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1 INTRODUCTION

We study the dynamics of vortices in the 2-dimensional anisotropic Heisenberg model
with easy-plane symmetry (XY-symmetry). We want to find out whether the vortex
trajectory X (t) follows the generalized Thiele equation

F+Gx X =MX (1)

which was derived in another paper! of this volume. For a single vortex the mass tensor
is Mi; = Mé;;, where i, j denote the spatial components in the XY-plane, and

M=~ —In—. (2)

6 is the anisotropy parameter in the Hamiltonian', L and aq are upper and lower cut-
offs in the order of the system size and the lattice constant, respectively. The exchange
constant J and the spin length S are set equal to one.

F'is a force, either external or from another vortex, the gyrotropic force G x X
plays formally the same role as the Lorentz force on an electric charge. However, the
gyrovector G acts like a kind of self-induced magnetic field, for a single vortex

G = 2npge,. (3)
Here ¢ = &1 is the vorticity, p is the out-of-plane spin component at the vortex center.

In the continuum limit p = 0,%1, therefore p is the polarization of the out-of-plane
structure of the vortex.
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In this paper we want to calculate the effects of the vortex mass M on the path
X (t) and test the results by computer simulations for the original spin system, i.e. by
integrating the Landau-Lifshitz equation, from which eqn. (1) was derived.

For zero force, eqn. (1) simply predicts a rotation with the cyclotron frequency

We = M (4)
However, for a simulation this case is particularly difficult because it requires a non-zero
initial velocity. This is a problem because the Landau-Lifshitz equation is of first order
in time, therefore the initial spin configuration must be chosen such that it represents
already a moving vortex. Unfortunately only static vortex solutions are known, a
moving vortex is deformed in a way which is known only in the continuum limit and
only far away from the center'. This problem will be treated in detail in a paper which
is In progress.

For this reason a force is needed to make a vortex move which is initially at rest. For
the simplest case of a constant force F, we get a cycloid with the cyclotron frequency
w.. Unfortunately it is very difficult to apply an external force to a vortex without
complicating the situation (e.g., an in-plane magnetic field creates a double domain
wall which connects the vortex with a boundary). Therefore we proceed here to the
case of 2 vortices, where the force is 27pq/r, at a distance ry,. This well-known result
holds only if the static out-of-plane structures of the vortices do not overlap. Therefore
in our simulations we always consider situations with 15 > ry = vortex radius'; we
choose § = 0.1 for which ry = 1.5 lattice constants. We must consider two out-of-plane
vortices (p1,p2 = =%1) in order to have long observation times, two in-plane vortices

(p1 = p2 = 0) would either annihilate after a short while, or stop due to the pinning
forces of the lattice.

2 STATIONARY AND NON-STATIONARY 2-VORTEX SOLUTIONS

Stationary solutions of (1) are defined as motions where both vortices have constant
speed Vo. There are 4 physically different scenarios, 2 rotational and 2 translational
ones: if the gyrovectors are parallel (p;q; = pygs), the 2 vortices rotate around each
other; i.e. they both rotate at a radius Ry around their center of mass, where the
angular frequency is

We W Qg2 M

) R

: )
2 2 P12 Rg? (5)
For M/Ro? < 1 an expansion gives

q2 Qg2 M
R(J2 =—(14 E—T o 6
- 2;01 ( 47!'])1“ R()‘} ( ]

This predicts that a vortex-vortex (V-V) pair rotates faster than a vortex-antivortex
(V-AV) pair.

