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We consider localized magnon modes of magnetic vortices in two-dimensional (2D) classical
magnets, with exchange or single-ion easy-plane anisotropy stronger than the critical value
required to stabilize in-plane vortices. A discrete lattice Ansatz for the structure of a
magnon mode on one vortex is analyzed. Its lowest eigenmodes are found to be identical
with modes obtained from numerical diagonalization for ferro- (FM) and anti-ferromagnets
(AFM), showing that the Ansatz is exact. For the AFM model, one mode is found to
be localized, with frequency reaching a size-independent asymptotic limit. A continuum
treatment leads to an effective Schrodinger problem that requires a small-radius cutoff due
to the singularity of the vortex core. We find, however, that it is not possible to choose this
cutoff consistently to recover the exact local mode frequency from the Ansatz. This suggests
that strong discrete lattice effects not well-described by the usual continuum approximation
always appear from the core of in-plane vortices,

PACS numbers: 75.10.Hk; 75.40.Cx

I. INTRODUCTION

Two-dimensional Heisenberg models with easy-plane
(XY) anisotropy continue to attract interest because of
the presence of magnetic vortex excitations and their
particle-like properties. At finite temperature, however,
an individual vortex will be strongly modified by its in-
teraction with magnons, and vice-versa. In particular
here we are interested in analyzing magnon modes that
are localized on a vortex. In the absence of anisotropy,
Ivanov1 found that the Belavin-Polyakov solitons of the
2D isotropic FM model possess a local mode. Spin-
wave modes on a vortex in the FM model with easy-
plane exchange anisotropy have also been analyzed,2 and
a similar mode appears, but only the out-of-easy-plane
(Sz) spin fluctuations are localized.3 Thus these spe-
cial FM modes are considered “quasi-local”,and have an
anisotropy-dependent frequency that diminishes with in-
creasing system size.3 On the other hand, Ivanov et al.4

found that for the AFM model with weak easy-plane ex-
change anisotropy, there is a mode truly localized on a
vortex, with frequency determined only by the anisotropy
strength. In both FM and AFM cases, these quasi-local
and local modes, respectively, are also seen to be asso-
ciated with3,5 the crossover from stable “out-of-plane”
vortices (“weak” anisotropy, Sz equals a nonzero func-
tion of distance from the vortex core) to stable “in-plane”
vortices (“strong” anisotropy, all Sz = 0) when the anis-
otropy strength increases through a critical value.6,7 By
an Ansatz for the motions of the spins near the core of
an in-plane vortex excited by this mode (vortex insta-
bility mode, or VIM), Wysin8 estimated the critical ex-
change anisotropy by locating where this mode has zero
frequency. Now the Ansatz has been improved,9 taking

into account motions of spins far from the vortex core,
leading to precise determinations of critical anisotropy,
and including also single-ion easy-plane anisotropy. This
Ansatz now offers a new opportunity for studying the
VIM, especially for the AFM model, which is the focus
of this paper.

Except for Ref.,9 all of the above calculations con-
sidered easy-plane exchange anisotropy. Currently there
have been fewer vortex mode calculations using a single-

ion type of easy-plane anisotropy (see Eq. (1) below for
the distinction). We cite one in particular. Pereira et

al.10 used the vortex-magnon continuous spectrum to cal-
culate the quantum corrections to classical AFM in-plane
vortex energy for single-ion anisotropy. Using a contin-
uum description, they also found evidence for a bound
state or local mode of an in-plane vortex. There was
no mention there whether this mode could be the VIM.
We show below, however, that the effective Schrodinger
equation for that mode requires a small-radius cutoff in
order to have a physically reasonable solution. A primary
goal of this work is to analyze further this local mode,
for both types of easy-plane anisotropy. We do this by
a further analysis of the effective Schrodinger equation,
with a cutoff introduced. We also are able to show that
this mode is the VIM of the in-plane vortex, regardless
of the type of easy-plane anisotropy.

As there is always some freedom and therefore un-
certainty about how to put in such a cutoff, however,
an analysis of the corresponding discrete lattice problem
is important as a control. In this case, the Ansatz for
the VIM made by Wysin9 to calculate the critical aniso-
tropy can be used to determine both the eigenvalue and
eigenfunctions of the in-plane vortex local mode. The
Ansatz is based on successively taking into account spins
at larger and larger radii from the vortex core, all exactly,
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and assuming that the wavefunction for the mode has a
simple symmetry that is determined by the underlying
lattice symmetry. In fact, while the VIM wavefunction is
actually circularly symmetric, Wysin’s Ansatz includes
both circularly symmetric solutions and solutions with
symmetry of the lattice.

The paper is organized as follows: First we present the
spin model and Ansatz for a mode on an in-plane vor-
tex on a discrete lattice. The Ansatz is applicable either
to the FM model on square, hexagonal and triangular
lattices, or to the AFM model on square and hexago-
nal lattices.11 Results from the Ansatz are presented and
compared with other results from exact diagonalization.
Then we review the derivation of the continuum limit
effective Schrodinger equation for modes on an AFM in-
plane vortex. We present the arguments for introduction
of a cutoff, and then show the resulting solutions obtained
from a shooting method. Finally we compare with the
Ansatz results.

