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We study magnon modes in the presence of a vortex in a circular easy–plane ferromagnet. The
problem of vortex–magnon scattering is investigated for partial modes with different values of the
azimuthal quantum number m over a wide range of wave numbers. The analysis was done by com-
bining analytical and numerical calculations in the continuum limit with numerical diagonalization
of adequately large discrete systems. The general laws governing vortex–magnon interactions are
established. We give simple physical explanations of the scattering results: the splitting of dou-
blets for the modes with opposite signs of m, which takes place for the long wavelength limit, is an
analogue of the Zeeman splitting in the effective magnetic field of the vortex. A singular behavior
for the scattering amplitude, σm ∝ k, takes place as k diverges; it corresponds to the generalized
Levinson theorem and can be explained by the singular behavior of the effective magnetic field at
the origin.
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I. INTRODUCTION

It is now firmly established that vortices play an im-
portant role in the condensed matter physics of two–
dimensional (2D) systems with continuously degenerate
ground states. In particular, the presence of vortices in
2D easy–plane (EP) magnets gives rise to the Berezin-
skĭı–Kosterlitz–Thouless phase transition.1,2,3 Vortices
play an essential role in the thermal and dynamical prop-
erties of 2D magnets, for a review see Ref. 4. A vor-
tex signature in dynamical response functions can be ob-
served experimentally; e.g. translational motion of vor-
tices leads to a central peak in the dynamical correlation
functions.5 This peak had been predicted predicted both
by a vortex gas theory and by combined Monte Carlo –
spin dynamics simulations.6

Recently there has been renewed attention to the prob-
lem of magnetic vortices for finite-size magnetic parti-
cles, especially their dynamics. It becomes very impor-
tant in connection with novel composite magnetic ma-
terials such as magnetic dot arrays.7,8,9,10,11,12,13 These
magnetic dots are submicron–sized islands made from
soft magnetic materials on a nonmagnetic substrate.
They are important from a practical standpoint as high–
density magnetic storage devices,14 and are interesting
as fundamentally new objects in the basic physics of
magnetism. The distribution of magnetization in such
a dot is quite nontrivial: when the dot size is above
a critical value, an inhomogeneous state with an out–

of plane magnetic vortex occurs, which is stable due to
competition between exchange and dipole interactions.15

It is expected that these nonuniform states will drasti-
cally change the dynamic and static properties of a dot
in comparison with a uniformly magnetized magnetic
disk.Recent experiments16,17 verify such properties; in
particular, a mode with anomalously low frequency was
detected,17 see also Refs. 18,19.

The general properties of vortex dynamics are inti-
mately connected to the problem of vortex–magnon in-
teractions. Usually this problem has been studied numer-
ically for discrete models, mainly for circular samples cut
from large lattice systems.20,21,22,23,24,25,26,27 An analyt-
ical description of the problem in the framework of the
continuum model has been proposed recently for differ-
ent 2D magnets.24,28,29,30,31 The most important effect
of the vortex–magnon interaction is an excitation of cer-
tain magnon modes due to vortex motion and vice versa.
Because the magnons in the EP ferromagnet have a gap-
less dispersion law, a possible Larmor dynamics of the
vortex center is strongly coupled with a magnon cloud;26

therefore the corresponding motion has a non–Newtonian
form.24

In this paper we consider the magnon modes which
exist in a 2D Heisenberg EP ferromagnet in the pres-
ence of a vortex. We apply different, sometimes new,
methods of analytical and numerical investigation, in
order to extend the research of Ref. 24, presenting a
wider range of results for the magnon scattering ampli-
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tude. In Sec. II we demonstrate that the vortex acts on
magnons in two ways. First of all, it provides for cou-
pling between different directions of magnetization pre-
cession; the magnon modes are described by a “general-
ized” Schrödinger equation. Secondly, the problem nat-
urally possesses an effective magnetic field, whose global
properties are caused by the soliton topological charge.
The scattering problem is treated both numerically and
analytically for a wide range of wave numbers. The
numerical study is carried out using two different ap-
proaches: solving the eigenvalue problem for the contin-
uum limit (in the weak EP anisotropy limit), and extract-
ing the scattering data from numerical diagonalization of
discrete systems, see Sec. III. The analytical study of the
scattering problem is developed (Sec. IV) using both the
long– and short–wavelength approximations. In contrast
to the previous work24 we describe analytically the split-
ting phenomenon of the doublets of magnon modes with
opposite signs of the azimuthal quantum number, and
give a physical picture of this effect: an effective magnetic
field causes the Zeeman splitting of the magnon levels, see
Sec. IVA. The singular behavior of the scattering am-
plitude is predicted in Sec. IVB for the short wavelength
limit. This feature is caused by the specific singular effec-
tive magnetic field at the origin (vortex core); this study
verifies the generalized version of the Levinson theorem,
which we have established recently in Ref. 32 for poten-
tials with inverse square singularities.

II. MODEL AND MAGNON MODES

We consider the classical 2D Heisenberg ferromagnet
(FM) with the Hamiltonian

H = −J
∑

(n,n′)

[Sn · Sn′ − (1 − λ)Sz
n
Sz

n′ ] , (1)

where the spins Sn are classical vectors on a square lat-
tice with the lattice constant a. Here (n,n′) denotes
nearest–neighbor lattice sites, J > 0 is the exchange in-
tegral, and λ ∈ [0, 1) describes easy–plane anisotropy.

We consider the continuum dynamics of the Heisen-
berg ferromagnet, which is adequate for model (1) in the
small–anisotropy case (1− λ≪ 1). In a continuum limit
the dynamics of the FM is described by Landau–Lifshitz
equations for the normalized magnetization,

m(r, t) =
S(r, t)

S
=
(
sin θ cosφ; sin θ sinφ; cos θ

)
. (2)

The equations of motion result from the Lagrangian

L =
S

a2

∫
d2x(1 − cos θ)

∂φ

∂t
− E[θ, φ], (3)

with the energy functional

E[θ, φ] =
JS2

2

∫
d2x

[
(∇θ)2 + (∇φ)

2
sin2 θ +

cos2 θ

r2v

]
.

(4)

Here rv = a
2

√
λ/(1 − λ) is the characteristic length scale

(“magnetic length”). One should note that the strength
of the weak easy-plane anisotropy (λ ≈ 1), determines
the magnetic length scale rv; in this continuum analysis,
results will depend on lengths scaled by rv, and have no
explicit dependence on the anisotropy strength.

The ground state of the magnet is continuously de-
generate and isotropic within the easy plane (EP). The
simplest elementary linear excitations of EP FMs that
arise on the homogeneous background are the magnons
belonging to a continuous spectrum. They have the form
of elliptically polarized waves; if one chooses the homoge-
nous spin distribution along the x–axis, then the spin
wave takes the form:

mx = 1, mz + imy ·
krv√

1 + k2r2v
∝ exp(ikx− iωt). (5)

The dispersion law has the gapless form:

ω(k) = ck
√

1 + k2r2v, (6)

where c = 2aJS
√

1 − λ is the characteristic magnon
speed, k is the magnon wave vector, and k = |k| is its
magnitude.