If the gyrovectors are antiparallel, both vortices perform a parallel translational
motion at a distance 2Ry, where

VoRs = 2"_ (7)
1

The simplest non-stationary solutions are obtained from an expansion around the
stationary solutions. We set X = R, + = with |R,| = V; and expand F = F, + AF,
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Figure 1: Trajectories of a vortex and an antivortex with parallel gyrovectors, 50 x 50
square lattice, o: initial positions, a small damping during the first 40 integration steps
removes spin waves which have been excited initially.

where AF' is linear in . We linearize the equations for @(¢) and obtain an elliptic
motion with the frequency

- Qa2 M (8)
2mp1® Rg
This holds for the rotational cases, for the translational ones the sign in the square root
is changed and 27 is replaced by 4.
Our result means that we predict (elliptic) cyclotron-like oscillations around the
stationary solutions for all four scenarios; however, for V-V rotation and V-AV trans-

lation Ro must be larger than a certain minimum value (otherwise the square root in
(8) would become imaginary).

o=
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Figure 2: Numerical solution of the generalized Thiele equation (1) for a vortex inter-

acting with an antivortex at —X. Parameters and initial conditions from the data for
Fig. 1.

3 COMPUTER SIMULATIONS

As initial condition we take a linear superposition of 2 single planar vortex solutions be-
cause the Laplace equation holds for the in-plane angle field. For the vortex centers we
choose symmetric positions on a square lattice. In order to obtain definite polarizations
P172 we give small out-of-plane components to the 4 spins close to the center of each
vortex. The Landau-Lifshitz equations are integrated using free boundary conditions,
and the vortices very soon develop their full out-of-plane structure (details in ref. 2).
During this process they radiate spin waves which are damped out by the inclusion of
a small Landau-Gilbert damping (see ref. 2). When the damping is switched off, the
vortices no longer loose energy and can be observed for arbitrary long times. Typical
examples for the 4 scenarios are given in the Figs. 1,3 and also in Fig. 2 of ref. 3.

However, the various predictions of section 2 are fulfilled only for a part of the 4
scenarios:

(1) Only for V-AV rotation and V-V translation there are oscillations around the
stationary solutions and the mass can be calculated from (8). In the other 2 scenarios
possibly the mass is so small that the frequency of the oscillations is too high to be seen
among the fluctuations due to discreteness effects.

(2) The measured values for woRy> and VyRo agree with the predictions only for
V-V rotation. In the other scenarios there is a discrepancy which amounts up to 50
percent; this problem is cleared up in the next section.
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Figure 3: Simulations for 2 vortices with antiparallel gyrovectors, o: initial positions.

a) vortex-vortex, b) vortex-antivortex.



In some cases, like in Fig. 1, the oscillations appear on a scale comparable to the
system size. In order to make sure that this has nothing to do with the square boun-
daries (and in order to test our analytical approximation of section 2), we have solved
numerically the generalized Thiele eqn. (1) for a vortex interacting with an antivortex
at —X. Here the initial conditions for the position and velocity were taken from the
data for Fig. 1, at a time where the vortices had maximum distance. The mass was
determined by (8), where w had been measured in the simulations. Fig. 2 shows very
clearly that the hexagon-like structure of Fig. 1 is not a boundary effect but can be
explained by superimposing an elliptic motion on a circular one. Naturally, a closed
orbit as in Fig. 2 occurs only for special initial conditions.

4 BOUNDARY AND DISCRETENESS EFFECTS

Fig. 3b demonstrates that a vortex which is close to a boundary (and far away from
the other vortex) performs a motion parallel to the boundary; here VoRy =~ 0.5 where
Ry is the distance to the boundary. Obviously the vortex is driven by the interaction
with an image vortex. A comparison with the scenarios of V-V and V-AV translation
shows that the image vortex must have opposite vorticity but the same polarization.

If a vortex is not close to a boundary, its motion is dominated by the force from
the other vortex in the system, but the force from the image vortices must also be
taken into account. Let us consider the 2 rotational scenarios: here a simple qualitative
consideration shows that in the V-V case the resulting force is enlarged; this means
that |woRo?| should be larger than the value given by (5) or (6). Analogously |woRo?|
should become smaller in the V-AV case. However, only the latter prediction is fulfilled
in the simulations.