II. THE MODEL AND IN-PLANE VORTICES

We consider 2D spin models on a lattice, with easy-
plane (XY) anisotropy of exchange type (dimensionless
parameter δ≥0) and of single-ion type (dimensionless pa-
rameter d≥0), with Hamiltonian:

H = J
∑

n

{

∓1

2

∑

a

[

~Sn · ~Sn+a − δSz
n
Sz

n+a

]

+ d(Sz
n
)2

}

,

(1)

where J>0, subscript n labels the lattice sites and sub-
script a labels the set of displacements to the nearest
neighbors. Upper and lower signs here and below cor-
respond to ferromagnetic (FM) and antiferromagnetic
(AFM) models, respectively. For description of vortices
it is convenient to write the spins as

~Sn = S(
√

1 −m2
n

cosφn,
√

1 −m2
n

sinφn,mn). (2)

where φ is the in-plane angle and m = Sz/S is the out-
of-plane component. An in-plane FM vortex at the ori-
gin, with vorticity q = ±1, has Sz

n
= 0 and φo

n
= Φv

n
,

where the static vortex angles Φv
n

satisfy the discrete-
lattice Laplace-like equation,

∑

a

sin(Φv
n
− Φv

n+a
) = 0. (3)

This equation is equivalent to the static equation of mo-
tion, Ṡz

n
= 0. In the continuum limit, with small gra-

dients, (Φv
n
− Φv

n+a
) � 1, this equation passes over into

the 2D Laplace equation. We solved this equation by
first setting the in-plane angles to their continuum vor-
tex values,

Φv
n

= q tan−1 y/x, (4)

and then iteratively setting each spin’s xy-components to
point along the direction of the effective field due to its
neighbors. A similar method was used for all three spin
components in Refs.4,5 This iteration results in small dif-
ferences of the discrete solution from the continuum re-
sult (4), especially near the vortex core. Typically, the
discrete lattice vortex has an energy a few percent (at
most) smaller than that obtained when using the contin-
uum expression for the angles.

An in-plane AFM vortex again has Sz
n

= 0, but com-
pared to the FM vortex, has φo

n
modulated according to

the sublattice l of site n. Letting Φl = 2πl/L, where
L is the number of sublattices (L = 2 for square and
hexagonal lattices, L = 3 for triangular lattice), and
l = 0, 1, ...(L− 1), the AFM vortex has in-plane compo-
nent φo

n
= Φv

n
+ Φln . The ln are assigned such that that

no neighboring sites have identical values. Note, how-
ever, that for the triangular lattice, while we can form
the structure of the AFM in-plane vortex, we are not
aware of a similar smooth solution for the out-of-plane
vortex. It is clear that the frustration in this case makes
both the the out-of-plane vortex structure and form of
a possible VIM wavefunction difficult if not impossible
to consider. Thus the AFM model is considered only on
square and hexagonal lattices.

The consideration of in-plane vortex stability shows
that the in-plane vortex is stable only under sufficiently
strong anisotropy, δ > δc or d > dc, depending on the
form being considered.8,9 For a vortex at the center of a
finite circular system, the critical values δc and dc depend
weakly on the system size, and reach asymptotic limits as
shown in Table I. Generally in what follows we consider
anisotropy strengths greater than the appropriate critical
value, such that the in-plane vortex satisfying (3) is a
stable static solution to Hamiltonian (1).

III. THE NORMAL MODE ANSATZ

Here we give details of the normal mode Ansatz in-
troduced in Ref.,9 that includes the VIM. We consider
simple ways in which the spins in the vortex structure
perform small-amplitude oscillations ϕ and m,

φn = φo
n

+ ϕn, Sz
n

= Smn. (5)

The Hamiltonian in terms of these perturbations is

H = JS2
∑

n

{

∓1

2

∑

a

[

√

1 −m2
n

√

1 −m2
n+a

×

cos(φo
n
− φo

n+a
) cos(ϕn − ϕn+a) + λmnmn+a

]

+dm2
n

}

, (6)

where λ ≡ 1 − δ is the relative net exchange coupling of
the Sz components.

One expects that for any normal mode the perturba-
tions ϕ and m could have a dependence on the azimuthal
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coordinate χ as eilχ, where l is an integer (angular mo-
mentum quantum number). For example, the VIM as
seen from numerical diagonalization4,5 is circularly sym-
metric, with l = 0, or equivalently, has a wavefunction
with only a dependence on the radial coordinate r. Thus
an Ansatz that includes the VIM need only allow for
this possibility, but in fact, can be more general as well.
Instead of supposing that ϕ and m depend only on r,
the Ansatz is that they depend on what we call shells or
“rings”, where the sites belonging to a given ring are all
at the same r, and in addition to this, can be mapped
into each other by symmetry operations that depend on
the lattice. The FM Ansatz is to assume that all sites
on a given ring labeled by a parameter α have the same

perturbations ϕα and mα, completely in phase. For the
AFM Ansatz on square and hexagonal lattices, it is as-
sumed that sites on the same sublattice on a ring move
in phase, with the same ϕα and mα, while the other
sublattice is exactly out of phase with this, having per-
turbations −ϕα and −mα. It is necessary to consider
the details of these ring variable definitions on square,
hexagonal, and triangular lattices separately.

A. Square Lattice

The vortex is assumed to be at the origin (0,0), cen-
tered in a unit cell. Then as shown in Fig. 1, the lattice
sites in one quadrant near the vortex core have coordi-
nates (x, y) = (a

2 i,
a
2 j), where a is the lattice constant

and i and j are odd integers (Fig. 1). Different sets of
sites at equal radii from the vortex center can be iden-
tified, depending on whether they lie on one of the lines
of symmetry |i| = |j| or not. A site with |i| = |j| (on
solid line in Fig. 1), can be reflected through the x and
y axes to get the four sites (x, y) = a

2 (±i,±i). These
four sites then comprise the ring denoted by (i, i) (a
solid circle on solid line in Fig. 1). For |i| 6= |j|, the
eight sites, (x, y) = a

