Law un-
der TIR,

cos θ′ = iγ′ ≡ i

√
(sin θi/ sin θc)

2 − 1, (37)

where critical angle θc is defined in Eq. (1). The phase
shift can be expressed also via

tan
δ

2
= − µ

µ′

√
cos2 θc

cos2 θi
− 1 (TM). (38)

In the usual case for many optical materials with µ ≈
µ′ ≈ 1, the phase shift changes slowly as θi ranges from
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θc (δ = 0) to 90◦ (δ = −π). Typical examples for index
ratio N = 2.5, 4.0, 10.0 are shown in Fig. 2. In numerical
results presented here we assume µ = µ′ = 1, as for most
optical materials.

For TE polarization, ψ = Hz, and the Fresnel reflec-
tion coefficient for electric field polarized within the plane
of incidence is needed. The Fresnel formula is[15]

ψrefl.

ψinc.
= eiδ =

√
ε′
µ′ cos θi −

√
ε
µ cos θ′√

ε′
µ′ cos θi +

√
ε
µ cos θ′

(TE). (39)

Equivalently, the reflection phase shift is given by

tan
δ

2
= − ε

ε′

√
cos2 θc

cos2 θi
− 1 (TE). (40)

The important difference, in comparison with that for
TM polarization, is the presence of the factor ε/ε′ instead
of µ/µ′. This significantly enhances the initial rate at
which δ increases with θi, as can be seen in Fig. 2. Both
the TM and TE phases shifts reach −π at θi = 90◦, but
for TE the approach is much more rapid. This can also be
taken to imply that a DBC approximation for the modes,
such as that applied in Ref. 14, is more reasonable for TE
modes than for TM modes.

D. Mode solutions: determination of α and (n3, n5)
pairs, Maxwell boundary conditions

Now consider the solution of Eq. (24) for α under
MBC. As shown earlier, there are no solutions with
α = 60◦, because such a choice causes the wavefunction
(29) to vanish. The other extreme, α = 90◦, which re-
quires n3 = n5, is prohibited because wave 6© can never
experience TIR at a vanishing incident angle. Then, for
MBC, similar to Eq. (33), the search for possible (n3, n5)
pairs must take place in the range

n5 < n3 < 2n5 + 3. (41)

It is straightforward to calculate p(α) [Eq. (24)] numer-
ically and determine the zero crossings, which only take
place provided that n3 is fairly close to the upper limit
of (41). Choices of n3, n5 were made as follows. Start-
ing from some n5 ≥ 0, calculate n3 = 2n5 + 3, which
gives a prohibited pair at α = 60◦. Automatically the
sum (n3 + n5) is a multiple of 3. Then the first pair
to check for a valid solution, is to take n3 reduced by
1 (n3 → n3 − 1) and n5 increased by 1 (n5 → n5 + 1),
such that the sum is the same multiple of 3. The result-
ing pair (n3, n5) will likely have a solution for α if n5 is
adequately large. This initial pair is equivalently set by

n3 = 2n5, n5 = 1, 2, 3 . . . (42)

Other pairs to try are found by continuing the reduction
of n3 by 1 together with the incrementing of n5 by 1.
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FIG. 3: The lowest mode wavevectors for TM polarization
at index ratio N = 3.2, plotted versus quantum index m =
n3 − n5, for different values of the other index n = n6 +
2 (Eq. 34) indicated next to the curves, changing by unit
increments. The solid circles indicate allowed modes; the solid
lines connect those having equal values of n. The dotted lines
locate the limits of stable TIR as expected from using the
DBC solution for the ETR, Eqs. (45) and (46), explained in
the text.
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FIG. 4: The lowest mode wavevectors for TM polarization
at index ratio N = 8.0, plotted as described in Fig. 3. Note
also that the fundamental mode here has lower (m,n) and ka
than that for N = 3.2 .