The simplest nonlinear excitation in the system is an
out–of–plane (OP) vortex33,34

φ ≡ φ0 = ϕ0 + qχ, θ = θ0(ρ),

θ0(0) =
1 − p

2
π, θ0(∞) = π/2,

(7)

where ϕ0 is an arbitrary angle due to the EP symmetry,
ρ ≡ |r|/rv and χ are dimensionless polar coordinates in
the plane of the magnet, the vorticity q ∈ Z plays the role
of a π1 topological charge, and the polarization p = ±1 is
connected with a π2 topological charge (the Pontryagin
index):

Q =
1

4π

∫
Q d2x, Q =

1

2
ǫij m · (∂im × ∂jm) . (8)

We term Q the gyrocoupling density, following Thiele35;
it has a sense as the density of the topological charge, see
Papanicolaou and Tomaras36. For the vortex configura-
tion (7) the gyrocoupling density can be represented as

Q =
q sin θ0 · θ′0

ρ
, (9)

hence the Pontryagin index takes on half–integer or in-
teger values Q = qp/2. Note that the presence of a non-
trivial π2–topological charge directly results in the gy-
rotropical dynamics of the vortex, which conserves the
gyrovector G = Q · 2πℏSa−2ez .

The function θ0 is the solution of an ordinary differen-
tial equation, which can only be solved numerically.34,37

Without an external magnetic field two oppositely polar-
ized vortices are energetically equivalent; for definiteness
we set p = +1.
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To analyze magnons on the vortex background, we use
a formalism and set of coordinates developed in Ref. 21,
setting up the problem in terms of local Cartesian spin
components. The unperturbed spins of the static vor-
tex structure, m0, define local polar axes e3, different at
every site, specifically, S0(r, t) = Se3.

It is to be understood that these axes depend on the
site chosen. The magnetic fluctuations occur perpendic-
ular to these local axes, suggesting the definition of other
axes, e2 being chosen along the direction of ez × e3, and
e1 = e2 × e3, to complete the mutually perpendicular
set. One supposes that a dynamically fluctuating spin
has small deviations along the e1 and e2 axes so that a
spin is written as

S(r, t) = S (e3 +m1e1 +m2e2) . (10)

The fields m1 and m2 have a simple physical significance,
which can be seen if a given spin is supposed to have
small deviations ϕ and ϑ away from the vortex structure,
determined by azimuthal and polar spherical angles, φ0

and θ0. We write

S(r, t)

S
= cos(θ0 + ϑ)ez + sin(θ0 + ϑ)

× [cos(φ0 + ϕ)ex + sin(φ0 + ϕ)ey ] .
(11)

Linearizing in ϕ and ϑ, and using the definitions of
{e1, e2, e3}, comparison of Eqs. (10) and (11) shows that

m1 = ϑ, m2 = ϕ sin θ0. (12)

Thus, the m1 field measures spin rotations moving to-
wards the polar (ez) axis and the m2 field measures spin
rotations projected onto the xy–plane. In the absence of
the vortex, we have θ0 = π/2, φ0 = 0, and such oscilla-
tions correspond to the free magnons in the form (5).

The linearized equations for m1 and m2 can be de-
scribed by a single complex–valued function ψ(r, t) =
m1 + im2, which obeys the differential equation

i∂τψ = Hψ +Wψ∗, H = (−i∇ − A)
2

+ U, (13)

with the “potentials”

U(ρ) =
1

2
sin2 θ0

(
1 − q2

ρ2

)
− cos2 θ0 −

θ′0
2

2
, (14a)

W (ρ) =
1

2
sin2 θ0

(
1 − q2

ρ2

)
+
θ′0

2

2
, (14b)

A(ρ) = −q cos θ0
ρ

· eχ. (14c)

Here we use the dimensionless coordinate variable ρ =
|r|/rv, dimensionless time variable τ = t · c/rv, and the
operator ∇ = rv∂r; prime denotes d/dρ.

Let us note that the vector A acts in the Schrödinger–
like operator H in the same way as the vector–potential
acts in the Hamiltonian of a charged particle. Then it is

possible to conclude that there is an effective magnetic
flux density

B = ∇ × A = ez ·
q sin θ0 · θ′0

ρ
. (15)

Note that the effective magnetic flux density can eas-
ily be rewritten through the gyrocoupling density (9) as
B = Q · ez. Therefore the total flux is determined by
the nontrivial π2 topology of the vortex configuration.
On first view when exploiting this analogy it is possi-
ble to look for the Aharonov–Bohm phenomenon for the
scattering problem, because this magnetic flux density is
localized in the region of the vortex core. However, one
can see that the total magnetic flux

Φ =

∫
Bzd

2x = 4πQ = qpΦ0 (16)

is an integer multiple of the flux quantum Φ0 = 2π, so
there is no Aharonov–Bohm scattering picture for the
system.

A differential equation like (13) is not a unique prop-
erty of the vortex–magnon problem in the EP FM only.
It appears for different kinds of anisotropy: it describes
magnon modes on the soliton background in the easy–
axis30 and isotropic magnets29. Note that for the specific
case of an isotropic system with an exact analytical soli-
ton solution of the Belavin–Polyakov type, the potential
W disappears, so the magnon modes satisfy the usual
Schrödinger like equation i∂τψ = Hψ, which describes,
e.g., the quantum mechanical states for a charged particle
in the axially symmetric potential U(ρ) under the action
of an external magnetic field with a vector potential A.

For the anisotropic case, when W 6= 0, the prob-
lem (13) has important unusual properties, which are
absent for the Belavin–Polyakov case. More generally,
there appear properties which are forbidden for the usual
quantum mechanics. In particular, an effective discrete
Hamiltonian of the system is not necessarily Hermitian;
in Refs. 21,22,25 some constructive methods were elabo-
rated to avoid these problems. Nevertheless we will dis-
cuss the features of Eq. (13) in order to understand why
the standard quantum mechanical intuition could fail.