2 (±i,±j), a
2 (±j,±i) related by re-

flections through the x,y axes and through the (11) di-
rections, comprise a ring denoted (i, j) (a solid circle not
on the solid line in Fig. 1). In general, any ring α can be
uniquely denoted by the pair α(i,j) ≡ (i, j), with i > 0,
j > 0, and i ≥ j. Different rings may have identical radii,
such as rings (5, 5) and (7, 1), but we still consider them
as independent variables. In this way there is actually
some angular dependence that can occur in the normal
mode, because the sites in equal radii rings lie in differ-
ent directions, and the Ansatz is able to produce modes
with angular momentum quantum number l 6= 0. All
rings have either four or eight sites; we denote the num-
ber of sites in a ring by µ(i,j) = 8− 4δi,j . To express the
perturbed energy of the vortex in terms of the ring vari-
ables, it is also useful to define a variable, cα,α′ , which is
the total number of bonds between any pair of rings α
and α′. For the square lattice, inspection of Fig. 1 shows
that cα,α′ = 8 between any two neighboring rings and
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i

-1

1

3

5

7

9

j

FIG. 1. Ring coordinates (i, j) for square lattice. Only the
first few rings are drawn. The vortex center is denoted by
*. Solid dots indicate the sites needed to identify the rings,
with other sites of a ring (open dots) obtained by appropriate
reflections and rotations. Rings with dots on the solid lines
have half as many sites as other rings. Dotted lines indicate
ring (exchange) self-interaction.

zero otherwise. Also, we note that rings with j = 1 al-
ways have 4 bonds within that ring (ring self-interaction,
dashed lines in the Fig. 1).

B. Hexagonal lattice

The modification to treat lattices other than square is
only to make the definitions of the rings appropriately,
based on the symmetries of the lattice. For the square
lattice, the symmetries allow us to solve the problem us-
ing about 1/8 of the full circle. For hexagonal lattice,
we get a reduction to 1/12 of the full circle, by defin-
ing the rings as follows: Using appropriate orthogonal
x and y axes as shown in Fig. 2, the hexagonal lattice

sites are located at (x, y) = (
√

3
2 i,

1
2j)a, where i and j

are integers such that (i + j) is even and j is not equal
to zero nor equal to any multiple of 3. When i = j (on
solid line in Fig. 2), there are six sites at the same radius,
all related to each other by 60o rotations, comprising a
ring. When i 6= j, there are twelve sites at the same
radius, related to each other by 60o rotations together
with reflections through the line i = j, and these sites
also comprise a ring. So in general a pair α = (i, j) under
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FIG. 2. Ring coordinates (i, j) for hexagonal lattice, notation
as in Fig. 1.

the above constraints together with i > 0, j > 0, i ≥ j
always falls in the first 1/12 of the full circle, and can
be used to denote a ring. The number of members of
each ring is µ(i,j) = 12 − 6δi,j, and the number of bonds
between neighboring rings is cα,α′ = max[µα, µα′ ]. As
in the square lattice, only the rings with j = 1 have 6
internal bonds or self-interactions.

C. Triangular lattice

Here the symmetry allows a reduction of the problem
to 1/6 of the full circle. With orthogonal coordinate axes
as in Fig. 3, the triangular lattice sites are located at

(x, y) = ( 1√
3

+
√

3
2 i,

1
2j)a, where i and j are integers

such that (i + j) is even. Starting with any site, the
other members of its ring are obtained from 120o ro-
tations together with reflection across the x-axis. So a
pair α = (i, j) under the above constraints together with

i ≥ 0, j ≥ 0, giving y ≤
√

3x, always falls in the first 1/6
of the full circle, and can be used to denote a ring. The
rings with j = 0 and those with j = 3i + 2 (y =

√
3x)

(on solid lines in Fig. 3) have µα = 3 (these rings lie
on the boundaries of the first 1/6 of the full circle); all
other rings have µα = 6. The number of bonds between
neighboring rings is cα,α′ = max[µα, µα′ ], except when
α or α′ is the smallest ring, in which case cα,α′ = 6.
In contrast to the square and hexagonal lattices, here
the rings with j = 1 and the rings with j = 3i (lying
near 60o angle from the x-axis) have 3 internal bonds.
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FIG. 3. Ring coordinates (i, j) for triangular lattice, notation
as in Fig. 1.

IV. THE ANSATZ DYNAMICS

The Hamiltonian is expressed in terms of the ring vari-
ables by the knowledge of the ring couplings cα,α′ , the
ring weights µα, and the ring self-interactions described
above, augmented by the following: We use nα to rep-
resent the rings that are neighbors of ring α. We de-
fine sα ≡ 1 for the rings with self-interaction bonds and
sα ≡ 0 for all other rings. The rings with self-interaction
have n internal bonds, where n = 4, 6, and 3 for square,
hexagonal and triangular lattices, respectively. For the
FM normal mode Ansatz, as described above (Sec. III),
we assume that all sites on a ring move exactly in-phase,
with the same perturbations, ϕα,mα. For the AFM nor-
mal mode Ansatz on square or hexagonal lattices, we as-
sume that all sites of one sublattice of a ring move exactly
in-phase, with the same perturbations, ϕα,mα, while the
other sublattice has exactly opposite perturbation, −ϕα

and −mα. As noted above, this Ansatz actually allows
for l 6= 0 modes. Now the Hamiltonian can be rewrit-
ten as H = Hint +Hself , where the interactions between
rings, and self-interactions within rings are

Hint = −1

2
JS2

∑

α,nα

cα,nα

[

√

1 −m2
α

√

1 −m2
nα

×

cos(Φv
α − Φv

nα
) cos(ϕα ∓ ϕnα

) + λmαmnα

]

, (7a)

Hself = −JS2
{

∑

α

n sα

[

(1 −m2
α) cos 2Φ̃v

α cos(ϕα ∓ ϕα)

+λm2
α

]

− d
∑

α

µαm
2
α

}

. (7b)
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The Φv
α indicate the unperturbed vortex angles Φv at the

site defining ring α = (i, j). For the self-interactions, it

was also necessary to introduce new angles Φ̃v
α, which

are identical to Φv
α, except for the triangular lattice rings

with j = 3i, where Φ̃v
α ≡ Φv

α + 2π/3. To obtain Hself

it is necessary to realize that at pairs of lattice sites in
a bond within one ring (for example, consider (i, 1) and
(i,−1) on the square lattice), the values of Φv differ in
sign while ϕ values are either equal (FM Ansatz, upper
signs) or exactly opposite (AFM Ansatz, lower signs).
This argument is modified for the j = 3i triangular lattice
rings because the bond involved in this interaction that
crosses the x axis is only obtained after a 2π/3 rotation
of the site (i, j), see Fig. 3.

