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Abstract

We propose a collective variable ansatz for a system of N extended. but finite.
non-linear excitations in magnetic systems. In contrast to earlier approaches.
where the interactions between the different excitations have been treated
only through an external force term. we explicitly consider a dependence of
the microscopic spin field on all the coordinates and velocities of the local-
ized objects. This leads to X' coupled equations of motion with parameters
{mass and gyvro tensors) which explicitly depend on the mutual distances of
the excitations. We apply this ansatz to vortices in two-dimensional Heisen-
berg ferromagnets with weak easy-plane anisotropy. For vortex pairs we find
either rotational or translational mmintrq, with an additional cvelotron-like
oscillation on top of the main trajectories. Due to the interactions between
the two vortices we obtain two different eigen-values of the mass and gvro
tensors with values depending on the distance between the t'nrliu:ies. their vor-
ticities, and the sign of their out-of-plane structures. In contrast to the single
vortex mass. which depends logarithmicallv on the system size L. we find
two-vortex masses, which are independent of L. but depend on their mutual
distance. These predictions are in good qualitative agreement with numerical
simulations of the complete spin systems. However, since these simulations
are performed at zero temperature, where the vortex pairs extend through-

out the whole system. we observe a strong influence of the boundaries on the




absolute values of the masses.
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I INTRODUCTION

Non-linear excitations play an important role in many different areas of physics, which
has led to an increasing interest in these objects in the last 30 vears'?. Unfortunately, only
a few non-linear systems - most of them one-dimensional (1d) - can be treated exactly.
In general one has to develop approximate methods to understand the dynamics of these
systems. For the case of well-localized non-linear excitations collective variable approaches
have been proven quite successful for many applications®. In these approaches, the non-linear
excitations are treated as particle-like structures (on a mesoscopic length scale) with well-
defined positions and velocities. Even their interaction with the surrounding fluctuations
can be incorporated to some degree'”.

Magnetic systems are particularly useful for studying non-linear phenomena. because (i)
they allow for many different non-linear excitations, e.g. domain walls. vortices, bubbles,
etc.. depending on the form of the mutual interaction of the magnetic moments and with
applied external fields: (i) theyv can be mapped. at least in the 1d case. for some limiting cases
onto completely integrable svstems: (iii) they are relatively easy to simulate on computers,
even for physically relevant svstem sizes. i.e.. larger than the characteristic length scales of
the quantities under investigation.

We will focus here on 2d magnetic svstems which can show. due to their intermediate
dimensionality. a quite genuine dynamical behavior®. For example. Heisenberg magnets
with XY- or easy-plane symmetry (i.e. the interaction of the =-components of the spins is
smaller than the one between the other components) exhibit a “topological” phase transi-
tion. related to the unbinding of vortex-antivortex pairs above a critical temperature Trr,
which can be observed only i 2d systems™ . Vortices are topological. non-linear excitations
characterized by a charge ¢. The impact of vortex-antivortex pairs below Ty on the spin
dynamics, as measured e.g. by dynamical correlation functions. leads only to a renormal-
ization of the spin wave peak'™. Above the transition temperature. however. the unbound

moving vortices contribute to an additional central peak which has been observed both in
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computer simulations'' and neutron scattering experiments on quasi-2d materials'®, Ana-
Ivtic calculations by Mertens et al.'? predicted a quadratic Lorentzian shape of this central
peak. In this approach the free vortices were considered to move ballistically with a Boltz-
mann velocity distribution characterized by an average thermal speed Upmy. The thermal
speed was estimated by Huber'! from a velocity auto-correlation function based on a vor-
tex equation of motion which was derived by Thiele!® using a collective variable approach
for localized structures in maanets. This calculations of Urms. hOwever. did not take into
account the presence of different vortex structures for different strengths of the easy-plane
anisotropy. Moreover. Thiele's approach is for a single. well-localized excitation only, while
its interactions with other excitations are treated through an external force term.

Vortices. however. have an infinitely extended static in-plane structure which also results
in an extended perturbation of the static out-of-plane structure in the case of finite velocity.
Though the superposition of the static in-plane structure of two vortices can be represented
as a central force between their centers™. this is no longer true for the superposition of their
velocity-induced out-of-plane structures. These corrections to the static vortex structure
show up in the calculation of the mass and the gyro tensor of the Thiele equation and suggest
that the single-vortex approach is no longer sufficient for an understanding of many-vortex
dynamics. For finite temperatures the vortex size becomes finite due to screening'® (i.e. its
structure is now localized ). and a collective variable approach seems to be appropriate to
construct equations of motions for the vortex dvnamics. However. as long as vortex radii
are not much smaller than their average separations we still have to include the effects of
the overlapping fields in understanding the many-vortex dynamies.

