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Abstract

Critical easy-plane anisotropies where in-plane magnetic vortices in two-dimensional
Heisenberg models are stabilized are determined precisely on square, hexagonal and
triangular lattices, by finding the anisotropy that leads to a zero frequency mode.
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Introduction— It is known from simulations[1–3] and analytic calculations[4]
that magnetic vortices in two-dimensional(2D) Heisenberg models with easy-
plane anisotropy exhibit an instability that depends on the anisotropy strength.
Here we discuss a method to compute very precisely the critical anisotropy
that is necessary to stabilize a vortex to have purely in-plane (xy) spin com-
ponents, for square, hexagonal and triangular lattices. This calculation relies
on making an exact summation over spin degrees of freedom on a lattice, and
analyzing when the in-plane vortex has a zero frequency mode that leads to
evolution of nonzero spin components out of the easy plane (out-of-plane vor-
tex). Rough estimates of only the critical exchange anisotropy were obtained
earlier[4] by analyzing the spins within a small-radius core of the vortex. Sim-
ilar to a calculation of vortex energy by Zaspel et al.[5], we now make the
required summations to any desired radius, obtaining both the exchange and
single-ion critical anisotropies in the infinite sized limit.

The Model— We consider 2D lattice models with easy-plane (XY) anisotropy
of exchange type (dimensionless parameter δ≥0) and of single-ion type (di-
mensionless parameter d≥0), with Hamiltonian:

H = J
∑

n

{

∓1
2
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[

~Sn · ~Sn+a − δSz
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n+a

]

+ d(Sz
n
)2

}

, (1)
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where J>0, subscript n labels the lattice sites and subscript a labels the set
of displacements to the nearest neighbors. Upper and lower signs correspond
to ferromagnetic (FM) and antiferromagnetic (AFM) models, respectively.

In terms of in-plane angle φ and out-of-plane component m = Sz/S, ~Sn =

S(
√

1 − m2
n

cos φn,
√

1 − m2
n

sin φn, mn). Then for an in-plane FM vortex with
vorticity q = ±1 located at the origin, Sz

n
= 0 and φo

n
= Φv

n
, where the static

vortex angles Φv
n

satisfy the discrete lattice Laplace-like equation,

∑

a

sin(Φv
n
− Φv

n+a
) = 0. (2)

We solved this equation by first setting the angles to their continuum vor-
tex values, Φv

n
= q tan−1 y/x, and then iteratively setting each spin’s xy-

components to point along the direction of the effective field due to its neigh-
bors. This results in small differences of the discrete solution from the con-
tinuum result that is usually used, especially near the vortex core. For AFM
vortices, φo

n
is modulated according to the sublattice l that site n lives in.

Letting Φl = 2πl/L, where L is the number of sublattices (L = 2 for square
and hexagonal lattices, L = 3 for triangular lattice), and l = 0, 1, ...(L − 1),
the AFM vortex has in-plane component φo

n
= Φv

n
+ Φln . The ln are assigned

such that that no neighboring sites have identical values. However, frustration
makes consideration of out-of-plane vortex structure and calculation of criti-
cal anisotropy impossible for the triangular lattice. Thus the AFM model is
considered only on square and hexagonal lattices.

Now we consider simple ways in which the spins in the vortex structure perform
small-amplitude oscillations ϕ and m,

φn = φo
n

+ ϕn, Sz
n

= Smn. (3)

and seek any mode of vibration whose frequency drops to zero, signalling an
instability of the original vortex structure. The Hamiltonian in terms of these
perturbations is

H = JS2
∑

n

{

∓1
2

∑

a

[
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1 − m2
n

√

1 − m2
n+a

cos(φo
n
− φo

n+a
) cos(ϕn − ϕn+a)

+λmnmn+a

]

+ dm2
n

}

, (4)

where λ ≡ 1 − δ is the relative coupling of the Sz components.

The simplest motion to consider is one where the perturbations ϕ and m
depend only on the radius rn of site n from the vortex center, with no explicit
dependence on the angular position of the sites. It is this kind of motion that
has already been seen in the mode responsible for the vortex instability[6,7].
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Fig. 1. Ring coordinates (i, j) for square lattice. The vortex center is denoted by *.
Solid circles indicate the sites needed to identify the rings, with other sites of a ring
obtained by appropriate reflections and rotations. Rings on the solid lines have half
as many sites as other rings. Dotted lines indicate ring (exchange) self-interaction.

Instead of supposing that ϕ and m depend on the radius r, we make the
Ansatz that they depend on what we will call here shells or “rings”, where
the sites belonging to a given ring are all at the same radius, and in addition
to this, they can be mapped into each other by symmetry operations which
depend on the lattice. The FM Ansatz is to assume that all sites on a given
ring have the same perturbations ϕα and mα, completely in phase. For the
AFM Ansatz on square and hexagonal lattices, it is assumed that sites on the
same sublattice on a ring move in phase, with the same ϕα and mα, while the
other sublattice is exactly out of phase with this, having perturbations −ϕα

and −mα. To further define what we mean by these rings, it is necessary to
consider square, hexagonal, and triangular lattices separately.