The standard quantum mechanical equation i∂τψ =
Hψ allows the conservation law ∂τ |ψ|2 = −∇ · j for the
current

j = i (ψ∇ψ∗ − ψ⋆
∇ψ) + 2|ψ|2A. (17)

The generalized Schrödinger–like equation (13) with
W 6= 0 violates this conservation law, namely:

∂τ |ψ|2 = −∇ · j − iW
(
ψ∗2 − ψ2

)
. (18)

Nonconservation of probability density has posed some
problems in the passage from standard quantum mechan-
ics to old pre–Feynmann quantum electrodynamics. The
reason is that Eq. (13) is formulated neither for a Hermi-
tian, nor a linear operator; the last statement is due to
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the broken symmetry under the rescaling ψ → λψ with
λ ∈ C. There exists an analogy with relativistic theory:
there can appear solutions with positive and negative en-
ergy in the passage from the Klein–Gordon to Dirac equa-
tion. In fact, our problem has the same origin. Let us
reformulate the problem (13) as an equation second order
in time. One can calculate that the Klein–Gordon–like
equation

−∂ττψ =
(
H2 −W 2

)
ψ (19)

is valid far from the vortex center. What is important is
that Eq. (19) contains a Hermitian operator (similar ar-
guments were used in Ref. 25). Therefore, the eigenvalue
problem (EVP) for ω2, not for ω, is more appropriate
for this system; the only problem is to separate solutions
with positive and negative ω. Note, that there appear
4th order operators with respect to the space coordinate,
which causes the presence of master and slave functions
in the solution, see below.

Such a problem, as well as a problem with non-
conserved number of particles (probability amplitude),
appears in the theory of a weakly nonideal Bose
gas. It results, in fact, in the separation of positive
and negative energy solutions under u–v Bogolyubov
transformations.38

Following this scheme we need to generalize the u–v
transformation to the nonhomogeneous case.

We apply the partial–wave expansion, using the
ansatz 24

ψ(r, t) =
∑

α

[
uα(ρ)eiΦα + vα(ρ)e−iΦα

]
,

Φα(χ, t) = mχ− ωαt+ ηm = mχ−Ωατ + ηm,

(20)

where α = (k,m) is a full set of eigenvalues, m ∈ Z

being azimuthal quantum numbers, the ηm are arbitrary
phases, and Ω = ωrv/c are dimensionless frequencies.
This expansion leads to the following EVP for the radial
eigenfunctions u and v (the index α will be omitted in
the following):

H
∣∣Ψ
〉

= Ω
∣∣Ψ
〉
, H =

∥∥∥∥
H+ W
−W −H−

∥∥∥∥ ,
∣∣Ψ
〉

=

∥∥∥∥
u
v

∥∥∥∥ . (21)

Here H± = −∇2
ρ + U0 + 1/2 ± V is the 2D radial

Schrödinger–like operator with the “potentials”

U0(ρ) = U(ρ) + A2 +
m2

ρ2
− 1

2

=
q2 +m2

ρ2
− 3q2 sin2 θ0

2ρ2
− 3 cos2 θ0

2
− θ′0

2

2
, (22)

V (ρ) = −2m (A · eχ)

ρ
=

2qm cos θ0
ρ2

, (23)

∇2
ρ = d2/dρ2 + (1/ρ)d/dρ is the radial Laplace operator.

In spite of the fact that the EVP (21) is formulated for
the Schrödinger operators H±, this EVP is different in

principle from the usual set of coupled Schrödinger equa-
tions, which is widely used, e.g. for the description of
multichannel scattering.39 The reason is that the matrix
Hamiltonian H is not Hermitian for the standard met-
ric, for details see Ref. 25. To avoid this problem we
introduce a corresponding bra–vector by the definition

〈
Ψ
∣∣=
∥∥u ;−v

∥∥. (24)

The Hilbert space for the Ψ–function has an indefinite
metric,

〈
Ψ
∣∣Ψ
〉

= (u|u) − (v|v), (25)

where (u|v) =
∫∞

0
u(ρ)v(ρ)ρdρ is the standard scalar

product. By introducing such a Hermitian product, it
is possible to define the standard energy functional, cp.
Ref. 30:

E[u, v] =
〈
Ψ
∣∣H
∣∣Ψ
〉

= (u|H+|u) + 2(u|W |v) + (v|H−|v).
(26)

Let us mention that Eq. (21) is invariant under the
conjugations Ω → −Ω, m → −m, and u ↔ v. In a clas-
sical theory we can choose either sign of the frequency;
but in order to make contact with quantum theory, with
a positive frequency and energy Ek = ℏωk, we will discuss
the case Ω > 0 (ω > 0) only. Thus there are two different
equations for the opposite signs of m. However, in the
limiting case of the “zero modes” with Ω = 0, the system
again is invariant under conjugations m → −m. For ex-
ample, one of the zero modes, the so–called translational
mode with m = +1, has the form

um=+1 =
sin θ0
ρ

− θ′0, vm=+1 =
sin θ0
ρ

+ θ′0, (27)

which describes the position shift of the soliton. Because
of the degeneration of the EVP at Ω = 0, it leads to the
existence of a zero mode with m = −1; the eigenfunction
of this mode can be expressed just from (27) under the
conjugation u ↔ v. We use here notations for mode
indices as in Refs. 29,31; note that the mode withm = +1
corresponds in our notation to the mode with m = −1
in the notations of Refs. 24,30.

It should be stressed that the picture is quite different
for the special case W = 0, which corresponds to the
isotropic magnet.28,29 Here we have two uncoupled equa-
tions for the functions u and v. One of the equations
(for the eigenfunction v) has the negative eigenvalue −Ω,
from which it necessarily results that v ≡ 0. In this spe-
cial case the zero modes (27) have the form u+1 ∝ θ′0 and
v+1 = 0. Therefore the zero mode with m = −1 cannot
be obtained by the simple conjugation. It explains the
difference between the collective dynamics of the soliton
in isotropic magnets, where it is enough to take into ac-
count only the mode with m = +1, and the EP FM,
where translational modes with m = −1 and m = +1
must be taken into account. Nevertheless, the roles of
the modes with m = −1 and m = +1 are not equal, for
details see Sec. IVC.
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III. SCATTERING PROBLEM: NUMERICAL

RESULTS

A. Continuum approach

We intend to describe the scattering of magnons by
a vortex. However the EVP (21) is not adjusted for
the scattering problem, because it does not provide the
asymptotic independence of the equations at infinity. To
solve the problem it is convenient to make a unitary
transformation of the eigenvector

∣∣Ψ
〉
,

∣∣Ψ̃
〉

= A
∣∣Ψ
〉
, A =

∥∥∥∥
cos ε − sin ε
sin ε cos ε

∥∥∥∥ ,
∣∣Ψ̃
〉

=

∥∥∥∥
ũ
ṽ

∥∥∥∥ . (28)

The angle ε of this unitary transformation is defined by
the expression

tan 2ε =
1

2Ω
. (29)

Then we obtain the following partial differential equation

for the function
∣∣Ψ̃
〉
:

H̃
∣∣Ψ̃
〉

= Λ
∣∣Ψ̃
〉
, H̃ = H0 + Ṽ, Λ = diag

(
κ2; κ2

)
, (30a)

H0 = diag (H0;−H0) , H0 = −∇2
ρ + U0, (30b)

Ṽ = [V + g · (W − 1/2)] A−2, (30c)

where g =
∥∥ 0 1

−1 0

∥∥ is a metric spinor, the dimensionless

wave number is κ = krv, and κ =
√
κ2 + 1.