We introduce here a collective variable approach for N non-linear excitations in magnetic
systems. We derive N coupled equations of motion. each one of them similar to the original
Thiele equation. but with additional inertial terms. resulting from an explicit dependence
of the microscopic spin field on the vortex velocities. We then consider explicitly vortices
in 2d easy-plane ferromagnets. which. for small anisotropies. already have statically a well-

pronounced out-of-plane struture. Hence. each of them is characterized by two independent
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“charges”. namely its vorticity g and the sign of its static out-of-plane component p. We use
approximate solutions'” to calculate the mass and gvro tensors of this system. which now
become functions of the mutual vortex distance, The discussion of the dvnamics becomes
simplest for two vortices: they either rotate around each other (¢'p' = ¢*p?). or thev move
parallel to each other (¢'p' = —¢*p*). with an additional small evelotron-like oscillation on
top of these trajectories. Due 1o the two-vortex corrections of the mass and gVIo tensors
this dynamics is now determined by two different masses which influence the amplitudes and
frequencies differently for the various cases. This is in contrast to the one-vortex calculations,
where one expects only one vortex mass. Comparison with numerical two-vortex simulations
show good qualitative agreement with most of our analytic predictions. However. because
we necessarily performed the simulations on a finite lattice at zero temperature. we also
find an influence of the houndaries on the vortex parameters. which in some cases. is quite
strong.

The paper is organized as follows: In Section 2 we will briefly review the original approach
of Thiele which led to an equation of motion for a single vortex. We also include a short
dicussion of a generalization of this ansatz including inertial effects which finally lead to a
vortex mass. In Section 3 we generalize the Thiele ansatz to a set of N localized magnetic
structures. An application of these results to vortices in easy-plane Heisenberg ferromagnets
ise demonstrated in Section 4. In Section 5 we discuss the special case of just two vertices,

and briefly compare our analytic results with numerical simulations. Section 6 contains a

short summary.

[I. SINGLE-VORTEX EQUATION OF MOTION

We will consider here magnetic systems which are described by the Landau-Lifshitz

equation (LLE) with an additional Gilbert damping term

; §H ;
S—Sx(—ﬁ—s—-)—ﬂSHS. (1)




S is a classical magnetization vector in units of . H is the energy of the system. and a
Is a measure of the strength of the damping term. Eqn. (1) preserves the length of the
spins, hence we can parametrize the vector S(r) with two canonically conjugated fields, the
in-plane angle &(r) and the =-component of the spin field m(r) = S.(r) = Ssinf(r} with

the out-of-plane angle 8(r):

S = (VS —micoso. V5 — m?sing, m). (2)

Starting from Eqn. (1) Thiele!'* has derived an equation of motion for a single. well-
localized excitation with center position X(¢) under the assumption of steady-state motion

(i.e. S(r.t)=S(r — X(t)) and X = const. ). we refer to this as the Thiele-equation (TE)

F+gxX-DX=0, (3)
where. for a 2d svstem.
F = —fd*rvﬁ. (4a)
g = [til!'V:::x"n._’m. (4b)
D=aq .[{I"f' {TT;%% 4 (&2 -—r?iz:l‘-._"crr?ﬂ}. (4c)

F is the net force on an excitation due to other excitations or external fields. H is the
energy density of the system. the gyrovector g is a topological invariant for the svstem as a
whole. D is the damping matrix. and ¥ is the gradient with respect to r.

This approach was applied to single vortices in 2d easy-plane Heisenberg ferromagnets!#1%

(HFM) with Hamiltonian
= E:*fd"r {{‘FS‘,II + 44572 ,_,J{T,’S:]?} (3)

{which is the continuum limit of the discrete model H = Lcijs(8i8; — 6(8.)i(5:);)). 0 <

4 < | measures the anisotropy of the system with the two limiting cases § = 0 and 6 = 1

f




corresponding to the isotropic and planar Heisenberg models. respectively. Depending on
d there exist two tyvpes of stable vortex structures with distinct dynamics'™? For §2 4.
(= 0.29 on a square lattice) static vortices are purely in-plane: for § < 4. an out-of-plane
component develops. The size of this % compenent increases with decreasing 4, allowing for
a continuous crossover 1o the isotropic Heisenberg limit. where the topological excitations
are instantons and merons rather than vortices. A single static vortex at position X(t) =

(N1..X2] (lower indices denote the vector components) has the form!™

o,{r—X}:qarrlau%_—':,"‘: m,(r — X) = pmgl|r — X]|). (6)
" o b I

where mqglr) has a well-localized peak at r = 0. while its large-r limit is given by

r .
mglr) = 1!}—.16‘_"‘“' (7)

with the vortex core radins ¢, = ';x/:—l-: (Fig. la). For 6 < 4. the so-called polarization
p = £l denotes the sign of the static out-of-plane structure. while p=0ford > 6. This
static structure becomes distorted when the vortex is moving and in lowest order in velocity
this change in its shape j<!”

c-..:r—X:};[r =;H';11|I'—K|]{r_x}.x

T__—K-[—. C‘J{rj = KNmop(r). (Ba)

x][u—x]x}'{]-e:

n(r — Xlx.l=f.‘f"'r‘ﬂfr— r—XJ?