The solution for α must occur within the range

60◦ < α < 90◦ − θc, (43)

because the incident angle of wave 6©, θi,6 = 90◦ − α,
cannot surpass the critical angle. Therefore, there is a
considerably larger range for possible solutions for α as
the index ratio increases (smaller θc). Conversely, an
index ratio only slightly above 2.0 makes a substantially
limited search range for α, as a result, fairly large values
of n5 are required before a solution is found.
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N = 3.2,  TM3,5

a) phase  θ = 0

α = 70.4167o

ϕ =  3.7847 rad
ka = 14.3406
τc*/a = 2.24
Q  =  32.2

N = 3.2,  TM3,5

a) phase θ = π/2

FIG. 5: Fundamental TM modes of oscillation at N = 3.2,
with (m,n) = (3, 5), where the pixel intensity is proportional

to |Re{ψ}|1/2, which enhances the definition of the nodal
curves. The black nodal curves separate alternating regions
of positive and negative Re{ψ}. Two degenerate wavefunc-
tions are displayed. In a) phase is θ0 = 0, in b) the phase is
θ0 = π/2, where the mode amplitude is A0 = eiθ0 , see text.

IV. CALCULATIONS OF MODE SPECTRA
AND PROPERTIES

Having found (n3, n5) pairs and associated α, we can
look at the mode dependence on polarization and refrac-
tive index ratio N. Henceforth, modes will be labeled by
the quantum number pairs, (m, n).

N = 3.2,  TM4,6

a) phase  θ = 0

α = 68.6412o

ϕ =  3.6384 rad
ka = 18.5733
τc*/a = 3.64
Q  =  67.7

N = 3.2,  TM4,6

b) phase θ = π/2

FIG. 6: First excited TM modes of oscillation at N = 3.2,
with (m, n) = (4, 6), as described in Fig. 5. Two degenerate
wavefunctions are displayed. In a) phase is θ0 = 0, in b) the
phase is θ0 = π/2, where the mode amplitude is A0 = eiθ0 ,
see text.

A. TM polarization

For TM polarization, the frequencies of the lowest
modes are displayed in Fig. 3 for N = 3.2, in terms of
their dependences on the mode indexes (m, n), defined
in Eq. (34). This value for index ratio was used in Ref.
17 in numerical and experimental studies of ETR semi-
conductor cavities, with a different theoretical analysis of
the modes. In general, the trend is for ka to increase with
increasing quantum numbers. Just as in the DBC anal-
ysis, the allowed modes for MBC must have indexes m
and n either both odd, or both even (parity constraint).
Note, however, that the TM mode wavevectors for cho-
sen (m, n) are noticeably lower than the values expected
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FIG. 7: TM mode wavevectors as functions of the index ratio
N, for modes indicated by quantum indexes (m, n).

from the simplified DBC theory, expression (35), see Figs.
7 and 11 below. This can be attributed to the fact that
the reflection phase shifts [from (38)] due not tend to-
wards −π even at very large index ratio N.

The positions of the ka upper limits (see dotted lines
in Fig. 3) can be estimated quite accurately by using the
TIR cutoff for a mode from the DBC theory[14]. Using
the DBC solutions, all six plane waves can maintain TIR
at all the boundaries only when

m > n

√
3

N2 − 1
. (44)

Combining this with Eq. (35) for ka leads to the DBC-
TIR limiting curve, expected to hold reasonably well at
higher index ratio,

ka =
ωa

c∗
<

2πN

3
m. (45)

Additionally, the right limiting points of each curve cor-
respond to quantum index pairs with n = m+2, or equiv-
alently, n3 = 2n5. Then also using the DBC wavevectors
(35), together with constraint m < n, valid for either
DBC or MBC, leads to the ka lower limit,

ka =
ωa

c∗
>

4π

3
m. (46)

Indeed, all the results for Maxwell boundary conditions
lie between these results, the dotted lines in Fig. 3, lend-
ing support to general aspects of the DBC theory.

As N is increased, the lower TIR limit does not change,
while the DBC-TIR upper limit moves steeper, or to the
upper left, encompassing more of the possible modes from
the DBC theory, down towards smaller m for a given n.
An example of this is given in Fig. 4, showing the corre-
sponding results for index ratio N = 8. A larger number
of states appears for each n, although the mode wavevec-
tors have changed slightly. (The mode frequencies, given

0 5 10 15 20 25 30
m

0

20

40

60

80

100

120

ka

12

30

4

9 10

n=15

20

25

DBC-T
IR

 lim
its

8
76

5 N = 3.2, TE

mode spectrum

FIG. 8: The lowest mode wavevectors for TE polarization at
index ratio N = 3.2, plotted as described in Fig. 3. The funda-
mental mode here has lower (m,n) and ka than that for TM
polarization. On the other hand, at fixed (m, n), the mode
wavevectors here are higher than those for TM polarization.

by ω = ck/n, may or may not diminish with increasing
N, depending on whether N changed due to increased n
or due to decreased n′.) Conversely, as N decreases be-
low the value 2.0, the DBC-TIR upper limit passes the
lower limit, leaving no modes that can be confined by
TIR. Furthermore, as long as N > 2.0, the total num-
ber of modes is not finite, since n can be adjusted to an
adequately large value to reach the fundamental mode.
The main effect of placing N very close to 2.0 will be to
force the lowest frequency mode to a large value of ka
and associated large minimum value of n.