First let us consider the magnon spectrum in the ab-
sence of a vortex (free fields). Without a vortex (q = 0,
θ0 = π/2), Eqs. (30) are uncoupled, which results in free
magnons,

ũm(ρ) ∝ J|m|(κρ) ∼
κρ≫1

√
2

πκρ
· cos

(
κρ− |m|π

2
− π

4

)
,

ṽm(ρ) = 0,
(31)

where Jm are Bessel functions. The free modes ũm play
the role of the partial cylinder waves of a plane spin wave

exp (ik · r − iωt) =

∞∑

m=−∞

imJm(κρ)eimχ−iωt. (32)

To describe magnon solutions in the presence of a vor-
tex, one should note that far from the vortex center the

potential Ṽ tends to zero, so the Eqs. (30a) become un-
coupled,

(
∇2

ρ + κ2
)
ũ = 0,

(
∇2

ρ − κ
2
)
ṽ = 0, ρ≫ max

(
1;

1

κ
;
1

κ

)

(33)

with asymptotically independent solutions:

ũm(ρ) ∼ C1√
ρ
· eiκρ +

C2√
ρ
· e−iκρ

∝ 1√
ρ

cos

(
κρ− |m|π

2
− π

4
+ δm

)
, (34a)

ṽm(ρ) ∼ C3√
ρ
· eκρ +

C4√
ρ
· e−κρ. (34b)

The scattering results in the quantity δm ≡ δm(κ);
it can be interpreted as the scattering phase shift, de-
termining the intensity of the magnon scattering due to
the presence of the vortex. Sometimes it is useful to
introduce the scattering amplitude, σm = − tan δm. Us-
ing this notation, the oscillatory solution (34a) can be
rewritten in the following form

ũm(ρ) ∝ J|m|(κρ) + σm · Y|m|(κρ). (34a′)

where Y|m| are Neumann functions. Let us stress that the
solution (34a′) is valid only in the sense of the asymptotic
form (34a). As it follows from Eq. (34b), the function ṽ
has an exponential behavior,

ṽm(ρ) ∝ K|m|(κρ) + γm · I|m|(κρ) ∝
e−κρ

√
ρ

+ γm · e
κρ

√
ρ
,

(34b′)
where K|m| and I|m| are MacDonald and modified Bessel
functions, respectively; at the same time ũ yields oscil-
latory solutions. Naturally, the real modes have an os-
cillatory form here; we will use this fact below for the
numerical analysis. It means that the function ũ be-
comes a master function in the Eq. (30a), while ṽ is a
slave (note, that we choose Ω > 0). This mirrors the dif-
ference between Eq. (30a) and a usual set of Schrödinger
equations.

The scattering amplitude, or, equivalently, the phase
shift, contains all information about the scattering pro-
cesses. In particular, the general solution of the scat-
tering problem for a plane wave can be expressed in the
form, cp. Eq. (5)

m2−im1·
krv√

1 + k2r2v
∝ eik·r−iωt+F(χ)· e

iκρ−iωt

√
ρ

, (35a)

where the scattering function has the form29

F(χ) =
exp(−iπ/4)√

2πκ
·

∞∑

m=−∞

(
e2iδm − 1

)
· eimχ. (35b)

The total scattering cross section is given by the ex-
pression

̺ =

∫ 2π

0

|F|2dχ =

∞∑

m=−∞

̺m ,

where ̺m = (4/k) sin2 δm are the partial scattering cross
sections.
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Let us switch to the numerical solution of the scatter-
ing problem in the continuum approach. The differential
problem to be integrated consists of Eq. (30) and asymp-
totic conditions at the center of the vortex and at infinity:

H̃
∣∣Ψ̃
〉

= Λ
∣∣Ψ̃
〉
, (36a)

∣∣Ψ̃
〉
∼ A ·

∥∥∥∥
ǫm · ρ|m+1|,
ρ|m−1|

∥∥∥∥ , when ρ≪ 1 (36b)

∣∣Ψ̃
〉
∼
∥∥∥∥
J|m|(κρ) + σm · Y|m|(κρ)

K|m|(κρ)

∥∥∥∥ ,

when ρ≫ max

(
1;

1

κ
;
1

κ

)
. (36c)

The presence of the matrix A in the condition (36b)
means that the functions ũ and ṽ are not asymptotically
independent even in the lowest approximation. In the
next approximation there appears an additional “inter-
action” between ũ and ṽ, which is realized in the nonunit
factor ǫm; its value cannot be found through this asymp-
totic expansion.

We use the one–parameter shooting method, solving
Eqs. (36), as described in Ref. 30,40. Choosing the
shooting parameter ǫm, we “kill” the growing exponent
for the function ṽm in (34b′), where the coefficient γm

should be equal to zero; as a result we have obtained a
well–pronounced exponential decay for ṽm ∝ K|m|(κρ),
and oscillating solutions for ũm. The scattering ampli-
tude was found from these data by comparison with the
asymptotes (36c). The results are discussed in Sec. III C.

B. Discrete approach

In the discrete lattice approach, the small amplitude
spin fluctuation modes in the presence of a vortex at the
center of a finite circular system of radius R are found.
The spins occupy sites on a square lattice. We use the for-
malism and set of local coordinates as described in Sec. II
for the continuum model. Similar to the continuum ex-
pression (10), we describe the dynamically fluctuating
spin on lattice site n as

Sn = S (e3 +m1e1 +m2e2) , (10′)

wherem1 and m2 measure spin rotations moving towards
the polar axis and projected onto the xy–plane, respec-
tively, see Eq. (12).

The spin dynamics equations of motion with an as-
sumed e−iωt time dependence were linearized in m1 and
m2, leading to an eigenvalue problem requiring numer-
ical diagonalization. We assumed a Dirichlet boundary
condition, m1 = m2 = 0 at the edge of the system stud-
ied. For circular systems of radius R, we used a Gauss–
Seidel relaxation scheme25 to calculate the frequencies
and eigenfunctions of some of the lowest eigenmodes with
a single vortex present at the system center. Before do-
ing this, the vortex structure was relaxed to an accurate

static structure using an energy minimization scheme.
The diagonalization is partial; typically only the lowest
20 to 40 eigenstates were found, which substantially re-
duces the computing time needed, and relaxes constraints
on the precision of the calculations. This limited diag-
onalization, however, gives only modes which have long
wavelength spatial variations, which provides for a good
comparison with continuum theory.

We considered different values of λ close to 1. Although
the continuum limit would be better represented by us-
ing λ very close to 1, this could result in a vortex radius
rv = a

2

√
λ/(1 − λ) easily exceeding the system size that

can be treated numerically. Therefore, data were calcu-
lated using λ = 0.99, for which rv ≈ 4.97a. With this
size of vortex length scale, discreteness effects due to the
underlying lattice should be unimportant, and still, the
vortex structure fits well within the confines of a system
with a radius as small as R ≈ 10a, so that finite size
effects should also be negligible.