(8b)

with A = 3% and €' = (46J5%)7. The velocity-induced change in, the in-plane field is
as equally localized as the static out-of-plane structure, The change in m(r). on the other
hand. is decaying onlv as -} lie, mr 2 1) 2 1). Close to the core its structure is shown
in Fig. 1b. Since the main part of the angular anisotropy is evidently to be covered by the
cross product (r— X) » X. we will simplify our following calculations by assuming ra to be
a function of the radial coordinate r alone. This angular dependence of m,(r) is not only
observed for a single moving moving vortex. Simulations of vortex pairs exhibit an angular

dependence of the spin field which, in first and dominant order. can be well described by
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a linear superposition of single vortex contributions. Hence. we are confident that a use of
this symmtery in the two-vortes integrals in Sect. 4 is appropriate.

Inserting (6) and (2) into (4) (witha =0) vields an equation of motion which can quite
successfully describe the vortex dvnamics with (sufficiently strong) damping, as was shown
explicitly through numerical simulations of the LLE for two vortices!®, However. if we set
the damping parameter o = (. the TE no longer makes sense for in-plane vortices (4 > §,),
because here the gyro vector vanishes and and F need not be zero. It is interesting to
consider why the TE is invalid for in-plane vortices. The difficulty stems from the fact that
the =-component is zero for the static vortex. and then changes appreciably (in a relative
sense) with velocity. Thus. the basic assumption of a fixed vortex shape that simply makes
a rigid translation is strongly violated. This problem is smaller for the out-of-plane vortices
hecause the velocity dependent changes in m are small compared to the static out-of-plane
structure. Nevertheless. the TE cannot explain why out-of-plane vortices perform small
oscillations around their mean trajectories as observed in computer simulations with small
or zero damping (see below).

Wysin et al.? therefore proposed a more general ansatz for the spin field where the

time dependence enters explicitly not only through the vortex position. but also through its
velocity:
S = S(r — X(t).X()). (9)

Inserting (9) into (1) and following the procedure of Thiele leads to the generalized Thiele

equation (GTE)
F+gxX=MX. (10)

where F and g are defined in (4). while M is an effective mass tensor with components

do dm do dm
177 T B (sl SRS ik TS ; 11
J f : (3.1".‘ 5‘.\.} f}.\'_,' t}'rr) { )

Because of the dependence of the fields on r — X we can rewrite the gradients in M. D,

and g into gradients with respect to X ( 5 = —3x ). This form of the mass tensor and
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gyro vector (i.e. a pure dependence on gradients of the fields with respect to the collective
variable X can also be obtained by using the more generalized ansatz S = S(r; X. X), if
one immediately uses the gradient with respect to X in the Thiele ansatz. This fact will
allow us to generalize Thiele's ansatz to more than one excitation (see Sec, 3).

For a single vortex system the mass tensor is diagonal: M,; = Mod;; with M, given in
Egn. (18a). Since we do not know the exact form of the field m(r). we can try to determine
the mass through numerical simulations of the complete spin system (the gvro vector can
be easily evaluated analytically. giving g = 27gpe.). Without an external field the force
F is zero and the vortex is expected to perform a circular motion with angular frequency
. = . However. this is difficult to test by direct numerical simulations: Because the
LLE (1) is of first order in time we need the exact shape of a moving vortex as an initial
condition. But this shape i known only in the continuum limit and only far away from
the vortex center. The situation is more favourahle for a two-vortex system. where the
two vortices drive each other. leading to a steady-state motion after a short transient time
of adaption to the lattice. Because of the extended structure of the vortices their mutual
interaction is not only described hy a central force™. but also by a renormalized mass tensor
and gyvro vector. A generalization of the single-structure collective variable ansatz to many

excitations will be performed in the following Section.