Square Lattice—With the vortex placed at the origin (0,0), lying at the center
of a unit cell, the sites of the lattice have coordinates (x, y) = (a

2
i, a

2
j), where

a is the lattice constant and i and j are odd integers (Fig. 1). When i = j
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Fig. 2. Ring coordinates (i, j) for hexagonal lattice, notation as in Fig. 1.

(on solid line in Fig. 1), then the four sites (x, y) = a
2
(±i,±i), related by

reflection operations through the x and y axes, comprise the ring (i, i). When
i 6= j, then the eight sites, (x, y) = a

2
(±i,±j), a

2
(±j,±i) related by reflections

through the x,y axes and through the (11) directions, comprise the ring (i, j).
In general, a given ring α can be uniquely denoted by the pair α(i,j) ≡ (i, j),
with i > 0, j > 0, and i ≥ j. Different rings may have identical radii, such
as rings (5, 5) and (7, 1), but we still consider them as independent variables.
In this way there is actually some angular dependence that can occur in the
normal mode, since the sites in equal radii rings lie in different directions.
All defined rings either have four or eight sites, and we denote the number of
sites in a ring by µ(i,j) = 8− 4δi,j. For expressing the perturbed energy of the
vortex in terms of the ring variables, we also define a variable, cα,α′ , which
is the number of bonds between the rings α and α′. For the square lattice,
cα,α′ = 8 between any two neigboring rings and zero otherwise. Also, rings
with j = 1 always have 4 internal bonds (ring self-interaction, dashed lines in
the Fig. 1).

Hexagonal lattice— Using appropriate orthogonal x and y axes (Fig. 2), the
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Fig. 3. Ring coordinates (i, j) for triangular lattice, notation as in Fig. 1.

hexagonal lattice sites are located at (x, y) = (
√

3
2
i, 1

2
j)a, where i and j are

integers such that (i + j) is even and j is not equal to zero nor equal to any
multiple of 3. When i = j (on solid line in Fig. 2), there are six sites at the
same radius, all related to each other by 60o rotations, comprising a ring.
When i 6= j, there are twelve sites at the same radius, related to each other
by 60o rotations together with reflections through the line i = j, and these
sites also comprise a ring. So in general a pair α = (i, j) under the above
constraints together with i > 0, j > 0, i ≥ j always falls in the first 1/12 of
the full circle, and can be used to denote a ring. The number of members of
each ring is µ(i,j) = 12 − 6δi,j , and the number of bonds between neighboring
rings is cα,α′ = max[µα, µα′ ]. As in the square lattice, rings with j = 1 have 6
internal bonds or self-interactions.

Triangular lattice— Again with orthogonal coordinate axes as in Fig. 3, the
triangular lattice sites are located at (x, y) = ( 1√

3
+

√
3

2
i, 1

2
j)a, where i and j

are integers such that (i+j) is even. Starting with any site, the other members
of its ring are obtained through 120o rotations together with reflection across
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the x-axis. So a pair α = (i, j) under the above constraints together with
i ≥ 0, j ≥ 0, giving y ≤

√
3x, always falls in the first 1/6 of the full circle, and

can be used to denote a ring. The rings with j = 0 and those with j = 3i + 2
(y =

√
3x) (on solid lines in Fig. 3) have number of sites µα = 3 (these rings lie

on the boundaries of the first 1/6 of the full circle); all other rings have µα = 6.
The number of bonds between neighboring rings is cα,α′ = max[µα, µα′], except
when α or α′ is the smallest ring, in which case cα,α′ = 6. Rings with j = 1
and rings with j = 3i have 3 internal bonds.

The dynamics— The Hamiltonian is expressed in terms of the ring variables
by considering how the rings interact with each other. For example, in the
square lattice, a ring α(i,j) interacts with the rings containing the sites (i ±
2, j ± 2); there are similar simple neighbor relations for the other lattices. We
use nα to represent the rings that are neighbors of ring α. As noted above,
certain rings also have a number n of internal interactions, where n = 4, 6,
and 3 for square, hexagonal and triangular lattices, respectively. Therefore
we define sα ≡ 1 for rings with self-interaction bonds and sα ≡ 0 for those
rings without self-interaction bonds. Assuming that sites on a given ring all
move either in-phase (FM model) or in-phase for each sublattice, and out-of-
phase between sublattices (AFM model, square and hexagonal lattice only),
then the Hamiltonian can be rewritten as H = Hint + Hself , where the terms
corresponding to interactions between rings, and self-interactions within rings
are

Hint = −1
2
JS2

∑

α

∑

α,nα

cα,nα

[
√

1 − m2
α

√

1 − m2
nα

cos(Φv
α − Φv

nα

) ×

cos(ϕα ∓ ϕnα
) + λmαmnα

]

, (5)

Hself = −JS2
{

∑

α

n sα

[

(1 − m2
α) cos 2Φ̃v

α cos(ϕα ∓ ϕα) + λm2
α

]

−d
∑

α

µαm2
α

}

. (6)

The Φv
α indicate Φv at the site defined by α = (i, j); the unperturbed vortex

angles at the other sites in the ring are obtained by appropriate rotations.
The related angles needed for the ring self-interactions, Φ̃v

α, are identical to
Φv

α except for the triangular lattice rings with j = 3i, where Φ̃v
α ≡ Φv

α + 2π/3.
To obtain Hself we used the fact that at the lattice sites such as (i, 1) and
(i,−1) in the square lattice, for instance, which is a bond within one ring,
the values of Φv differ in sign while ϕ values are either equal (FM Ansatz,
upper signs) or exactly opposite (AFM Ansatz, lower signs). This argument is
modified for the j = 3i triangular lattice rings because the bond involved in
this interaction that crosses the x axis is only obtained from a 2π/3 rotation
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of the site (i, j).