In general, a given mode has eimχ angular dependence
on the azimuthal coordinate χ, where m is some integer
azimuthal quantum number. In the continuum theory
presented in Sec. II, m is a good quantum number, due
to rotational invariance. This symmetry is weakly broken
on a lattice, but for long-wavelength and lower frequency
modes, m can be considered a good quantum number
even on a lattice. (Generally, the calculated magnon
wavefunctions were sometimes found to be composed of
linear combinations of +m and −m components.) The
numerically found modes were also characterized by a
principle quantum number n, being the number of nodes
in the wavefunction along the radial direction. For a
mode of determined m and n, the scattering amplitude
σ was found by a fitting procedure applied to the cal-
culated eigenfunction for that mode (essentially, finding
the ratio of outgoing and incoming waves), see Ref. 25
for details.

In the continuum theory, scattering was analyzed as a
function of wavevector k, or in terms of the dimension-
less krv. For lattice calculations, the values of k cannot
be chosen freely, instead, they are determined by the ac-
tual system size. For a mode found to be oscillating at
eigenfrequency ω, the wavevector magnitude k associated
with the mode was found by supposing k = (k, 0), and
inverting the free magnon dispersion relation for the 2D
EP FM on a lattice,

ωk = 4JS
√

(1 − γk)(1 − λγk),

γk =
1

2
(cos kx + cos ky).

(37)

Therefore, a calculation of the modes for a single lat-
tice size gives only specific values of κ = krv, one value
corresponding to each mode. To get a wider and more
continuous range of data for comparison with the con-
tinuum theory, calculations were carried out on lattices
ranging in radius from R = 15a to R = 40a. By plotting
results as functions of krv, for fixed m but from various n
and R, the data from the different system sizes superim-
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FIG. 1: (Color online) Scattering data for different m

for small wave numbers, krv < 1.3: from continuum the-
ory (lines) and from discrete model numerical diagonaliza-
tion (symbols) in circular square lattice systems of radii
R = 15, 20, 25, 30, 35, 40.

poses smoothly, giving more slowly changing krv, which
is more appropriate for comparison with the continuum
limit.

C. Numerical results

Numerically, we have obtained the data of the vortex–
magnon scattering by the two different approaches dis-
cussed above: solving the scattering problem (36) using
the shooting method for the continuum limit, and ex-
tracting the scattering data from numerical diagonaliza-
tion of finite discrete systems. To be specific, data are
presented for scattering from a vortex with unit vorticity,
q = +1 and positive polarization, p = +1. One should
note that results for vortex–magnon scattering for modes
m from other vortex types, as seen in Eq. (23), should be
depend on the sign of qpm. The results are the following:

For all modes the scattering amplitude σm(k) tends to
zero as k → 0. In the long–wavelength limit the maximal
scattering is related to the modes with m = ±1. Except
for the mode with m = −1, the scattering amplitude
in the long–wavelength limit takes a negative value, see
Fig. 1. At extremely low values of wave number κ . 0.01,
the scattering data contain sets of doublets for modes
with opposite signs of m. In the long–wavelength limit
the doublet splitting appears as a small correction, but
the scattering picture changes when k increases. For all
modes σm(k) diverges as k → ∞: the scattering ampli-
tude σm(k → ∞) → +∞ for all modes with m ≥ −1, but
σm(k → ∞) → −∞ for m < −1, see Fig. 2. Naturally,
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FIG. 2: (Color online) Scattering data for different m for a
wide region of wave numbers k: from continuum theory (lines)
and from discrete model numerical diagonalization (symbols).

there is no real divergence; it means that the physically
observed phase shift does not tend to zero at infinity,
but to a finite value δm(k → ∞) → ±π/2. The scatter-
ing data are presented in Figs. 1, 2. Comparison with the
results of exact diagonalization on finite systems shows
very good agreement between the two approaches.

IV. SCATTERING PROBLEM: ANALYTICAL

DESCRIPTION

A. Scattering at long wavelength

In order to analyze the scattering problem analytically
in the long–wavelength limit, we start from the zero–
frequency solutions, when Ω = 0. First note that for
the special cases m = 0,±1 there exist so–called half–

bound states. Recall that a zero–frequency solution of the
Schrödinger–like equation is called a half bound state if
its wave function is finite, but does not decay fast enough
at infinity to be square integrable. We will refer to such
modes as half–local modes. These modes correspond to
the translational (m = ±1) and rotational (m = 0) sym-
metry of an infinite system, they have an exact analytical
form:

ũ(0)
m =

q · sin θ0
ρ|m|

, ṽ(0)
m = m · θ′0, m = 0,±1. (38)

Unlike the case of half–local modes with m = 0,±1, all
other zero–frequency solutions are nonlocal, and we are
not able to construct exact expressions for them, but only
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the asymptotes for ρ≫ 1:

ũ(0)
m ∝ ρ|m|, ṽ(0)

m ∝ e−κρ

√
ρ
. (39)

Nevertheless, we will see that the knowledge of asymp-
totic solutions like (39) will be enough to reconstruct
the κ–dependence of the scattering amplitude. In order
to solve the scattering problem in the long wavelength
limit we apply a special perturbation theory, proposed
in Ref. 24,41 for the modes with m = ±1, 0, and extend-
ing it for all values of m. We construct the asymptotes of
such a solution for a small but finite frequency by making

the ansatz

ṽ(ρ) = ṽ0(ρ) ·
[
1 + κα1(ρ) + κ2α2(ρ)

]
, (40a)

ũ(ρ) = ũ0(ρ) ·
[
1 + κβ1(ρ) + κ2β2(ρ)

]
, (40b)

here α1, β1 and α2, β2 are first and second order correc-
tions to the zeroth–solutions, respectively. Let us insert
this ansatz into the set of Eqs. (36), multiply from the

left with ρ ·
〈
Ψ̃
∣∣ without integrating; then one obtains

equations for the first and second order corrections:

[
ρ ·
(
α′

k · ṽ2
0 + β′

k · ũ2
0

)]′
= Φk(ρ), k = 1, 2, Φ1(ρ) = 2ρ

{
V
(
ũ2

0 − ṽ2
0

)
+ 2(W − 1/2)ũ0ṽ0

}
,

Φ2(ρ) = ρ

{
−ũ2

0 + ṽ2
0/2 + 2(W − 1/2)

(
ũ2

0 − ṽ2
0

)
+ 2V

(
ũ2

0β1 − ṽ2
0α1

)
+ 2ũ0ṽ0

[
(W − 1/2)(α1 + β1) − 2V

]}
.