III. GENERALIZATION TO N LOCALIZED EXCITATIONS

The equation of motion derived in the previous Section describes only the dynamics of a
single localized structure. though the influence of other similar excitations can be included in
the external force term. With this strategy. however. one will neglect important informations
about the parameters given as integrals over the spin field (i.e. the gvro and mass tensor).
Especially. one would expect the appearance of two-center integrals representing the mutual
influence of different excitations on each other. To include all these effects for a system with

A well-localized excitations we will in this Section generalize the modified Thiele ansatz (9)



further. supposing an explicit dependence of the spin field on all the positions X°(¢) and

velocities }'{“{t',i. =1, N
S(r.t) =S(r X', . XV X!1,... XY) (12)

(the upper indices alwavs denote the different excitations). To derive equations of motion

for the collective variables X" we will make use of the canonical equations of motion for the

total time derivatives of the fields o and m:

do Sif ﬂﬂ i) dﬂ‘ = Jﬂ
E'%"‘f }"fjj Z‘uldtﬂ—ﬂ (13a)
dm , dm 2g Om M
dt & nf E‘“*ar " e V)

Multiplving (13a) by ,—.,L'— and (13b) by —% adding the two resulting equations. and
integrating over r leads to \' coupled equations of motion for the N collective variables
X(t):

X

> {MX" + GMX) = —veop, o=V, (14)

J=1

which are all of GTE-tvpe. The mass (M*#) and gvro tensors (G*7) are defined as

j : do dm do dm S
1ha = ‘ F 4 : ; l
Whi [ . {fﬂ *OXNT  AXT N} } V=

do dm do  m
G = 2 - = — 3 15hb
g f S { INZONT  9X7 OXF } ' 10%)

L.e. there exist. as expected. single and two-excitation contributions. T° is the gradient

with respect to X® and E is the energy of the svstem.

IV. APPLICATION TO AN N-VORTEX SYSTEM

In the following we will consider explicitly a classical Heisenberg FAl with weak easy-plane

anisotropy (6 20.29). where the localized excitations are out-of-plane vortices as described
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i Eqn. (6). This case is particularly interesting. not only because here the gvro tensors
are non-zero. but also because discreteness effects are very small'®, so that we can directly
compare our analytical calculations to numerical simulations without the need of adding a
( phenomenological ) pinning potential to the equations of motion (cf. Section 3).

To allow for an analyvtic calculation of the mass and gvro tensors we will restrict ourselves
to systems where the vortices are well separated. i.e. where their mutual distances are larger
than twice the radius r, of the static out-of-plane structures, In this case it is justified to
construct the spin field as a linear superposition of single vortex solutions (6). since the
static in-plane field is a solution of the Laplace equation. while the other fields are either
well localized with vanishing contributions at the centers of neighboring vortices. or they
are very small bevond a radius r,.

The energy of such a N-vortex svstem is given bv?

== kg'q'In|X* = X7 + E., e =252, (16)
Vo1
from which we derive
i
VE==ke Y g = i{;i; (17)
d#a
E. contains the contributions from the static out-of-plane vortex structures and the velocity-
dependent corrections of the vortex shapes to the total energv and can be treated as a
constant within our approximations,

For the calculation of the leading contribution to the gvro tensors it is sufficient to
consider only the static parts of the o and S.-fields. while for the mass tensors we only need
the static part of the o and the velocity-induced part of the S.-field (the velocity-induced
part of the o-field is already exponentially small). If we assume that m(r) depends on the
radial coordinate » only (which seems to be justified hy comparing with the numerically
obtained ri-field for § = 0 in Fig. 1b). then we can perform all of the angle integrations
exactly. These tell us which of the matrix elements are zero and which are not.

For the one-vortex mass and gyvro tensor we obtain the same result as Huber'* and

11




Pokrovsky'®. however. with an additional contribution from the dynamically distorted in-

plane field. namely

L

M7 = Myé,;: o= mf‘f dr m{r'J + .fo dr rmo(r)mg(r) (18a)
ag

G:I“ Eﬁqnpﬂt’u: flsh}

d,, and €, are the 2d unit and completely antisvmmetric tensors. respectively. ap is a lower
cut-off of the order of a lattice constant. and I is the svstem size. (In the analytic calculations
L is the radius of a circular sy mmetric plane. hence. in our numerical simulations on a square
lattice we choose L to be half of the linear dimension of the system. )

The two-vortex contributions. however. depend on the choice of the coordinate system
and are only diagonal for a svstem with axes parallel and perpendicular to the line connecting
the two vortices under consideration. (In general these coordinate systems clearly do not
coincide for different pairs of the same system). In the coordinate svstem with the first axis
parallel to X* — X7, the second perpendicular to it (which we will refer to as the main frame

svstem of the two vortices under consideration). we find for the mass tensors

My — \(d"?) + ee{d) ]
M =g r | : a#8.  (19)
] My — Hd"-’] - L'{flraj]

with the abbreviations o'/ = |X = X4

wl’ L
() = Ve drrm(r). : (20)
o
and
L i L i
Vd™) = :r{'f dr ilt, + m'\'j drrmg(rymg(r). (21)
gl L]

With the help of the operator f"‘,;'j, which projects out the component parallel to Xo — X?#

when applied to an arbitrary vector, we can rewrite ( 19} in the coordinate independent form

M} = ¢"q" {(Mo = v(d®?) + y(d*%) (2P} — 65} (22)

12
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All the mass tensors depend on My which increases logarithmically with L. if we insert the
asvmptotic single vortex solution for a slowly moving vortex (Eqns. (6) and (8)).