The fundamental mode quantum indexes depend on N.
At N = 3.2, the fundamental mode has (m, n) = (3, 5),
and a diagram of its interior wavefunction (ψ = Ez) is
shown in Fig. 5. The intensity of the pixels in these im-
ages has been set proportional to |Re{ψ}|1/2, rather than
linear in Re{ψ}, in order to sharpen the appearance of
the zero crossings. The resulting nodal curves separate
neighboring positive/negative regions of the wavefunc-
tions. The calculation of mode lifetimes and quality fac-
tors indicated on the wavefunction diagrams is described
later in Sec. IVC.

Wavefunctions for the first excited TM state at N =
3.2, with (m, n) = (4, 6), are shown in Fig. 6. It is im-
portant to note that for the TM modes, the fields have
substantial nonzero amplitudes even at the cavity edges.
Furthermore, all these TIR-confined modes are doubly
degenerate, since one can choose the two values ±kx and
form degenerate pairs of states. Alternatively, different
degenerate wavefunctions can be obtained by putting the
overall amplitude A0 = eiθ0 , choosing some arbitrary
phase θ0, and using only the real part of (29). The de-
generate pairs presented here were formed using θ0 = 0
and θ0 = π/2.

A rather weak dependence of some of the TMm,n mode
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N = 3.2,  TE2,4

a) phase  θ = 0

α = 71.5207o

ϕ =  4.9529 rad
ka = 12.5628
τc*/a = 0.125
Q  =  1.58

N = 3.2,  TE2,4

a) phase θ = π/2

FIG. 9: Fundamental TE modes of oscillation at N = 3.2,
with (m, n) = (2, 4), as described in Fig. 5. Two degenerate
wavefunctions are displayed. In a) phase is θ0 = 0, in b) the
phase is θ0 = π/2, where the mode amplitude is A0 = eiθ0 ,
see text.

frequencies on index ratio is shown in Fig. 7. The cut-off
index ratios appear clearly as the left termination points
of each curve. These cutoffs are similar in magnitude to
that from the DBC theory, rewriting Eq. (44),

N > Nc ≡
√

3
n2

m2
+ 1. (47)

(See Fig. 11 for the DBC cutoffs.) However, the TM
mode wavevectors are considerably lower than the pre-
diction of the DBC theory, Eq. (35), because the TM
reflection phase shifts δi,l are never near −π.
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FIG. 10: The lowest mode wavevectors for TE polarization
at index ratio N = 2.5, plotted as described in Fig. 3.

B. TE polarization

Results for the TE mode spectrum at N = 3.2 are
shown in Fig. 8, in the same manner as displayed for TM
polarization. Again, the allowed mode indexes satisfy the
parity constraint, and the ka values fall within the limits
of the DBC-TIR theory. On the other hand, there are two
primary differences compared to TM polarization. First,
the fundamental mode has a lower (m, n) pair, and in
addition, a slightly lower ka than for the fundamental
mode with TM polarization. Second, at a given (m, n),
we see that the wavevectors for TE polarization always
are noticeably higher than for TM polarization.

At N = 3.2, the TE fundamental is (m, n) = (2, 4),
Fig. 9, however, the Q for this mode is extremely low, so
that it cannot be considered stable.

In Fig. 10 we illustrate the effect of decreasing N down
to the value 2.5, closer to the extreme limit 2.0 . Two
low modes at m = 4 and m = 5 have been squeezed
out by the lower DBC-TIR upper limit, as well as the
entire spectrum becoming narrower. Of course, a similar
squeezing effect takes places for the TM spectrum.