(41)

We are interested in the corrections βk, which will give us a possibility to calculate the scattering amplitude. The
formal solution of these equations can be written as

βk(ρ) = β(0) +

∫ ρ

0

α′
k(η)ṽ2

0(η)dη

ũ2
0(η)

+

∫ ρ

0

dη

ηũ2
0(η)

∫ η

0

Φk(ξ)dξ. (42)

Let us calculate the first order correction β1. It is easy to
see that the second RHS–term has an exponential decay
as ρ→ ∞, while the third one has a slow algebraic decay
only. Thus, far from the vortex core we have simply

β1(ρ) ≃ const − ρ−2|m|

2|m|

∫ ∞

0

Φ1(ξ)dξ, (43)

valid in the region ρ≫ 1.
To calculate the second order correction, β2, let us

note that the last RHS–term of Eq. (42) is divergent for
ρ → ∞, while the integral with α2 has an exponential
decay, like the first order correction. To derive the diver-
gent inner integral in Eq. (42) we add and subtract the
function

Φ
(0)
2 (ξ) = −

[
ξ2ũ2

0

]′

2(|m| + 1)
−
[
sin2 θ0ũ

2
0

]′

2|m| . (44)

Then we arrive at an approximation for β2(ρ) in the im-
portant region ρ≫ 1:

β2(ρ) ≃ const − ρ2

4(|m| + 1)
− ln ρ

2|m|

− ρ−2|m|

2|m|

∫ ∞

0

[
Φ2(ξ) − Φ

(0)
2 (ξ)

]
dξ.

(45)

Now we are in position to compare the magnon am-
plitude ũm = ũ0(1 + κβ1 + κ2β2) with the scattering

approach in order to extract the information about the
scattering amplitude σm(κ). To describe the scatter-
ing problem in the long–wavelength approximation we
rewrite the differential problem (30) for large distances
κρ≫ 1, only considering the terms with κ2. In this scat-
tering approach the oscillating function ũm satisfies an
equation

(
∇2

ρ + κ2 − ν2

ρ2

)
ũm = 0, ν2 = m2 − κ2. (46)

The solution of this equation can be written as

ũm(ρ) ∝ J|ν|(κρ) + σ̃ν(κ)Y|ν|(κρ)

∝ 1√
ρ

cos

(
κρ− |ν|π

2
− π

4
+ δ̃m

)
,

(47)

where the index of the Bessel and the Neumann function
is noninteger. It results in a value of δ̃m which differs
from the real scattering phase shift δm. Using asymptotic
expansions (34a) and (47), the desired relation between

the phase shift and δ̃m can be written as

δm(κ) = δ̃ν(κ) +
|m| − |ν|

2
π. (48)

In the lowest order approximation in κ, the corresponding
relation for the scattering amplitudes has the form:

σm(κ) = σ̃ν(κ) − πκ2

4|m| . (49)
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To compare the scattering solution (47) with the result
of the perturbation theory we can expand the cylindri-
cal functions in powers of the small quantity |ν| − |m|
and represent through the cylindrical functions of inte-
ger order |m|, as done in Ref. 31. After that in the region
κρ ≪ 1 we are able to use the asymptotes of the cylin-
drical functions at the origin; we arrive at the formula

ũm(ρ) ≃ ρ|m|

{
1 − κ2ρ2

4(|m| + 1)
− κ2

2|m| ln
(κρ

2

)

− σm · (|m|!)2
π|m|

(
2

κρ

)2|m| [
1 − κ2

4|m|Sm

]}
,

Sm = γ + |m|
|m|−1∑

n=1

1

n(|m| − n)
,

(50)

where γ is Euler’s constant.
Comparing this expression with the perturbation the-

ory results [see Eqs. (40b), (43), (45)], in the region
1 ≪ ρ ≪ 1/κ, where both are valid, we can restore the
general dependence of the scattering amplitude in the
long–wavelength approximation:

σm(k) = −Am

(κ
2

)2|m|

+mBm

(κ
2

)2|m|+1

, (51a)

Am =
2π|m|

Sn(|m|!)2
∫ ∞

0

[
Φ2(ξ) − Φ

(0)
2 (ξ)

]
dξ, (51b)

Bm = − π

m(|m|!)2
∫ ∞

0

Φ1(ξ)dξ. (51c)

Eq. (51a) solves the scattering problem except for factors
Am and Bm. These factors can be found by the numeri-
cal integration of Eqs. (51b) and (51c), using numerical
data for ũ0 and ṽ0. Thus, solving the equations for zero–
modes once, we compute the whole dependence σm(κ).
Nevertheless, in order to discuss the analytical behavior
let us note that for sufficiently large values of |m|, we can
limit ourselves to the contribution of the term with ũ2

0 in
the function Φ1 and the term with ũ2

0β1 in the function
Φ2, see Eq. (41). To calculate the integrals we need to
have more information about the zero–modes. At small
distances ρ ≪ 1 the isotropic (exchange) approximation
works correctly, which leads to the following solutions:28

ũ0 ∝ ρ|m| sin θ0, ṽ0 ∝ ρ|m|+1θ′0.

Such solutions have the correct asymptotic behavior at
infinity and at the origin. Our numerical calculations
justify the correctness of these assumptions form≫ 1; as
a result we obtain analytical estimates for these factors:

Am ≈ 18(2|m| − 1)!

Sn((|m| − 1)!)2
, Bm ≈ 4π(2|m| − 1)!

(|m|!)2 . (52)

To compare the scattering results for different modes, we
write explicitly the asymptotic expressions for all modes,

taking into account (51a), and asymptotes for half–local
modes from Refs. 24,41

σm=0(κ) ≈ −π
2
κ2 ln(1/κ), (53a)

σm=±1(κ) ≈ ∓πκ
4
, (53b)

σm 6=0,±1(κ) ≈ −Am

(κ
2

)2|m|

+mBm

(κ
2

)2|m|+1

. (53c)

In the main approximation in κ the scattering picture
contains doublets for modes with opposite signs of m
for the modes with |m| > 1. The splitting of the dou-
blets (the last term in Eq. (53c)) appears in the next
order in κ. The splitting of the doublets for the magnon
modes on the vortex background with given m = ±n
was mentioned in the earliest papers on vortex–magnon
scattering;21,22 but it was explained, in fact, only for
m = ±1.24 Our considerations on the basis of Eq. (13)
show that the splitting of the scattering data is the direct
analogue of the Zeeman effect for electron states splitting
in an external magnetic field. To follow this analogy one
can rewrite the splitting constant Bm in the form:

Bm ∝
∫ ∞

0

dξ ξ2|m| (A(ξ) · eχ) ,

hence the splitting appears only in the effective magnetic
field, which is described by the vector potential A.

Using scattering results (53) one can solve the scatter-
ing problem for a plane spin wave in the form (35). In
the long–wavelength limit the maximum scattering is re-
lated to the translation modes with m = ±1, which gives
the scattering function (35b) in the form

F(χ) =

√
πκ

2
e3iπ/4 sinχ. (54)

In this approximation the scattering is anisotropic, and
the total scattering cross section is ̺ = π2κ/4. To explain
the origin of the anisotropic scattering, let us mention
that the plane spin wave makes a spin flux, which influ-
ences the vortex as a whole, trying to move it by exciting
translational modes. It is well–known that the vortex dy-
namics appears in the gradient of a magnetization field
like the magnon flux.42 The dynamics of the vortex has a
gyroscopical behavior (see for the review 4): acting along
the x–axis, the spin wave causes the translational motion
of the vortex along the y–axis, which results in (54).