For the two-vortex gvro tensors it is convenient to discuss the cases ¢°p° = ¢'p° (ie
G)* = G::J} and ¢*p? = —¢'p” (i.e. G = —G,—‘;‘J] separately. In the first case the gyro
tensors are independent on the underlying coordinate system and we obtain the completelv

antisvmmetric matrix
G?jj = 2xg" p (mold®™) — mal L))e;;. a # 3. (23)

Since we consider only mutual vortex distances d*° > r_. these contributions are exponen-
tially small (ef. Eqn. (7). For ¢'p” = —¢”p® we obtain for the fgvro tensors in the main

frame system (cf. the discussion of the mass tensor)

0 1 1 Lo gy
G}’ = 2mq"p (d) : Gld*?) = '-ﬂj dremg(r),  (24)
-1 0 Rt

or in general
Gy = 27" p U )ew(28] — 6y ), a # 3, (25)

G ‘ . ] ;
where the operator S projects out the component perpendicular to X — X? when applied

to an arbitrary vector. In this case the components of G** decay as (d*9)~2,

V. COMPARISON WITH NUMERICAL SIMULATIONS OF TWO-VORTEX
SYSTEMS

We will now apply our ansatz to two-vortex svstems and compare the analvtical results
te numerical simulations of the complete spin system.

Because we have two “quantum numbers” per vortex. namely its vorticity ¢ and the sign
of its out-of-plane structure p. we have to distinguish between four physically different cases,
when considering two pairs. This is different from the vortex-pair dynamics in other svsterms,
like e.g. incompressible fluids. where each vortex is characterized by a single “quantum

number”. leading to only two different scenarios in a two-vortex svstem.
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A. The equations of motion

For a two-vortex system it is more convenient to rewrite the equations of motion (14) in

center-of-mass (ems) C = (X' + X?) and relative coordinate ¥ = X! — X2

R ORI
Sl B kq'q?
MC - MY + G*C - GYY = e (26b)

(For a derivation of the above equations and the definition of the consequent mass and gyro

tensors see the Appendix). [n a svstem with the first axis parallel, the second perpendicular,

to Y. the mass tensors hecome diagonal

_ Moo N VA
M = M= ) (27)

] ”I_l = [] Jhr'l

with

M= (14 ¢"¢ )Mo — ¢'¢*(\ —v) (28a)
My=1(1 +¢'¢ )M,y — ¢'¢*(\ + ) (28b)
W = (1= q'¢ )My + g'g*(\ — v) (28¢)
M =(1-¢"¢ )Mo + ¢'g*(\ +v). ! (28d)

These are now no longer single-vortex masses, but M can be considered as total mass of
the two-vortex svstem. M/, as the reduced mass.

The dependence of the gyro tensors on the products ¢* p’ suggests that we distinguish
the cases ¢'p* = ¢°p' and ¢'p* = —¢*p'.
aj ‘E][": = ¢°p': (vortex rotation)

For this case we find for the gvro tensors

14
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G =G"=¢ and G'=G'=aG. (29)

Eqn. (26) can only be satisfied if C is a constant (which. without loss of generality. can be
set zero). Using Eqns. (A2) and (23) we obtain a completely antisymmetric gYTo tensor
f;,-'_i = =q(p' = pule, = Ly'p'Ge,, o= mold) — molL). which allows us to rewrite the
product gY as a cross product Y x g with the gvro vector g = (7e.. This leads finally to

the single equation of motion

MY -gxY= gﬁ‘%’:f_zy. (30)
Though (30) looks similar 10 equation (10) for a single vortex. there are two important
differences: (i) the mass is now represented by a tensor leading to two different masses for
the two main frame directions. and (i) the masses depend on the mutual vortex distance

(the dependence of (7 on the mutual distance is exponentially small and will be neglected

in the following discussion). A particular solution of (30) is a rotation of the two vortices

around each other at a distance o with angular velocity
| G [ dqiq? NI, }

uu:ETJ'FI'{l—v}. = d,:

and an additional cyclotron-like oscillation around this trajectory. Using the abbreviations