The dependence of some TE mode wavevectors on in-
dex ratio is shown in Fig. 11. Compared to the TM
modes, the TE modes show a stronger variation with
N, especially just above the cutoff ratio. The plot also
shows the DBC mode wavevectors as dotted lines, termi-
nating at the cutoffs predicted by the DBC-TIR theory,
Eq. (47). Once N reaches adequately large values, the
wavevectors from the calculations for dielectric bound-
ary conditions asymptotically approach the DBC values.
This can be attributed to the extra factor of ε/ε′ in the
TE phase shift formula (40), which easily causes all the
reflection phase shifts to rapidly approach −π, the value
under Dirichlet boundary conditions.

The fields diminish more rapidly near the cavity edges
for TE polarization than for TM polarization. At N =
8.0, the fundamental modes have (m, n) = (1, 3), whose
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FIG. 11: TE mode wavevectors (solid curves) as functions of
the index ratio N, for modes indicated by quantum indexes
(m, n). The dotted lines show the DBC wavevectors, termi-
nating at the cutoffs given by Eq. (47).

corresponding wavefunction is the simplest possible, hav-
ing a single nodal line across the cavity, Fig. 12. The
avoidance of the fields close to the cavity boundaries of
the TE mode is apparent, whereas, the TM fields tend
towards maximum values near the boundaries.

Taken together, these results emphatically confirm the
idea presented in Ref. 14 that the simple DBC theory is
much more appropriate for TE polarization than for TM
polarization.

C. Estimates of mode lifetimes due to boundary
wave emission

The (doubly-degenerate) solutions found here are ap-
proximate. The assumption of evanescent traveling
waves along each boundary, rotating around the trian-
gle in the exterior region, is not exact, because the edges
are of finite length. In reality, the evanescent waves
can be expected to scatter from the triangle vertices,
leading to radiation away from the cavity, and reflec-
tion of that evanescent wave backwards from the vertices.
There should be linear combinations of evanescent trav-
eling waves moving in both directions along the edges
(standing waves). This in turn would lead to a mixing
of the doubly degenerate modes, i.e., the degeneracy will
be split due to the scattering experienced by the fields at
the triangular vertices. The finite cavity faces may also
imply diffraction of the interior waves; these effects are
ignored in this work.

In the case of modes whose exterior wavelength is small
compared to the cavity edge, these effects may be small,
and ignoring the resulting degeneracy splitting, we can
try to estimate the power loss, and hence, the mode life-
time. To accomplish this, following Wiersig[18], it is as-
sumed that all the power in the evanescent boundary

a) N = 8.0,  TE1,3

phase  θ = 0

α = 78.9295o

ϕ =  3.3128 rad
ka = 10.8199
τc*/a = 5.15
Q  =  55.7

b) N = 8.0,  TM1,3

phase  θ = 0

α = 78.5956o

ϕ =  3.8594 rad
ka = 6.5217
τc*/a = 2.60
Q  =  16.9

FIG. 12: Fundamental a) TE and b) TM modes of oscillation
at N = 8.0, with (m, n) = (1, 3), as described in Fig. 5, both
for phase θ = 0, see text. (The choice θ = π/2 would instead
produce a vertical nodal line.)

waves is radiated when reaching the vertices of the trian-
gle, without reflecting backwards from the vertices. The
lifetime τ and Q-factor are calculated by

τ = U/P, Q = ωτ = 2πfτ, (48)

where U is the total energy in the cavity fields, and P is
the total power radiated, as found from leakage of the
evanescent boundary waves at the vertices. This ap-
proach was used also to estimate the mode lifetimes using
the DBC solutions[14]; there it was found that generally
speaking, the TE modes have longer lifetimes than the
corresponding TM modes, provided the index ratio N is
large. It is important to check the relative mode lifetimes
using the more correct dielectric boundary conditions. As
the present solution has demonstrated the avoidance of
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FIG. 13: Mode quality factors for a) TE and b) TM modes
calculated from boundary wave emission, see (54) and (55), as
functions of the index ratio N, with modes labeled by (m, n).

TE fields near the cavity boundaries, one might expect
the TE lifetimes to be longer.