B. Scattering problem for short wavelength

For large k, in the main approximation to lowest order
in 1/κ, the scattering problem (36) can be rewritten in
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FIG. 3: (Color online) Scattering data for different m for the
short–wavelength limit: from asymptotes (67) of the contin-
uum theory (lines) and from discrete model numerical diago-
nalization (symbols)

the form:

H̃
∣∣Ψ̃
〉

= −κ2
∣∣Ψ̃
〉
, (55a)

∣∣Ψ̃
〉
∼
∥∥∥∥
ǫm · ρ|m+1|,
ρ|m−1|

∥∥∥∥ , when ρ≪ 1 (55b)

∣∣Ψ̃
〉
∼
∥∥∥∥
J|m|(κρ) + σm · Y|m|(κρ)

K|m|(κρ)

∥∥∥∥ , when ρ≫ 1.

(55c)

We see that the functions ũ and ṽ have independent
asymptotes at the origin (55b) and at infinity (55c). It
means that the role of the “coupling potential” W in the
scattering problem (55) is unimportant here. Therefore
one can neglect the “coupling potential” and formulate
the scattering problem for the master function ũ only:

[
−∇2

ρ + Um(ρ)
]
ũm = κ2ũm , (56)

where the partial potential is

Um(ρ) = U0(ρ)+V (ρ) = U(ρ)− 1

2
+

[
(A(ρ) · eχ) − m

ρ

]2
.

(57)

It is natural to suppose that the WKB–approximation
is valid for this case. We use the WKB–method in the
form proposed earlier for the description of the scattering
for isotropic 2D magnets29, and generalized after that
for any singular potentials.43 We start from the effective
1D Schrödinger equation for the radial function ũm(ρ) =

ψm(ρ)/
√
ρ, which yields

[
− d2

dρ2
+ Ueff(ρ)

]
ψm = κ2ψm ,

Ueff(ρ) = Um(ρ) − 1

4ρ2
.

(58)

The WKB–solution of Eq. (58), i.e. the 1D wave function
ψWKB

m , leads to the following form of the partial wave

ũWKB
m =

ψWKB
m√
ρ

∝ 1√
ρ · P(ρ)

cos

(
χ0 +

∫ ρ

ρ0

P(ρ′)dρ′
)
,

(59)
where P =

√
κ2 − Ueff. Analysis shows that Eq. (59) is

valid for ρ > a, where a is the turning point. The value
of a corresponds to the condition P(a) = 0, which results
in a ∼ |m|/κ ≪ 1. We assume that the parameter ρ0

satisfies the condition a≪ ρ0 ≪ 1.
On the other hand, at small distances ρ≪ 1, the par-

tial potential Um has the asymptotic form

Um ∼ ν2

ρ2
,

ν = m− lim
ρ→0

[ρ (A(ρ) · eχ)] = m+ qp,
(60)

therefore one can construct asymptotically exact solu-
tions (recall that we suppose q = p = 1)

ũm ∝ J|m+1|(κρ), when ρ≪ 1. (61)

For κ≫ |m| there is a wide range of values of ρ, namely

|m|/k ≪ ρ≪ 1, (62)

where we can use the asymptotic expression29 for the
Bessel function (61) in the limit kρ≫ |m|:

ũm ∝ 1√
ρ

cos
(
κρ− |m+ 1|π

2
−π

4
+

4|m+ 1|2 − 1

8κρ

)
. (63)

In the range of Eq. (62) the solutions (59) and (63) coin-
cide due to the overlap of the entire range of parameters,
so one can derive the phase χ0 in the WKB–solution (59),

χ0 = κρ0 −
|m+ 1|π

2
− π

4
+

4|m+ 1|2 − 1

8κρ0
.

Therefore, we are able to calculate the short–wavelength
asymptotic expression for the scattered wave phase shift
by the asymptotic expansion of the WKB–solution (59):

δm(κ) = lim
ρ→∞

(∫ ρ

ρ0

P(ρ′)dρ′ + χ0 − κρ

+
|m|π

2
+
π

4
− 4m2 − 1

8κρ

)
.

(64)
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Under assumed conditions kρ≫ 1, the WKB–integral in
(64) can be calculated in the leading approximation in
1/kρ,

∫ ρ

ρ0

P(ρ′)dρ′ ≈ κ(ρ− ρ0) −
1

2κ

∫ ρ

ρ0

Ueff(ρ′)dρ′.

As a result, the scattering phase shift for large wave num-
bers, κ≫ 1, has the form

δm(κ) = δm(∞) − 1

2κ

∫ ∞

0

[
Um(ρ) − ν2

ρ2

]
dρ,

with the limiting value

δm(∞) = −π
2
· (|ν| − |m|) = −π

2
· sgn+(m), (65)

sgn+(m) =

{
1, m ≥ 0,

−1, m < 0.

Calculating the integral we obtain the phase shift in the
form:

δm(κ) = −π
2
· sgn+(m) +

D1 +mD2

κ
(66)

D1 =
1

4

∫ ∞

0

{
3 sin2 θ0
ρ2

+ 3 cos2 θ0 + (θ′0)
2
}
dρ ≈ 2.44,

D2 =

∫ ∞

0

1 − cos θ0
ρ2

dρ ≈ 1.38.

The corresponding amplitude of the vortex–magnon scat-
tering is

σm(κ) =
κ

D1 +mD2
. (67)

This linear divergence is well–pronounced in the numer-
ical results, see Fig. 3. To understand the origin of this
divergence let us go back to the Eq. (65). One can see
that the scattering phase shift at k → ∞ does not van-
ish for potentials with inverse square singularity at the
origin, with ν 6= m, see Eq. (60). This is possible only
in the magnetic field, which has singular behavior like
|A| ∼ 1/ρ.

Let us look for the consequences of this unusual behav-
ior of the scattering, σm → ±∞. We consider the scat-
tering problem for a plane spin wave in the form (35). In
the short–wavelength limit the WKB results for the phase
shift (66) are available. One can see that the scattering
function (35b) tends to zero very quickly for large wave
numbers, F(χ) = O(κ−5/2), so there is no real divergence
or singularity for a physically observable quantity such
as the total scattering function F at large energies.