(31)

y=mR2/ M and Ry = d[2. we can rewrite Egn. (31) as

g
i.r.;.":‘:;::;l;:]y{l — —E%} (32)

which has for vanishing mass \/, (i.e. y = oc) the expansion

o | 21 -
2 _ 4P gp 1
Wuﬂn = T o SH + 4] (E) . {33]‘

with the result of the original Thiele equation (without inertial force) as leading term. In
the case of vortex-vortex rotation. where M, depends only on the difference of the distance-
dependent functions \ and .. we expect only small deviations of o 25 from 3.
If we assume that the amplitudes of the cvelotron-like oscillation are small compared to

the radius Rg of the main circular motion. then we can linearize the equation of motion (30)

and obtain the solutinn




Y = 2He. = 2R(cos ze,.sinze,) (34)
with
Rit) = Ry + rycos .t 2lt) = wot + Zosinwt. (35)

and

2 My + 11 dinwo | M\ w dlnuwo) fun)?
Wt = 1—(2'—-—‘-;-” < —_i)-i’.+(4+:zﬁ‘——) (__) . (36
! { Va0 R Nan ) w VAT S
where w? = G?/ ML M. The amplitude ratio of this cyclotron-like oscillation in the R and

< directions. respectively, is

HL];’[J _ G'J.I'r."-:'.g - Ew‘u

(37)

u o
which becomes proportional tu the mass ratio v/ My /My for large mutual vortex distances d.

b) g'p* = —¢’p': (vortex translation)

For this case we derive from Eqns. (23) and (A2) the gVro tensors

x i _ 0 '+ p¥¢

&= -G'=G =2zg S (38a)
—(p' = p*¢) 0

5 . - 0 ' —p*¢

& = -Gl =G =xg L 5 (38h)

=P +p%¢) 0
The two resulting equations of motion (26) onlv have solutions for vectors r and Y which

are perpendicular to each other, E.g.. if we set X! = (z.y) and X? = (—x,y). we obtain the

two equations of motion

. A L. ]
Wi+ gf = ”"f; g (39a)
2y
ML¥ — gy = 0. (39b)

with
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g=2x¢"p'(1 + ) and (= P . (40)

A solution of (39) is a parallel motion of the two vortices perpendicular to their connecting

line with a constant speed vy which is related to their mutual distance d by

=

qq
e [¥] I}'P{l+ﬁ PI'R] t :I

l.e. we expect |vod| to be larger than 1 for the vortex-vortex case (g'q? = 1. p'pt =~
and smaller than 1 for the vortes-antivortex case (¢'q? = —1, p'p* = 1), respectively. Since
¢ is small and only weakly d-dependent. these corrections to 1 should be small and almost
constant.

There are again cyclotron-like oscillations possible. If we assume their amplitudes to be

small compared to the mutual vortex distance d. then we can linearize Eqn. (39) and obtain

the complete solution

x{t) = vyt + & coswt. y(t) = §+ osinet, (%)
with
3 {2e=)d 9 r‘r l'f ”g 1 - L}
W= 1+C)P + 43
VM {{ T A4 .

The ratio of the amplitudes of the small oscillations is given here by

£ 3 --1 ‘] — X
(ﬂ) - H—{l (LA 1~¢ } (44)
o My T d (1+¢)°

In contrast to the previous case we have now masses of different origin present (M, corre-

sponds to the ems motion. 1/, to the relative motion of the two vortices) which have different

dependences on the syvstem size (cf. (28)).

B. Comparison with numerical simulations

We will now compare these results to numerical simulations of the complete spin systems

on finite lattices (50x30 and S4x84) which have been performed in the following way: we
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initialized the system by putting the linear superposition of two approximate static single
vortex solutions (6) onto the lattice. then we integrate the LL eqn. (1) using a fourth order
Runge Kutta algorithm with time step Af = 0.04(JS)"" and free boundary conditions. The
vortices will adapt rather quickly to their final shape due to the finite discrete lattice by
radiating spin waves. To eliminate these initially excited spin waves we start the integration
with a finite Gilbert damping parameter a = 0.1 for a time period of t = 40...80(JS)!,
during which the vortices follow an additional inward (g'¢* = —1) or outward (¢'¢? = 1) tra-
jectory. After switching off the damping parameter we are able to observe vortex dvnamics
as predicted in Section 5.1. Because the vortices have at this time already acquired quite a
large velocity component in the forward direction. the additional cvclotron-like oscillations
are not expected to be very well pronounced. All our simulations were performed at zero
temperatures. where the vortices fill out the complete syvstem. independent of its size. We
therefore will discuss the results onlv in a qualitative way. since we expect rather strong
houndary effects on the absolute values of the parameters. especially. when thev depend on
the total size of the vortices. However, as will be shown now. these simulations are already
sufficient to demonstrate the impact of the two-vortex contributions on the mass and gvro

tensors. as predicted by our calculations.