Following the calculations in Refs. 14, 18, the total
energy of the fields in a cavity of height h can be written

U =
∫

h dx dy
ε| �E|2
8π

=
∫

h dx dy
µ| �H|2

8π
; (49)

the two forms convenient for TM modes (| �E| = Ez = ψ)
and TE modes (| �H | = Hz = ψ), respectively. Using
the wavefunction of Eq. (29), it is not possible to find
a simple formula for this integral in the general case,
thus it was evaluated by numerical integration within
the triangle. In the DBC limit, with ϕ = −π, one finds∫

dx
a

dy
a |ψ|2 = 3

√
3|A0|2/8; generally also for MBC the

integral is of this order.
The total boundary wave power is taken as the sum

of the powers from boundary waves on each edge. At
each edge there are three different incident waves, each of
which generates an evanescent wave. For example, on b0,
waves 3©, 5© and 6© separately produce the evanescent
waves 3′©, 5′© and 6′©. We sum the powers in each of
these evanescent waves, then multiply by three due to

triangular symmetry, to give the total power radiated.
The boundary wave power of an individual evanescent

wave is calculated using the Poynting flux along the ex-
terior side, �S′ = c

8π Re{ �E′ × �H ′∗}, expressed alternately
as

�S′ =
c

8πµ′ | �E ′|2n sin θi x̂ =
c

8πε′
| �H ′|2n sin θi x̂, (50)

where x̂ points parallel to the boundary, and the incident
angle from within the cavity is θi. The evanescent wave
has an exponentially decaying behavior into the exterior
medium. If Ai is the amplitude on the interior side, with
boundary at y = 0, and the y-coordinate points from the
boundary into medium n′, Eqs. (9) and (37) give

|ψ ′|2 = |Ai[1 + eiδ(θi)]eik′
xxe−k′γ′y|2. (51)

Integrating the total flux contained from y = 0 to y = ∞
gives the power of this wave along the boundary, Px =
h

∫ ∞
0

dy �S ′ · x̂, with only a tiny formal difference for the
two polarizations,

Px =
hc2

4πω

|Ai|2 cos2[12δ(θi)]√
1 − (sin θc/ sin θi)2

×
{

1
µ′ (TM),
1
ε′ (TE).

(52)

In practice, however, the phase shifts for TE polarization
are typically much closer to −π than for TM polarization,
which causes the TE powers to be smaller. The incident
squared wave amplitude is |Ai|2 = 1

4 |A0|2, as all the six
wave components of ψ are of equal strength, Eq. (28).

The total emitted power from all edges is three times
the sum of the powers on edge b0,

P = 3(Px,3 + Px,5 + Px,6). (53)

Taking the net energy/power ratio and simplifying leads
to the dimensionless lifetime expressions,

τc∗

a
=

2
3ka

∫
dx
a

dy
a |ψ|2∑

i=3,5,6
|A0|2 cos2[ 12 δi]√
1−(sin θc/ sin θi)2

×
{

µ′

µ (TM),
ε′
ε (TE).

(54)

The factor of ε′/ε < 1 for TE polarization tends to reduce
the lifetime, however, the phase shifts in the denominator
have an even larger effect, such that typically, the TEm,n

lifetime is found to be longer than the TMm,n lifetime.
The summation of power terms in the denominator is
usually dominated by that of wave 6©, which has the
smallest incident angle. The expression is scaled by a/c∗,
the time for the signal to cross the cavity. A well-defined
mode should have τc∗/a 	 1, however, usually it is more
typical to look at the related mode quality factor, Q,
defined by

Q = ωτ = c∗kτ = (ka)(τc∗/a), (55)

which is the dimensionless mode wavevector times the
dimensionless lifetime.
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a) N = 2.5,  TE5,7

phase  θ = 0

α = 66.0839o

ϕ =  4.8175 rad
ka = 24.4893
τc*/a = 0.328
Q  =  8.02

b) N = 8.0,  TE5,7

phase  θ = 0

α = 67.5664o

ϕ =  3.1760 rad
ka = 27.3436
τc*/a = 87.1
Q  =  2380

FIG. 14: Comparison of TE5,7 wavefunctions at a) N = 2.5,
only slightly above cutoff, and very weakly bound with small
Q and b) N = 8.0, substantially above the cutoff, with much
higher Q, and field amplitude concentrated away from the
boundaries.