C. Levinson theorem

Now we can compare the scattering results in the long–
and short–wavelength limits. The scattering is absent
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FIG. 4: (Color online) Scattering phase shifts for different
m. Numerical results from the continuum theory.

for the limit k → 0. However, the scattering amplitude
has a linear divergence σ ∝ k for sufficiently large wave
numbers, see Eq. (67). All these results were verified
by the numerical calculations for continuum limit and
for finite sized discrete lattice systems, see Figs. 1, 2,
3. According to our analytical calculations, see Eq. (65),
the phase shift for the short–wavelength limit tends to
the finite value δm(∞) = − sgn+(m) · π/2. This result
corresponds to the numerical data, see Fig. 4, except for
the mode with m = −1, where the numerical data gives
δm=−1(∞) = −π/2. However we need to note that the
phase shift is determined with respect to π, in this sense
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values δm = π/2 and δm = −π/2 are identical. What
is physically important is how δm(κ) changes from small
to large κ. According to our numerical results, the total
phase shift can be described by the formula

δm(0) − δm(∞) =

{
π
2 · sgn+(m), m 6= −1,
π
2 , m = −1.

(68)

It is well–known that the total phase shift is related to
the number of bound states Nb

m according to the Levin-
son theorem from the scattering problem for a spinless
quantum mechanical particle without a magnetic field.
This theorem was originally proved by Levinson for the
3D case, see the review 39. The two-dimensional version
of the Levinson theorem reads44,45,46

δm(0) − δm(∞) = π ·Nb
m. (69a)

If there exist half–bound states (see notations in the
Sec. IVA) for the p–wave (m = 1), this is modified to44,46

δ1(0) − δ1(∞) = π ·Nb
1 + π. (69b)

For the 2D EP FM, the scattering picture is much more
complicated. First, we have no standard Schrödinger
equation, but the generalized one (13). This becomes
apparent at most in the threshold behavior for the half–
bound states, and the contribution of the half–bound
states in the form (69b) may be not adequate, see be-
low. Second, because of the role of the effective magnetic
field, there appears an m–dependent potential: the sym-
metry δm(κ) = δ−m(κ) is broken, so it is not enough to
take into account partial waves with m ≥ 0 only. As a
result Levinson’s relation (69a) has a different form for
the opposite signs of m.

Thus, except for the case of half–bound states one can
hope that the Levinson theorem is adequate. However we
see that the total phase shift (68) contradicts the Levin-
son theorem in the form (69). The reason is that the
partial potential Um in the Schrödinger equation (56) has
an inverse square singularity at the origin, Um ∼ ν2/ρ2,
where ν = m+ qp, see (60). Such a situation changes the
statement of the Levinson theorem. As we have proved
recently in Ref. 32, the generalized Levinson theorem for
the Schrödinger–like equation for potentials with such
singularities has form:

δm(0) − δm(∞) = π ·Nb
m +

π

2
(|ν| − |m|) . (70)

An additional π can appear on the RHS of this equation,
if the half–bound states exist for the p–wave (|m| = 1),
see (69b). To explain the meaning of the extra term
(π/2) · (|ν| − |m|) in the generalized Levinson theorem
(70), recall that in the partial wave method the scatter-
ing data are classified by the azimuthal quantum number
m, which is the strength of the centrifugal potential. In
the presence of a partial potential with an inverse square

singularity at the origin such as Um ∼ ν2/ρ2, the effec-
tive singularity strength is shifted by the value |ν| − |m|,
which results in a change in the short–wavelength scat-
tering phase shift by (π/2) · (|m| − |ν|).

Let us compare the predictions of the general-
ized Levinson theorem (70), which is suitable for the
Schrödinger–like equation, with our results for the
vortex–magnon scattering problem in the 2D EP FM,
which can be described by the generalized Schrödinger
equation (13). In our case the singular potential is
caused by the specific singular magnetic field at the ori-
gin, |A| ∼ 1/ρ, which results in ν = |m+ 1|. The system
has no bound states, Nb

m = 0, therefore Eq. (70) takes
the form:

δm(0) − δm(∞) =
π

2
· sgn+m. (71)

Our numerical results (68) correspond to this formula for
all modes with m 6= −1. The cause is the influence of the
half–bound states. By comparison of (71) and (68), one
can adapt the generalized Levinson theorem for this case.
It reads

δm(0) − δm(∞)

=

{
π ·Nb

m + π
2 (|ν| − |m|) , when m 6= −1

π ·Nb
m + π + π

2 (|ν| − |m|) , when m = −1.

(72)

Let us compare this result with Eq. (69). An extra π,
which appears for the mode m = −1, is connected with
the half–bound states, see Eq. (69b). To explain the
situation, let us stress again that our scattering prob-
lem is formulated not for the standard Schrödinger equa-
tion. However, the problem has a symmetry such that
one eigenfunction becomes a master function, while the
other is a slave. This makes it possible to use the main
features of the standard quantum mechanical scattering
theory. The appearance of the half–bound states is con-
nected with the symmetry of the whole system, and both
of the eigenfunctions are important. In the system there
are three half–local modes, see Eq. (38). According to
Eq. (72) only one of the half–bound modes, namely, the
mode with m = −1, gives an extra π to the Levin-
son’s relation. More generally, this extra contribution
corresponds to the half–bound mode with m = −qp,
see Eq. (60). This result cannot be explained in the
framework of the Levinson theorem for the standard
Schrödinger equation, where both half–bound states with
m = +1, and m = −1 should make contributions to
the Levinson’s relation. The corresponding analogue of
the Levinson theorem for the generalized Schrödinger
equation (13) takes into account the contribution of the
half–bound state for only one value of m, namely, for
m = −qp.

V. CONCLUSION

We have presented a detailed study of vortex–magnon
interactions in the 2D EP ferromagnet, having described
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this process by a “generalized” Schrödinger equation.
The main features of the magnon scattering are con-
nected with the special role of the effective magnetic
field, which is created by the vortex. This effective field
acts on magnons in the same way as a magnetic field
influences an electron, leading to the appearance of the
Lorentz force and the Zeeman splitting of the magnon
states with opposite values of the azimuthal numbers m.
The singular behavior of the effective magnetic field at
the origin causes a divergence of the scattering ampli-
tudes for all the partial waves; we have confirmed this
study by a generalized version of the Levinson theorem
for potentials with inverse square singularities.

Our investigations can be applied to the description
of the internal dynamics of vortex state magnetic dots;
the theory of the vortex–magnon scattering developed
here could be a good guide for the study of the normal
modes in vortex–state magnetic dots. It is clear that
the EP FM cannot correspond quantitatively to the case
of vortex–state magnetic dots, where the anisotropy is
negligible and the static vortex structure is stabilized by
magnetic–dipole interactions. We did not consider this
type of interaction in this paper, as it is difficult to ac-

count for. Nevertheless, we believe that the main features
of the problem studied above are generic. For example,
an effective magnetic field exists due to the topological
properties of the vortex only. Furthermore, we expect the
appearance of modes with anomalously small frequencies,
e.g., the mode of the translational oscillations of the vor-
tex center. The nonzero frequency of this mode is caused
by the interaction with the boundary only. Additionally,
the splitting of the doublets for modes with opposite m
should appear due to the role of the effective magnetic
field.
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