We obtain the dynamics from the Lagrangian in terms of the ring variables,

L = S
∑

n

φ̇nmn − H = S
∑

α

µαϕ̇αmα − H. (7)

Euler-Lagrange variation with respect to the ring variables followed by lin-
earization in ϕ and m leads to equations of motion:

Sµαṁα = − ∂H

∂ϕα

≈ −JS2
{

∑

nα

cα,nα
cos(Φv

α − Φv
nα

) (ϕα ∓ ϕnα
)

+2nsα cos 2Φ̃v
α (ϕα ∓ ϕα)

}

, (8)

Sµαϕ̇α =
∂H

∂mα

≈ JS2
{

∑

nα

cα,nα

[

cos(Φv
α − Φv

nα

) mα − λmnα

]

+2nsα[cos 2Φ̃v
α − λ]mα + 2d µαm2

α

}

. (9)

Only the equation for ϕ̇α depends on the anisotropies, and it is only that
equation (9) that is needed to determine the critical values. As Eq. (9) is the
same for FM and AFM models on square and hexagonal lattices, their critical
anisotropies are the same. These equations could be re-expressed in a matrix
form,

ϕ̇α =
∑

α′

Fα,α′mα′ , ṁα =
∑

α′

Mα,α′ϕα′. (10)

Combining these, it is clear that there exist solutions with eiωt time depen-
dence, whose frequencies are given by the square roots of eigenvalues of the
product matrix, F ·M. A soft mode therefore will occur if either of these ma-
trices has a zero determinant. Thus, locating where the determinant of matrix
F becomes zero gives the critical anisotropies. This was done by using the
secant method to adjust either δ or d in order to zero the determinant, with
the other anisotropy parameter held fixed.

Numerical results— We found the critical value of exchange anisotropy δc for
d = 0, and the critical value of single-ion anisotropy dc for δ = 0, as shown
in Tables I–III, for systems using N rings, with radius R. For these lattices
with a large number of rings N ≈ 1000, the critical anisotropies converge to
asymptotic limits with precisions of more than 10 digits. These values agree
with ones found by applying an iterative relaxation scheme[6,7] to the xyz
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Table 1
Square lattice critical anisotropies for N rings.

N R/a δc dc

1 0.7071 0.10557280900 0.10557280900

2 1.5811 0.27446539019 0.38843887462

3 2.1213 0.28643238165 0.42478912981

10 4.5277 0.29656481620 0.46833961304

50 10.700 0.29659060442 0.46896265300

200 22.102 0.29659050706 0.46896252233

800 44.637 0.29659050565 0.46896252034

1200 54.777 0.29659050564 0.46896252032

Table 2
Hexagonal lattice critical anisotropies.

N R/a δc dc

1 1.0 0.0 0.0

2 2.0 0.1307376318148 0.1561467541400

3 2.6457 0.1601968462747 0.2057106580230

5 4.0 0.1656106696448 0.2172002774585

10 6.0828 0.1670109518547 0.2210532692993

50 14.731 0.1670441181236 0.2212091262411

100 21.517 0.1670441181407 0.2212091266671

200 30.610 0.1670441181409 0.2212091266675

400 43.589 0.1670441181409 0.2212091266675

spin components of the vortex, similar to that used to solve Eq. (2). For
anisotropy strengths less than these values, Eqs. (10) possess an imaginary
frequency eigenmode and the assumed planar vortex structure is unstable
towards formation of an out-of-plane vortex. For anisotropy strengths larger
than the critical values there are only real frequency eigenmodes and the
planar vortex structure is stable. Generally, within the above Ansatz, we can
determine exactly the structure and frequency of the mode associated with the
vortex instability. For the square lattice model, with anisotropy greater than
critical value, the wavefunction described by this Ansatz agrees exactly with
that found by numerical diagonalization for planar vortices on small lattices,
showing that the Ansatz and critical anisotropies are exact; details will be
reported in a future work.
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Table 3
Triangular lattice critical anisotropies.

N R/a δc dc

1 0.5773 0.055088817003 0.055088817003

2 1.1547 0.284806466706 0.431315777709

3 1.5275 0.371940464706 0.721444433674

10 3.5119 0.387061576109 0.835881781969

50 8.5049 0.387143616872 0.839118755870

200 17.673 0.387143586629 0.839118869127

800 35.921 0.387143586190 0.839118868570

1200 44.061 0.387143586186 0.839118868564
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