Numerical results for Q versus index ratio are displayed
for the lowest modes in Fig. 13, for TE and TM polar-
izations, assuming µ = µ′. One finds that Q’s for TE
modes are considerably larger than for TM modes, espe-
cially far enough above the cutoff N for a given mode.
Furthermore, the TM quality factors tend to saturate at
large N, while the TE quality factors tend to increase
proportional to N2 = ε/ε′. This latter effect can be seen
due to the asymptotics for the TE reflection phase shift,
based on the identity,

cos2
δ

2
=

(
ε′

ε

)2 cos2 θi

sin2 θi − sin2 θc + (ε′/ε)2 cos2 θi

. (56)

The net result is that Q and τ for TE modes are propor-
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FIG. 15: Comparison of some mode a) lifetimes and b) qual-
ity factors, as functions of the index ratio N, from the present
theory, using dielectric boundary conditions (solid curves),
and from the simpler theory using Dirichlet boundary condi-
tions (dashed curves). The modes are labeled by (m,n).

tional to ε/ε′ in the limit of large index ratio, a factor not
present for TM polarization. In fact, Eq. (54) leads to
QTE/QTM ∼ ε/ε′ at large N, but QTE/QTM ∼ ε′/ε near
the cutoff value of N.

It is interesting to observe the changes in the wave-
functions with increasing N or effectively, increasing Q.
In Fig. 14, TE5,7 mode wavefunctions are plotted for
N = 2.5, just slightly above the cutoff index ratio, and
for N = 8, well above the cutoff. At lower N (and Q), a
central lobe of ψ is connected to one vertex of the bound-
ary, and another lobe is nearly coupled to the opposite
edge. At higher N (and much higher Q), these interior
lobes have become completely detached from the bound-
ary, and the fields appear more concentrated within the
interior, farther from the boundaries.

A comparison can be made between the results using
dielectric boundary conditions and those from the sim-
plified DBC theory[14]. Fig. 15 shows Q and τ results for
the modes (1, 3) and (2, 4), as derived from the two ap-
proaches, using the total power in all boundary waves for
this comparison. Indeed, there are only minor differences
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TABLE III: Properties of some of the lower TM mode for
N = 3.2, labeled by (m,n) or by underlined indexes (m, l),
where compared to results of Ref. 12, in parenthesis.

mode α ka Q

TM3,5 70.4167◦ 14.3406 32.18

TM4,6 (0,14) 68.6412◦ 18.5733 (18.8) 67.67

TM5,7 (0,16) 67.3705◦ 22.7686 (22.9) 107.9

TM6,8 (0,18) 66.4225◦ 26.9545 (27.0) 154.5

TM7,9 (0,20) 65.6894◦ 31.1374 (31.2) 207.9

TM8,10 (0,22) 65.1060◦ 35.3196 (35.3) 268.4

TM6,10 (1,21) 70.6463◦ 33.5168 (34.1) 145.8

TM9,11 (0,24) 64.6307◦ 39.5019 (39.5) 335.9

TM7,11 (1,23) 69.6339◦ 37.7112 (38.3) 227.4

. . . . . . . . . . . .

TM15,17 (0,36) 62.9701◦ 64.6045 (64.5) 889.9 (15000)

TM13,17 (1,35) 66.1053◦ 62.7505 (62.9) 784.1 (4380)

TM11,17 69.3950◦ 61.0455 593.5

TM16,18 (0,38) 62.8025◦ 68.7897 (68.7) 1007 (22000)

TM14,18 (1,37) 65.7527◦ 66.9250 (67.0) 899.0 (7000)

TM12,18 (2,36) 68.8431◦ 65.2085 (65.5) 717.7 (1230)

TM13,19 (2,38) 68.3516◦ 69.3713 (69.5) 845.1 (1960)

between the lifetimes, mostly near the cutoff index ratios,
due to the fact that the DBC theory overestimates the
cutoffs. For the quality factors, the discrepancy between
the approaches is much greater for the TM modes, pri-
marily because the DBC theory has overestimated their
frequencies (or wavevectors). Nevertheless, the ability of
the simplified DBC theory to predict the general trends
with N is remarkable.