Figs. 2 and 3 show typical simulation results for the 4 different vortex pair configurations.

a) VNortex rotation:

Data for these cases is listed in Table 1. Here. we obtain one of the two masses [.‘.‘flj by
measuring the rotational frequency. A/, and the used values for the \'artia;it}' (g) and the sign
of the out-of-plane strucuture (p) determine the deviation of the product |wyRg| from § (Eqn.
(33)). In the vortex-vortex case (q' = p' = ¢* = p* = 1) this correction is small. positive,
and almost constant. corresponding to a small mass M, x d* this observation agrees
qualitatively with our analytic result M, = \ — v (Eqn. (28)). which should depend only on
the mutual vortex distance d. but not on the dominant one-vortex contribution My o In L
(Egn. (I8a)). On the other hand. for the vortex-antivortex case (—q' =p' =¢* —p? = 1),

the observed mass is larger. and both strongly d- and system size-dependent., corresponding

o,
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to our expectation that this mass is dominated by the Mg-term. For the rotational vortex
motion we can determine the second mass M, directly by measuring the frequency of the
cvclotron-like oscillation. In the case of vortex-antivortex pairs we clearly observe this
additional frequency. Table 1 lists values of A, from these simulations. As expected from
Eqn. (28). these values are different from those of M. though they should also depend on
the total vortex size. The strong dependence and different dependence of the two masses on
d and the system size. especially the negative value of v = 3( Al — Aly) for small radii and the
sharp decrease of M, with increasing d. seem to show the strong influence of the boundaries
on the two-vortex parameters. In the case of vortex-vortex rotation we do not aobserve a
clearly pronounced cyclotron oscillation, This is probably caused by small amplitudes and
by a high frequency « > . if Moo= M.

a) Vortex-vortex translation:

Data for these cases is listed in Table 2. Here. we also find an impact of the two-
vortex contributions on the value of the gyro vector. These show up as corrections of
the product |ved| from 1 (Eqn. (41}). independent on whether we consider vortex-vortex
it =pt =g = —p* = 1) or vortex-antivortex (=gt =p' = gt = p* = 1) pairs. In the latter
case the simulations show corrections to |vod|. which are basically constant for a wide variety
of different d’s for a given system size. For the vortex-vortex case these corrections show a
dependence on the orientation of the cms direction of motion to the boundaries. emphasizing
again the impact of the system size on the dvnamic parameters. As in the rotational case we
find clearly visible cyclotron-like oscillations only in one of the two possible cases, but this
vime for vortex-vortex pairs. The reason for this observation is the fact that the dynamics
depends here on two masses of different origin and size. leading to different amplitudes
parallel and perpendicular to the cms motion (Eqn. (44)). For the vortex-vortex case the
perpendicular amplitude (1.e. V1,) is large and the resulting oscillations are clearly visible
(Fig. 3b). while for the vortex-antivortex case the parallel amplitude (i.e, A,) is large. The
¢ latter is hard to observe by looking at the trajectories and can be seen in Fig. 3a only in

the part of the trajectory parallel to the upper boundary. From this picture we can also
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learn that a single vortex moves along the boundary. as if there exists an image vortex just
svmmetrically outside the boundary with the proper g- and p-values. to force this motion,
This picture is the better, the closer a vortex is to its image vortex rather than to its partner
within the system. This suggests. that the boundary effects can be understood in terms of
one or more image vortices. In the translational case we need to measure both, the frequency
and the amplitudes of the cvelotron oscillations. to obtain values for the masses, This will

be done in a forthcoming paper. where we will also develop some methods to treat the

houndary effects.

VI. CONCLUSIONS

We have presented a collective variable approach to a svstem of N well-localized excita-
tions in a magnetic svstem, Generalizing earlier approaches which where restricted to single
excitations only we obtained \ coupled equations of motion of generalized Thiele form (i.e.
with inertial. gvro. and external force terms). The tensors which describe the strength of
the couplings between the excitations can be classified as (two-vortex) mass and gVTO tensor,
which now depend also on the mutual distances of the excitations.

As an example we applied this ansatz to an ecasy-plane Heisenberg ferromagnet where
the localized excitations are vortices, Under the assumption that the vortices are all well
separated from each other. we can calculate the mass and gyro tensors in the low velocity
limit using the vortex shapes calculated by Gouvéa et al.'". By explicitly considering a
fwo-vortex system. we discuss the possible vortex dvnamics in detail and compare these
results with numerical simulations of the com plete spin system. From our theory we expect
for these systems either a rotation of the vortices around each other. or a translation of
them parallel to each other. and an additional cyclotron-like oscillation around these main
trajectories. Two vortices are best described in cms and relative coordinates and the values
of the corresponding masses can vary on a large scale depending on the vorticity and the

sign of the out-of-plane structures of the participating vortices. and also the gyro tensor
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shows a distinct d-dependence in the translational case. Our calculations predict correctly
the deviations due to the two-vortes interactions from dynamical quantities. e.g. |woR2| or
|tod|. as can be seen from the numerical simulations. However. since these simulations were
performed on finite lattices at zero temperature. where the boundary effects have a strong
influence on the absolute values of the masses. we cannot compare these values quantitatively
with our analytic results for au infinte system. The effects of the boundary. which can in

some cases be understood in terms of image vortices. will be discussed in a forthcoming

paper.
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APPENDIX: EQUATION OF MOTION FOR TWO VORTICES