The dynamics is derived from the Lagrangian in terms
of the ring variables:

L = S
∑

n

φ̇nmn −H = S
∑

α

µαϕ̇αmα −H. (8)

Euler-Lagrange variation with respect to the ring vari-
ables followed by linearization in ϕ and m leads to equa-
tions of motion:

Sµαṁα = − ∂H

∂ϕα

≈ −JS2

{

∑

nα

cα,nα
cos(Φv

α − Φv
nα

) ×

(ϕα ∓ ϕnα
) + 2nsα cos 2Φ̃v

α (ϕα ∓ ϕα)

}

, (9a)

Sµαϕ̇α =
∂H

∂mα

≈ JS2

{

∑

nα

cα,nα

[

cos(Φv
α − Φv

nα
) mα

−λmnα

]

+ 2nsα[cos 2Φ̃v
α − λ]mα + 2d µαm

2
α

}

. (9b)

These equations could be expressed using square matrix
operators F and M,

ϕ̇α = JS
∑

α′

Fα,α′mα′ , ṁα = JS
∑

α′

Mα,α′ϕα′ .

(10)

One sees that there are solutions with eiωt time depen-
dence, and that the equations separate;

−ω2
[

ϕ
]

= FM
[

ϕ
]

, −ω2
[

m
]

= MF
[

m
]

, (11)

where
[

ϕ
]

and
[

m
]

are column matrices describing the

eigenvector of mode, and ω is the frequency in units of
JS. The frequencies are obtained from the square root
of eigenvalues of the product matrix, MF .

A. Two Rings for Square Lattice

Although it is not too accurate, we can get an idea of
how the VIM behaves by using only two rings, for the

square lattice, as an example. We allow rings (1, 1) and
(3, 1) to be dynamic, while the spins of all rings at larger
radii are held fixed in the directions of the static in-plane
vortex. We also use the unrelaxed in-plane structure, Eq.
(4), for simplicity; the error caused by this approximation
is much smaller than the error due to using such a small
number of rings. Then the matrices M and F become

M =

(

−2As ±2As

±As −As(2 + 2Cs +As ∓As)

)

(12a)

F =

(

2(As + d− λ) −2λ
−λ Bs + 2d− λ

)

(12b)

where the notation, as in Ref.8 is

As =
2√
5
, Bs =

4√
5

(

1 +
1√
5

+
2√
13

)

, Cs = 2
√

13.

(13)

A straightforward calculation of the eigenvalues of matrix
MF can be performed, concentrating on the cases when
the anisotropy is just above critical (δc ≈ 0.2843, dc ≈
0.4011), for either pure exchange anisotropy (d = 0, δ >
δc) or pure single-ion anisotropy (δ = 0 , d > dc). For
both types of anisotropy, and for both the FM and AFM
models, there is one mode found, whose frequency goes
to zero at the respective critical anisotropy. Clearly, this
is the VIM. For anisotropy close to the critical value, we
find that ω has a square root dependence on the deviation
of the anisotropy away from the critical value;

ω/JS = Bd

√

d− dc, ω/JS = Bδ

√

δ − δc. (14)

The coefficients Bd and Bδ in this low approximation are
shown in Table II. The mode’s frequency tends to grow
more quickly with anisotropy for the AFM model com-
pared to the FM model, and also grows more quickly (in
some sense) for exchange anisotropy compared to single-
ion anisotropy. These calculations are next improved by
determining the VIM for an arbitrary number of rings
numerically.

V. NUMERICAL SOLUTION FOR ANSATZ

EIGENMODES

Primarily we are interested in finding the lowest eigen-
mode(s) of Eqs. (10), for some finite number of rings, N ,
which is easily and quickly done by a relaxation method.
A little consideration shows that the matrices A = MF
and AT = FM are not necessarily Hermitian. This
means that it is necessary to consider both the right and
left eigenvectors of A. Consider the eigenvectors for the
out-of-plane motion of a mode labeled by k. We sup-

pose there is a right (column) eigenvector,
[

mk

]

, and a
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left (row) eigenvector with the same eigenvalue, [ km ],
which satisfy,

A
[

mk

]

= −ω2
k

[

mk

]

, [ km ] A = −ω2
k [ km ]. (15)

For the left eigenvectors, we place the subscript k to the
left side to stress that [ km ] is not just the transpose of
[

mk

]

. If both these eigenvectors are known, the eigen-

frequency is obtained easily,

ω2
k = −

[ km ] A
[

mk

]

[ km ]
[

mk

] . (16)

Generally we expect real frequencies, and so the eigen-
values of A are usually negative (except if anisotropy
strength is less than critical, in which case the VIM has
an imaginary frequency.)