D. Comparison with other ETR theory for
dielectric boundary conditions

ETR modes have previously been analyzed by Huang
et al.(HGW)[12] using different approximations, also in-
volving matching of interior fields undergoing TIR to ex-
terior evanescent fields. In particular, HGW used what
was called a “perfectly confined approximation for the
transverse wavefunction.” This is a Dirichlet boundary
condition on part of the full wavefunction, giving the y-
component of wavevector 1© [Eq. (9) of Ref. 12],

kya =
2π√

3
(m + 1), m = 0, 1, 2, . . . (57)

Indeed, this is the same as Eq. (32) reviewed here for
the DBC problem, with m + 1 equivalent to n = n6 + 2.
Thus, it is noticeably different from the result for dielec-
tric boundary conditions, Eq. (23b), which more fully ac-
counts for all the reflection phase shifts. The factor m+1
begins at the value 1, whereas, in our results, the mini-
mum value of equivalent quantum index n is 3. For the

TABLE IV: Properties of some of the lower TE modes for
N = 3.2, labeled by (m,n) or by underlined indexes (m, l),
where compared to results of Ref. 12, in parenthesis.

mode α ka Q

TE2,4 71.5207◦ 12.5628 1.576

TE3,5 69.9852◦ 17.6896 18.95

TE4,6 68.4450◦ 22.1165 60.13

TE5,7 (0,16) 67.2586◦ 26.3873 (26.2) 121.4

TE6,8 66.3498◦ 30.6105 200.1

TE7,9 65.6382◦ 34.8149 294.6

TE5,9 71.3190◦ 32.0399 15.63

TE8,10 (0,22) 65.0678◦ 39.0107 (39.0) 404.1

TE6,10 70.3771◦ 36.7552 59.80

. . . . . . . . . . . .

TE14,16 (0,34) 63.1471◦ 64.1404 (64.2) 1350 (6130)

TE12,16 (1,33) 66.4654◦ 62.2279 (62.4) 789 (4100)

TE10,16 69.8843◦ 60.2288 221

TE15,17 (0,36 62.9597◦ 68.3271 (68.4) 1560 (10860)

TE13,17 (1,35) 66.0736◦ 66.4147 (66.6) 972 (15320)

TE11,17 69.2967◦ 64.4910 346

other component of wavevector 1©, the result obtained
[Eq. (21) of Ref. 12] is similar to Eq. (23a),

kxa =
2π

3
l − 2θ, l = 3, 4, 5, . . . (58)

where l has the same parity as m, and θ is an indi-
vidual TIR Fresnel phase shift, having different forms
for TM and TE modes. Index l appears equivalent to
m = n3 − n5, however, Eq. (23a) involves phase shifts of
two different waves, instead of the individual phase shift
θ.

For a chosen value of n, different choices of m give
solutions with ka of similar magnitude, like the modes
connected by solid lines in Figs. 3, 4, 8 and 10. This
“number of transverse modes” increases with both n and
N, and is smaller than that found in Ref. 12. Because
ka = 2πN/λ depends on (m, n) in a nontrivial way, it
is not possible to give a simple expression for this mode
count.

For N = 3.2, a summary is made of the lowest TM
and TE modes in Tables III and IV and compared to
results from HGW. In spite of the obvious differences in
these theoretical approaches, they both lead to very sim-
ilar predictions for the mode wavevectors or frequencies,
agreeing to within about one percent. The prediction of
the Q-values are considerably different; HGW used the
finite-difference time-domain (FDTD) technique[13] com-
bined with Padé approximates to estimate Q. In partic-
ular, the FDTD technique predicts that TE polarization
results in much smaller Q than TM polarization[11], ex-
actly opposite to our results (Fig. 13). The short lifetime
for TE modes was explained by the zero in the reflectivity
at the Brewster angle θB, which is only slightly less than
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TABLE V: Mode frequencies and free space wavelengths in
the range around 1.3 to 1.6 µm, for cavities with N = 3.2 and
edge lengths a. The modes are labeled by m,n. Wavelengths
marked with an asterisk fall about 2% below peaks in PL
data, Ref. 3

a (µm) mode ka λ (µm) f (THz)

2 TM3,5 14.341 1.5675 191.25

2 TE1,3 12.563 1.7893 167.54

5 TM6,10 33.517 1.6767 178.79

5 TM8,10 35.320 1.5911* 188.41

5 TM7,11 37.711 1.4902* 201.17

5 TM9,11 39.502 1.4227* 210.72

5 TM8,12 41.889 1.3416* 223.46

5 TM10,12 43.685 1.2865* 233.03

5 TE5,9 32.040 1.7540 170.92

5 TE7,9 34.815 1.6142 185.72

5 TE6,10 36.755 1.5290 196.07

5 TE8,10 39.011 1.4406 208.10

5 TE7,11 41.135 1.3662 219.43

5 TE9,11 43.202 1.3008 230.46

the critical angle. However, in a confined TIR wavefunc-
tion, all six plane wave components must impinge on the
faces at angles greater than θc and hence greater than θB,
so it is hard to understand how the Brewster minimum
comes into play, unless diffractive effects at the triangle
vertices are strong, causing violation of the six-wave as-
sumption.