Obviously a quantitative analysis is necessary. In order to simplify the calculation
we replace the square system by a circle. This is a good approximation if the ratio
n = Ro/L < 1, where L is the radius of the system. A single vortex with radial
coordinate R has an image at a radius L/R? as in 2-d electrostatics. We take such
an image vortex for each of the two vortices in our system and obtain after a short
calculation the following corrections: in /g (zeroth order term of the force), and thus
also in eqn. (5), the product ¢,¢. is replaced by

Qo = q1g2 + 40 + O(W!H)- (9)

Here | = 4 for the V-V case, but | = 2 for the V-AV case. This result means that
in the latter case |woRo?| is reduced, compared with eqn. (5),(6); and in fact this is
observed. In the former case the correction is two orders smaller and therefore could
not be observed.

The image vortices naturally change also the first order term AF. After a lengthy
calculation we obtain that ¢;¢» in eqn. (8) is replaced by

Q = qiq2 + bn' + O(n**). (10)

where b = 12 for V-V and b = 8 for V-AV, the powers [ are the same as above.

Before we can eventually evaluate quantitatively the simulation data, we must also
include discreteness effects. Here the most important effect seems to be a reduction
of the polarization |p| below the continuum limit value 1. Therefore we consider |p| to
be unknown, in addition to the mass M. The 2 unknowns can be determined by the
2 equations (5) and (8), because wy, Ry and w are measured; q1/2, sgn(p12) and the
system size L are input data.



The above analysis refers to the 2 rotational scenarios. For the 2 translational ones
we consider a sufficiently long rectangle with width 2L and in a first approximation we
put 2 images at the same distance from the border as the real vortices. This results in
a replacement of (7) by VoRo = Qo/(2p1¢1) with

Qo = qig2 + bn' + O(n'*") (11)

where b = 1,/ = 2 for V-V and b = 2,1 = 1 for V-AV. Thus V,R, is increased in the
former case, while it is decreased in the latter case; in fact both effects are observed
in the simulations. @, also gets a different form, compared to (10), but this is not
displayed here because it will not be used in the following.

5 DATA ANALYSIS AND CONCLUSIONS

Let us consider the V-AV rotation because here w can be measured more accurately
than in the V-V translation where the observation time is rather short. We obtain
Ip| =~ 0.85 (except for small radii Ry where |p| gets even smaller). This value agrees
well with an estimate from the vortex configuration itself (e.g., one can take a weighted
average of the out-of-plane components at the four lattice points closest to the vortex
center).

However, the values for the mass M do not agree at all with the estimate (2): () M
is about one order of magnitude larger; (b) M is not a constant, it increases considerably
for smaller Ro; (c) the size dependence may be roughly linear, instead of logarithmic.
However, our largest lattice was 178 x 178, which is too small to determine conclusively
the size dependence.

The points (a) and (b) indicate that the measured quantity M is some kind of
effective mass of a 2-vortex system, and not the single-particle mass (2). This idea is
strongly supported by the fact that our theory so far cannot explain why no cyclotron
oscillations are seen in the V-V rotation and V-AV translation. This means that the
masses of these 2-vortex systems are probably small, while the masses of the 2 other
systems (V-AV rotation and V-V translation) are large.

Different masses for different 2-vortex systems are possible if there are 2-vortex
contributions to the mass. They would appear on the rhs of (1):

F+Gx X" =M*X" + M X" (12)

Here a and f denote the first and the second vortex, resp.; M3® = Mé;; as before.

Because of the symmetry of our 4 scenarios X? can be expressed by X*: for the
rotational cases X? = —X?_ and for translational motion, e.g. in X,-direction, Xl‘G =
X¢ and X7 = —X¢.

Therefore the rhs of (12) can be written as M** X and we have again a generalized
Thiele equation of the form (1). However, the mass tensor is no longer proportional
to the unit. We expect a diagonal matrix if we choose a coordinate system with axes
parallel and perpendicular to the direction of motion.

Naturally these ideas would not help much, if M*? is not known. But in fact, in
another paper® of this volume an equation like (12) is derived from the Landau-Lifshitz
equation and M“? can be calculated explicitly. This equation is more complicated than
(12), because there are also 2-vortex contributions to the gyrovector.
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