A way in which the eigenvectors can be obtained is by
considering A as effecting a time evolution in fictitious
time τ according to

d

dτ

[

m
]

= A
[

m
]

. (17)

From a randomly chosen initial configuration of the ma-

trix
[

m
]

, with overlap ck = [ km ]
[

m(0)
]

on all eigen-

modes, the general solution is simple,

[

m
]

=
∑

k

ck

[

mk

]

e−ω2

k
τ , (18)

as verified by using Eq. (15) and Eq. (17). It is clear that
for large τ , the right eigenvector with the smallest ω2 will
dominate. A similar process can be applied to get the left
eigenvector of the lowest mode, and thus ωk is known
from Eq. (16). We used a standard fourth order Runge-
Kutta time integration scheme with fixed time step ∆τ =
0.04 to produce this time evolution. The choice of time
step is not crucial, but only needs to be small enough to
ensure stability.

To get higher modes, it is only necessary to enforce that

the current eigenvectors [ km ] and
[

mk

]

being found are

orthogonal to all previously found lower states q, apply-
ing the constraints

[ qm ]
[

mk

]

= 0, [ km ]
[

mq

]

= 0. (19)

The Gram-Schmidt orthogonalization scheme was used
to apply this constraint.

Once the eigenvectors for out-of-plane motion are
known, the in-plane fluctuations are determined. By us-
ing Eq. (10) with eiωkt time dependence, we have

[

ϕk

]

=
1

iωk

F
[

mk

]

. (20)

This shows that the in-plane fluctuations are exactly 90o

out-of-phase with the out-of-plane fluctuations. This will

give the correct normalization of
[

ϕ
]

relative to
[

m
]

. In

Ref.,3 the correct absolute normalization has been shown
to be

i
∑

n

(m∗
n
ϕn −mnϕ

∗
n
) = 1, (21)

where the sum is over the original lattice site variables.
Converting this to ring variables leads to the absolute
normalization condition

∑

α

2µα(
[

mk

]

)α(F
[

mk

]

)α = ωk, (22)

where the notation (
[

mk

]

)α indicates the αth component

of column matrix
[

mk

]

.

For this nearest neighbor interaction problem, the ma-
trices M and F are very sparse, there being at most z+1
nonzero elements in each row, where z is the coordination
number of the lattice (z = 4, 3, 6 for square, hexagonal,
triangular lattices, respectively). The number of nonzero
elements in a row is even less than z + 1 for those rows
corresponding to rings with self-interactions. Thus, it is
advantageous in terms of memory and cpu time if only
these nonzero elements are saved, together with their col-
umn locations, which is equivalent to the information in
the near neighbor table. (The matrix is now stored as
a N × (z + 1) array.) Then the speed of matrix multi-
plication by M or by F is significantly enhanced. The
fictitious time evolution in Eq. (17), which requires re-
peated matrix multiplications with A, can be carried out
now by successively multiplying by matrices M and F ,
stored in their compact forms. In this way it is possible
to solve fairly quickly for the modes on rather large lat-
tices (system radius R greater then 50 lattice constants),
and in general the algorithm will be limited by the speed
of the cpu (or patience of the computer operator) rather
than by the available memory.

A. FM Ansatz Spectra

Some typical results from this relaxation scheme for
the three different lattices are presented in Fig. 4. There
we compare the frequencies of the lowest four modes of a
vortex in square, hexagonal and triangular FM systems,
using single-ion anisotropy, and plotting the modes vs. a
reduced anisotropy,

√
d− dc. We compare systems with

similar radii: square lattice with N = 415 (3228 sites),
R = 31.98 (largest ring is (63, 11)), hexagonal lattice with
N = 216 (2460 sites), R = 32.00 (largest ring is (32, 32)),
and triangular lattice with N = 637 (3711 sites), R =
31.97 (largest ring is (34, 22)). For this type of Dirichlet
boundary condition, the lowest mode is the VIM.
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a) FM, square lattice,
   R=32, N=415, δ=0.
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b) FM, hexagonal lattice,
   R=32, N=216, δ=0.
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c) FM, triangular lattice,
   R=32, N=637, δ=0.

FIG. 4. Typical discrete Ansatz calculation of four lowest
modes of FM vortex systems with radius R = 32, for single-
ion anisotropy, on a) square, (N = 415), b) hexagonal N =
216) and c) triangular (N = 637) lattice systems.

For very small reduced anisotropy, the VIM frequency
has an approximately linear behavior as in Eq. (14), but
with the coefficient Bd dependent on the lattice, essen-
tially a result of the different packings. This coefficient
and the VIM frequency decrease for larger R, approxi-
mately as 1/R, indicating that the mode is not localized.
For anisotropy farther away from the critical value, there
is another linear behavior of the VIM frequency on re-
duced anisotropy, with a different slope. Similar results
hold for the case of exchange anisotropy. For the system
radiusR ≈ 32, we show in Table III the fitting coefficients
Bd and Bδ of Eq. (14) in the limit of small single-ion as
well as exchange anisotropy.

For square lattice systems with R ≤ 20, we com-
pared these results with exact diagonalization for the
mode spectrum. The mode frequencies and wavefunc-
tions from the Ansatz calculation are identical with some
of the modes from numerical diagonalization. However,
the diagonalization produces the full spectrum, and in-
cludes certain modes with dependence on azimuthal co-
ordinate χ that are impossible to describe by the Ansatz
(i.e., modes with angular dependence within the rings
themselves, such as the vortex translational modes). For
square lattice systems with R > 20, the diagonalization
scheme is unusable, due to its extreme memory and cpu
requirements, and relaxation schemes must be used.

B. AFM Ansatz Spectra

The AFM model is more interesting than the FM
model to us here, because of the possibility of localized
modes on the vortex, as has been found for the out-of-
plane AFM vortices.4 Also, the AFM continuum limit
equations describing in-plane and out-of-plane spin fluc-
tuations de-couple easily, leading to a clearer analytic
treatment with which to compare the Ansatz results.