E. Mode generation near 1.55 µm free space
wavelength

There has been recent interest, both experimental
and theoretical, in using semiconductor ETRs operat-
ing around 1.55 µ m wavelength. [3, 11, 12, 17] Here we
assume a cavity medium with n = 3.2, surrounded by
vacuum, and summarize the mode spectra obtained by
the present theory, for some typical cavity edge lengths,
a = 2µm and a = 5µm. Of course, all mode frequencies
simply scale as 1/a, thereby giving the primary tuning
control parameter. Modes whose wavelength outside the
cavity ranging from approximately 1.30µm to 1.60µm are
considered; this corresponds to frequency range 187 THz
< f < 231 THz.

Results for all the modes found from 1.3 to 1.6 µm are
shown in Table V for TM and TE polarization. Obvi-
ously very few modes occur in any such narrow range if
the cavity is small (a = 2µm), which could allow for fine
frequency tuning. Conversely, many modes are present
in larger cavities (such as a = 10µm) and single mode
operation is difficult. A cavity with a = 5µm has a
moderate number of modes; the TM mode wavelengths
are similar to those found in photoluminescence (PL)

experiments[3]. In fact, five of TM mode wavelengths
calculated here are about 2% lower than five peaks seen
in Fig. 2 of Ref. 3. This deviation might be attributed
primarily to an uncertainty in the cavity size, and sec-
ondly, caused by a weak variation of dielectric constant
with wavelength.[3] Discounting these factors, the agree-
ment for the 5µm cavity is reasonable. Comparison with
the experimental spectrum for a = 10µm is more dif-
ficult, although it appears that some of the TMm,m+2

modes from the present theory (not shown) do appear
in the PL data, again allowing for uncertainty in a and
dispersion.

V. CONCLUSIONS

The phase relationships between the six plane waves
within an ETR have been determined so they match cor-
rectly to each other and to exterior evanescent waves,
according to Fresnel reflection coefficients for a dielec-
tric on dielectric boundary at index ratio N = n/n′. The
theoretical wavefunction description is actually very gen-
eral; it applies to any choice of reflection phase shifts,
including those for DBC, and TE or TM polarizations.
The main approximations here are that the evanescent
fields do not perturb the interior fields, and that diffrac-
tion is not important; then the calculations should ap-
ply best when the wavelength is small compared to the
triangle size. Assuming the evanescent fields radiate at
the triangle vertices (a strong damping approximation),
mode lifetimes and quality factors have been estimated.
Modes with high Q should be very well described by the
wavefunction (29). The mode wavevectors are consistent
with previous analyses [11, 12, 17], although the wave-
function description and quality factors differ from the
FDTD technique[11] results. Some mode results are con-
sistent with PL experimental data on 5µm semiconductor
ETRs[3].

For N adequately above the cutoff for a mode (m, n),
the TE mode wavevectors are very close to the predic-
tions from the simplified DBC theory, whereas, the TM
mode wavevectors are consistently below the DBC re-
sults. This is because large N results in Fresnel reflec-
tion phase shifts very near −π, the value for the DBC
theory, only for TE polarization. This causes the TE
wavefunctions to avoid the cavity edges; on the other
hand, the TM wavefunctions have significant amplitude
at the edges. For both polarizations, dielectric boundary
conditions give lower cutoff index ratios than from the
DBC theory. As N increases starting from 2.0, the the-
ory demonstrates how the spectrum of available modes
expands (Fig. 3, etc.), but always stays within the limits
predicted from the DBC theory.

An extra factor of ε/ε′ appears in the lifetime for TE
modes, not present for TM modes. Near the cutoff index
ratio for a mode, the boundary wave theory used here
predicts TE quality factors less than or similar to those
for TM modes. At large index ratio N, the boundary
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wave approach predicts larger lifetimes and Q’s for TE
modes, whereas the FDTD approach[11] usually led to
larger Qs for TM modes. At large index ratio, the life-
times found here approach the values found in the simpler
DBC theory[14], for both polarizations.
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