For a two-vartex svstem the Eqns. (14) become

1s e ! il ; xl ! KE

I'ﬂ“X’ + .\'Il'x- —-.—g“Xl + EI_K' = In‘fflrrm {-“]Lla}
iy 3y b V| ow 3 P K'}—Xj

MHXt 4+ M*X 4 E-'Xl + g"X' = quqlmr ﬂ""l.lb]

Introducing the ems and relative coordintes C = LHX'"4+X*) and Y = X' = X2 respectively.

allows us to rewrite (Al) as
i 12 A ! 11 12 11 124 ¢ L1 1y I 3Y ;
(MY + M ]C+';h - M 1Y+[g +E ]C-l-';{g - £ ]Y:.’.'qq}—q (A2a)
gt

@'ﬁ~
(A2b)

(M 4 M“](Z‘ 4 _—];iM“ - MY + [gzl +g“]CCn’+ :I}"{g“ — g'”j? = _L.ql



Since the masses depend only on the vortex vorticities ¢* and g*. we can define the two new

mass tensors

P'r'-l = ]"'-"III +MI3 = M22+ MEI

I"h_"l - %rM“ - MIE-J - %':Mu - Mn],

(Ada)

(A3b)

Similarily. we can define new gvro tensors. but here all the four different quantum numbers

play a role. Thus. in general. we have to define four new gyrotensors

Gr — Gr'r + QU

Gl=d(@"=G¥), ij=1.8 = pk;

(Ada)

(Adb)

which. however. will be related 1o each other in the two special cases discussed in Section

3. Inserting (A3) and (A1) into | \2) leads finally to Eqn. (26).

[ {%]
[ E%]
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FIGURES
FIG. 1. Out-of-plane fields of single vortices: a) static structure for § = 0.2: b) velocity-induced

structure for a vortex moving in x-direction with velocity v = 0.1(aJS) and § = 1.

FIG. 2. Two-vortex simulation results on a 30x30 lattice with § = 0.1. showing rotation of the

vortex pair around each other: a) vortex-vortex pair (¢! = ¢° = p! = p? = +1): b) vortex-antivortex

2 k)

pair (¢! = —¢* = =p' = p* = +1): = initial positions: +: vortex 1: « vortex two.

FIG. 3. Two-vortex simulation results on a 84x84 lattice with § = 0.1. showing translation
of the vortex pair parallel eacl other: a) vortex-antivortex pair (¢! = —¢® = P =p* =+1); b)

vortex-vortex pair (¢' = ¢ = —p! = p* = +1). Symbols denote the same as in Fig. 2.

]
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TABLES

TABLE I. Data for vortex pair rotation obtained from numerical simulations. a) vortex-vortex

-
pair (¢'q* = +1): b) vortex-antivortex pair '’ ==1):y= Ti%'

a)

L Ro |wo k2| y M,y
25 5.79 0.5266 5.21 20
25 8.69 0.5272 5.11 46
42 8.25 0.5140 9.44 23
42 12.51 0.5197 6.86 72

e _ NS O, - - NS
h)

L Ro o 123 v A A v
25 6.12 0.37 0.51 228 1764 -168
25 a7 133 0.33 aly 141 188
25 V.96 44 .31 ak2 120 231
25 8.06 (.31 0.25 30 83 373
42 9.02 041 .87 292 2507 -1108
12 10.60 0.38 0.61 579 327 126
42 11.83 0.3 0.4 922 161 416
I 12.15 0.34 0.37 1262 124 560

RS



TABLE IL. Data for vortex pair translation obtained from numerical simulations. a) vor-
tex-antivortex pair (g'q® = +1): b} vortex-vortex pair (q'¢* = —1): (p): vortices move parallel to

houndary: (d) vortices move parallel 1o the diagonal of the square lattice.

a)
- —

L o | od]| ¢
25 .. 10 0.96 0.042
42 3 (] 0.92 0.087
== —— = — — IS

b)
e e = = e

L Ry |vod| §
25 048 (p) 1.048 0.046
25 083 (p) 1.048 0.046
23 =21 ) 1.296 0.228
42 7.6 {p) 1.114 0.102
42 09.79 Ip) 1.108 0.097
42 19.56 (p) 1.210 0.17
|2 0,24 (d) 1.042 1.040
12 LOLGG () 1.032 0.031
12 11.63 (d) 1.064 0.060
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