We show the AFM Ansatz results, for single-ion an-
isotropy, for the same lattice sizes as used in the FM
calculations, in Fig. 5, and for exchange anisotropy, in
Fig. 6. For anisotropy very close to critical, the VIM is
the lowest mode, while for larger anisotropy, other modes
from the acoustic spinwave spectrum can lie lower than
the VIM. For the AFM, the VIM mode frequency can be
fit extremely well for small reduced anisotropy accord-
ing to Eq. (14). This result is the same as for the FM
model, however, with the important distinction that for
the AFM the parameters Bd and Bδ are essentially inde-
pendent of the system size, except for an extremely small
number of rings. Also, the AFM VIM dispersion relation
is distinctly more linear than that for the FM model,
disregarding the mode crossings. The results are summa-
rized in Table III. The size independence of Bd and Bδ

shows that the VIM here is a truly localized mode, which
we have also confirmed from inspection of the wavefunc-
tions, as well as comparison with the continuum theory
of the next section.
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b) AFM, hexagonal lattice,b) AFM, hexagonal lattice,
   R=32, N=216, δ=0.
b) AFM, hexagonal lattice,
   R=32, N=216, δ=0.

FIG. 5. Typical discrete Ansatz calculation of four lowest
modes of AFM vortex systems with radius R = 32, for single-
ion anisotropy, on a) square, (N = 415) and b) hexagonal
(N = 216) lattice systems.

VI. CONTINUUM AFM NORMAL MODES

A. Square Lattice

For two-sublattice models, the AFM continuum theory
can be formulated12 by writing the spins as

~Sn = ±S
(

sin(Θn ± θn) cos(Ψn ± ψn),

sin(Θn ± θn) sin(Ψn ± ψn), cos(Θn ± θn)
)

, (23)

where here ± refers to the two sublattices, “large” angles
Ψ and Θ describe AFM order, and “small” angles ψ and
θ describe the deviations therefrom (FM order). Then
under the assumptions of low frequencies, small gradients
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sqrt(δ−δc)
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0.8

1.0

ω
/J

S

a) AFM, square lattice
   R=32, N=415, d=0
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0.6
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ω
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b) AFM, hexagonal lattice
   R=32, N=216, d=0
b) AFM, hexagonal lattice
   R=32, N=216, d=0

FIG. 6. Typical discrete Ansatz calculation of four lowest
modes of AFM vortex systems with radius R = 32, for ex-
change anisotropy, on a) square, (N = 415) and b) hexagonal
(N = 216) lattice systems.

∇Ψ and ∇Θ, and ψ � 1 and θ � 1, the equations of
motion for the square lattice from Hamiltonian (1) are13

∇2Ψ − 1

c2
∂2Ψ

∂t2
+ 2 cotΘ

[

∇Θ · ∇Ψ − 1

c2
∂Θ

∂t

∂Θ

∂t

]

= 0,

(24a)

∇2 Θ − 1

c2
∂2Θ

∂t2

− sin Θ cosΘ

[

|∇Ψ|2 − 1

c2

(

∂Ψ

∂t

)2

+ ∆

]

= 0, (24b)

ψ =
1

8JS
csc Θ

∂Θ

∂t
, (24c)
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θ = − 1

8JS
sin Θ

∂Ψ

∂t
, (24d)

where c2 = 8(JS)2 is the long-wavelength spinwave ve-
locity, and ∆ is a generic anisotropy, or gap of the optical
spinwave branch,

∆ = 4δ + 2d. (25)

Now an in-plane AFM vortex has Θ = Θv = π/2, Ψ =
Φv = q tan−1 y/x, with θ = ψ = 0. As in Eq. (5), we
assume small-amplitude oscillations at frequency ω about
this structure, Θ = Θv + ξ, Ψ = Φv + η, and θ 6= 0,
ψ 6= 0 given from Eqs. (24c) and (24d). The linearized
dynamic equations for ξ and η are separated Schrodinger-
like equations:

−∇2ξ + V (r) ξ =
(ω

c

)2

ξ, (26a)

−∇2η =
(ω

c

)2

η. (26b)

The effective potential for the ξ wavefunction is

V (r) = ∆ − |∇Φv|2 = ∆ − 1

r2
. (27)

Here it is interesting to note that exchange (δ) and single-
ion (d) anisotropy enter in the same place, the only dis-
tinction being the different factors of 4 and 2 in the def-
inition [Eq. (25)] of ∆. The two decoupled equations
relate to the optical and acoustic spinwave branches. A
short calculation using Eqs. (23), (24c) and (24d) shows
that in the notation of Eq. (2) the individual sublattices
A and B have the following fluctuations:

φA = Φv + η +
1

8JS

∂ξ

∂t
, mA = −ξ +

1

8JS

∂η

∂t
, (28a)

φB = Φv + η − 1

8JS

∂ξ

∂t
, mB = ξ +

1

8JS

∂η

∂t
, (28b)

Therefore, the field ξ describes a purely optical or AFM
type of motion, while the field η describes a purely acous-
tic or FM type of motion. As seen in (26b), the η field
is not affected by the vortex, has spinwave dispersion
ω = ck, and can produce no bound state.

Next we consider whether there can be a bound state
of the ξ field. The potential (27) diverges negatively at
the origin, suggesting the possibility of a bound state.
In the region far from the vortex, we see that the opti-
cal spinwave branch has a gap in the dispersion relation,
(ω/c)2 = ∆ + k2; we look for modes with (ω/c)2 lying in
the gap. Based on the Ansatz and diagonalization cal-
culations for the VIM, we look for circularly symmetric
solutions, ξ(r, χ) → ξ(r). Then Eq. (26a) can be put into
the form,

[

d2

dx2
+

1

x

d

dx
+

1

x2
− 1

]

ξ(x) = 0, (29)

where x =
√

∆ − (ω/c)2 r. Now unfortunately, the equa-
tion has no natural length scale, and there is no condition
to determine the appropriate eigenvalue, ω, and so there
is no bound state solution. If one chooses a frequency
at the top of the gap, (ω/c)2 = ∆, a mathematical solu-
tion of (26a), ξ(r) ∝ cos ln(r), was mentioned in Ref.,10

but this solution oscillates wildly as one approaches the
origin, and is not a bound state.

The problem is that the effective potential of the dis-
crete lattice problem cannot really diverge negatively, but
instead, must reach a finite limit at the vortex core. Here
we used the function 1/r2 to describe the continuum ver-
sion of |∇Φv|2, but it is clear that on the square lattice,

this quantity cannot get much bigger than (π/
√

2)2 (con-
sider two diagonal sites in first ring near core). There-
fore, we should try to account for this in the continuum
theory, and the simplest ways to do this are either to in-
troduce a cutoff, or, to modify the potential to avoid the
divergence. We consider a small change in the potential:

V (r) =

{

∆ − 1
r2

o

for r < ro

∆ − 1
r2 for r > ro

(30)

where ro is a cutoff parameter. While this is a somewhat
arbitrary modification, it is physically motivated by the
saturation of |∇Φv|2 ∼ 1/r2o near the vortex core, and we

should expect that ro ≈
√

2/π is reasonable.

1. Variational Calculation

Using potential (30) in Eq. (26a), we have essentially
set the length scale to ro. Now one can try a variational
solution, assuming a localized wavefunction,

ξ(r) = e−γr. (31)

We try to minimize the “energy” given by

E = (ω/c)2 =

∫

d2r
[

|∇ξ|2 + V (r)ξ2
]

∫

d2r ξ2
, (32)

with respect to variational parameter γ. A short calcu-
lation leads to the results

E = ∆ −
[

1 − (yo + 1)e−yo

] 1

r2o
≈ ∆ − 0.236

r2o
, (33)

γ =
yo

2ro
≈ 0.4615

ro
, (34)

where yo ≈ 0.9231, is the solution to the integral equa-
tion,

∫ ∞

yo

dx
e−x

x
=

1

4
. (35)

This calculation shows that a bound state is found within
the spinwave gap, although the actual frequency depends
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FIG. 7. Squared VIM frequencies (ω/c)2 vs. anisotropy ∆,
from the shooting solutions of Eq. (26a), using R = 10.0,
Ngrid = 20000, for indicated cutoffs ro.

strongly on the cutoff parameter, ro. Furthermore, it
also recovers a critical anisotropy; the energy becomes
negative and therefore ω becomes imaginary, signaling
an instability of the in-plane vortex, if

∆ < ∆c =
0.236

r2o
. (36)

This gives the respective critical anisotropies,

δc =
1

4
∆c =

0.236

4r2o
, dc =

1

2
∆c =

0.236

2r2o
. (37)

We also see that for ∆ > ∆c, the frequency of this mode
varies as

ω/c =
√

∆ − ∆c, (38)

giving corresponding results for the two anisotropy types,

ω =
√

2 c
√

d− dc, ω = 2c
√

δ − δc. (39)

These are similar in form to the discrete theory, how-
ever, the magnitudes are more than a factor of two too
large. In this continuum theory, although the values of
δc and dc depend on the choice of the cutoff, their ratio
is determined: dc/δc = 2, which is larger than the dis-
crete result, dc/δc = 1.581. Therefore we cannot choose
ro such that both critical anisotropies are simultaneously
matched to the discrete theory. The choice ro = 0.446
results in δc = 0.297, and the choice ro = 0.502 results
in dc = 0.469. These cutoffs are comparable to the ex-
pected value of

√
2/π = 0.450, however, they are some-

what larger than the typical cutoff of ro ≈ 0.22 one gets
by fitting the energy of the in-plane vortex on a lattice
to the continuum form, Ev = π ln(R/ro), where R is the
system radius14.

2. Numerical Shooting Solution

The variational solution required a guess for the form
of the ξ wavefunction. Here we consider a numerical solu-
tion of Eq. (26a) by a shooting method, using the poten-
tial with the cutoff, Eq. (30). The method is standard,15

and requires as an input the number of grid points Ngrid

from r = 0 to the maximum radius r = R, as well as
the generic anisotropy ∆ and cutoff ro. For the inte-
gration of the differential equation, we separated it into
two first order equations, and used a fourth order Runge-
Kutta scheme, with the boundary conditions, ξ(0) = 1,
ξ(R) = 0.

In Fig. 7 we show some typical values of (ω/c)2 vs.
∆ for various ro, using R = 10.0 and Ngrid = 20, 000.
There is a linear relationship between (ω/c)2 and ∆. It is
simply a consequence of the linear dependence of V (r) in
Eq. (30) on ∆. From these results, we once again recover
the critical anisotropy where (ω/c)2 goes to zero, and
can again write the general result as in Eq. (38), where
to fairly high precision, the values of critical anisotropy
are found to be inversely proportional to the square of
the cutoff,

∆c =
0.25777

r2o
, (40)

and δc = ∆c/4, dc = ∆c/2. This shows that the
variational calculation was fairly reliable. The eigenfre-
quencies here are also given by Eq. (39). This trans-

lates into the coefficients, Bd =
√

2c/JS = 4, and

Bδ = 2c/JS = 4
√

2, as defined in (14). Once again, the

the continuum result for ω (with factor of c =
√

8JS) is
about two times larger than that found from the discrete
lattice calculations, see Table III.

To try to see why there is this discrepancy, we show
in Fig. 8 a comparison of the ξ wavefunction obtained
from the shooting solution, with that obtained from the
discrete solution. We adjusted the cutoff ro to a value
that gives the correct dc for δ = 0, and show the case
d = 0.50. Surprizingly, the two results agree very well.
The primary difference is simply that the discrete solu-
tion points cannot cover enough of the continuum curve,
especially near the origin, where the continuum solution
is largest. It appears that the discrepancy really is a
result of the limited ability of the continuum limit to
describe the static vortex spin field near the vortex core.

B. Hexagonal Lattice

It is instructive to compare these results with simi-
lar continuum limit calculations on the hexagonal lat-
tice. For the two-sublattice hexagonal lattice, a parame-
terization of the spins as in Eq. (23) will lead to contin-
uum equations similar to those in (24), but with modified
generic anisotropy, or gap ∆, and spinwave velocity c.
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FIG. 8. Comparison of ξ(r) wavefunction for the AFM VIM
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[
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(circles). We

used δ = 0, d = 0.50, where dc = 0.4689.... The shooting
used Ngrid = 20000, R = 10.0, ro = 0.52424 (to give correct
discrete dc). The Ansatz solution is for N = 43 rings.

The effective Schrodinger-like Eqs. (26) and the shoot-
ing solutions presented in Fig. 7 also still apply. Thus
it suffices for our purpose here to determine the effective
∆ and c from the AFM spinwave dispersion relation for
the hexagonal lattice, in the absence of a vortex. A short
standard calculation shows that for discrete wavevector
q, the spinwaves have the following two-branch disper-
sion:

(ω

c

)2

= 2

[

1 +
2

3
d− (1 − δ)|γq|2 ± (δ +

2

3
d)|γq|

]

, (41)

where c = 3√
2
JS is the spinwave velocity at the isotropic

limit, and

γq =
1

3

∑

a

exp (iq · a), (42)

with hexagonal near neighbor lattice displacements a =

(0,−1), (
√

3
2 ,

1
2 ), (−

√
3

2 ,
1
2 ). At long wavelengths, q � 1,

the two branches have continuum dispersion relations:

(ω+

c

)2

= 4δ +
8

3
d+ (1 − 3

2
δ − 1

3
d)q2, (43a)

(ω−

c

)2

= (1 − 1

2
δ +

1

3
d)q2. (43b)

Therefore the appropriate gap is ∆ = 4δ+ 8
3d, with rather

unexpected coefficients on the two anisotropy types. Ap-
plying Eq. (38), this then implies the frequency coeffi-

cients, Bd =
√

8/3c/JS = 2
√

3, Bδ = 2c/JS = 3
√

2.

These are compared with the discrete Ansatz results in
Table III. This continuum approach again overestimates
these frequency coefficients, although the discrepancy for
the hexagonal lattice is less than that appearing for the
square lattice.

VII. DISCUSSION AND CONCLUSIONS

We have described an Ansatz for certain spinwave
modes in the presence of a magnetic in-plane vortex. This
Ansatz essentially gives the exact eigenfrequencies of the
VIM modes for the three types of lattices discussed. We
were able to determine the frequency behavior of this
mode for anisotropy strengths greater than those neces-
sary for stabilizing the in-plane vortex. In particular for
the AFM model, the VIM mode frequency ω/JS exhibits
a linear dependence on the reduced anisotropy

√
d− dc

or
√
δ − δc over a fairly large range of anisotropy. In the

FM model the VIM frequency has a linear dependence on
reduced anisotropy only over a very limited range, and
in fact, appears to be composed of two separate nearly
straight segments. The fitting coefficients Bd and Bδ [Eq.
(14)] for the FM model decrease with increasing system
size, which reflects the fact that the FM VIM mode re-
ally is not localized on the vortex, but instead, is spread
over the entire system (quasi-local). For the AFM VIM
mode, these coefficients are quite independent of the sys-
tem size, demonstrating that the mode is indeed localized
on the vortex. However, the continuum theory gives con-
siderably larger values for these coefficients of the AFM
model, for both the square and hexagonal lattices. We
do not presently have a good understanding of the rea-
son for this, but suspect that it only reflects the fact that
continuum theory is poor at describing the spin fluctua-
tions near the vortex core, where the usual replacement
of differences by continuous gradients is very inaccurate.

The introduction of a cutoff parameter ro into the con-
tinuum theory was necessary to produce a mathemati-
cally well-behaved solution, however, there is no a priori

device to choose this cutoff. This is unfortunate since the
choice of the cutoff determines the critical anisotropies of
the continuum theory, however, the cutoff plays no role
in determining the coefficients Bd and Bδ. The latter are
determined only by parameters of the spinwave disper-
sion: the spinwave velocity and the gap as a function of
the anisotropies, and for this reason they offered a good
way to compare the continuum and discrete results.
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TABLE I. Critical anisotropies from Ansatz using
N = 1200 rings.

Lattice δc dc

square 0.29659050564 0.46896252032
hexagonal 0.16704411814 0.22120912667
triangular 0.38714358619 0.83911886856

TABLE II. Approximate VIM frequency coefficients [Eq.
(14)] for square lattice using N = 2 rings.

Model Bδ Bd

FM 1.64 1.38
AFM 2.29 2.01

TABLE III. Weak anisotropy VIM frequency coefficients
[Eq. (14)] for radius R = 32, as described in the text.

Model Bδ Bd

FM (sqr) 0.66 0.45
FM (hex) 0.39 0.32
FM (tri) 1.07 0.60

AFM (sqr) 2.45 2.15

AFM (sqr cont.) 4
√

2 ≈ 5.66 4
AFM (hex) 3.04 2.71

AFM (hex cont.) 3
√

2 ≈ 4.24 2
√

3 ≈ 3.46
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