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We investigate the dynamics of a classical, anisotropic Heisenberg model.
Assuming a dilute gas of ©ballistically moving vortices above the
Kosterlitz-Thouless transition temperature, we calculate the dynamic form
factors S(a,w) and test them by combined Monte Carlo-molecular dynamics
simulations. For both in-plane and out-of-plane correlations we predict and
observe central peaks (CP) which are, however, produced by quite different
mechanisms, depending on whether the correlations are globally or locally
sensitive to the presence of vortices. The positions of the peaks in
g-space depend on the type of interaction and on the velocity dependence of
the vortex structure. For a ferromagnet both CP’s are centered at q = 0;
for an antiferromagnet the static vortex structure is responsible for a CP
at the Bragg points, while deviations from it due to the vortex motion
produce a CP at q = 0. By fitting the CP’'s to the simulation data we obtain

the correlation length and the mean vortex velocity.

1. INTRODUCTION

A wide class of quasi-two-dimensional magnetic materials (e.g. layered
magnetsi, graphite intercalation compoundsz, magnetic lipid layers3) can be
described approximately by the classical anisotropic Heisenberg model
H= J ¥ (s's" + &8’ + A s%%) (1.1)
<1)> A 1] 1)
with O = A < 1. The spins §I are coupled only to nearest neighbors on a
square lattice and tend to be aligned in the xy-plane (easy-plane).

Below the Kosterlitz-Thouless transition temperature Tc bound
vortex-antivortex pairs are thermally excited, but do not move. Above Tc
the pairs begin to unbind and the single vortices move around due to the
interaction with the other vortices.

For the static spin correlations many exact results from the

Kosterlitz-Thouless theory are known. However, for the dynamic correlations



only a phenomenological treatment has been possible so far. Assuming a
dilute gas of ballistically moving vortices above Tc. the dynamic form
factors S(a.w) have been calculated for the case of a ferromagnetic
coupling‘;'? The typical signatures of moving vortices are central peaks
(CP’s), which have been observed both in combined Monte Carlo-molecular
dynamics simulations4 and in inelastic neutron scattering experimentsL

In this paper we will shortly review these results and discuss the

characteristic changes of the CP’s for the case of an antiferromagnetic

coupling.

2. ANTIFERROMAGNETIC VORTICES

We parametrize the classical spins by four angles6

S = (-1)"S cos[¢ + (-1)“¢n] cos[o_ + (—1)“en]

sﬁ = (-1)"S sin[® + (—1)“¢n] cos[0_ + (-1)"an] (2.1)
s* = (-1)"s sin[e_+ (-1)"0 ],

n n n

where the even n denote one sublattice, the odd n the other one. In the
continuum approximation the capital angles ®(2) and 6(?) describe a perfect
local antiferromagnetic structure, while the small angles ¢(?) and (%)
describe deviations from this structure.

In a previous paperT. we have derived the four equations of motion and
we have found the following continuum limit vortex solutions (to first

order in the vortex velocity u)

8(2) = + arctan(y/x) , ¢(@) =0, () =0 (2.2)
2 . u sin(p-€)
9(r) T GESORE = for large r . (2.3)

Here r, ¢ are the polar coordinates of ?, and € is the angle between 3 and

the x-axis. ‘
When placed on a lattice, this solution is stable only for A < hc ~ 0.72

and is called "in-plane vortex" because the out-of-plane components of the

spins are small, or even zero in the static limit. In this paper we do not



discuss the case A > Rc for which "out-of-plane vortices" are stable, here
6 is nonzero independent of the velocity.

3. IN-PLANE CORRELATION FUNCTION

Inserting the vortex solution (2.2/3) in the definition Sxx(?,t) =
<s*(%,t) s*(3,0)> we obtain

2 1¥7 - 1
S = s%e " cos ®(F,t) cos[e

o(%,t)] cos &(3,0) cos #(3,0)>. (3.1)
Here exp(if?) = * 1, depending on the sublattice to which ? belongs; K =
(m,m) restricting ourselves to the first Brioullin zone.
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Fig. 1.

In-plane dynamic form factor for A

= 0 (XY-model), d in units of
2n/L with lattice size L = 100 a. Solid line: simulation data; dashed line:
fit of squared Lorentzian (3.3).

Similar to the ferromagnet4, for large r the main effect of a vortex

passing a lattice site is to flip the spin at this site, i.e. cos ® changes

its sign. Compared to this big effect the small angle ¥ can be neglected
and we obtain

XX 2 _21?();}
S (r,t) =S'e

9
<c052¢><(—1)N“”tJ>

(3.2)



The first average is a static one and gives 1/2; the dynamics is contained
in the second average: N(?,t) is the number of vortices passing an
arbitrary, nonintersecting contour between (3,0) and (2,t). The calculation
proceeds in the same way as for the ferromagnet4 and yields a squared

Lorentzian CP for the dynamic form factor

xx(9 S2 7362

q,w) = 5= . (3.3)
2T (+® (14 (6071

the only difference is the appearance of 3* =K - 3 instead of 3. Here 7y =
Vi u/(2€), with rms vortex velocity u, and 2€ is the average distance
between two vortices (according to the Kosterlitz-Thouless theory, € 1is

also the static correlation length).
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Fig 2. Integrated intensity of in-plane dynamic form factor for T = 1.0.
+: intensity of fitted central peak (3.3); ¢: intensity from simulation
data; solid line: fit to (3.4) for small gq*.

Since (3.3) contains no parameters characterizing the vortex structure,
s is only globally sensitive to the presence of vortices. In fact, the
moving vortices disturb the local antiferromagnetic order and thus diminish

the correlations. For this reason the integrated intensity



2 2

S g
I*(q*) = 2= (3.4)
4n [1+(q*£]2]3/2

is_inversely proportional to the density n = (2“‘;']-'2 of free vortices.

The prediction (3.3) can be well fitted to the CP which we observe in
simulations on a 100 x 100 lattice (Fig.1). The resulting data for the
width I and intensity 1" are displayed in Figs. 2 and 3. Moreover, we have
fitted these data for small g* (because of our large-r approximation) to
(3.4) and to

™(q*) = 3 va(vZ-1) : Vi+(gq*)? (3.5)

which represents the half width of (3.3). This fit gives us u and £. Just
?bove Tc =~ 0.79 we obtain u » 1 (in dimensionless units) and this value
increases slightly with the reduced temperature v = (T - Tc)/Tc. The values
for §& agree rather well with the Kosterlitz-Thouless prediction

£(T) = exp(b/vT) choosing b = 0.5.
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Fig 3. Width of in-plane dynamic form factor for T = 1.0. +: width of
fitted central peak (3.3); solid line: fit to (3.5) for small q*.



4. OUT-OF-PLANE CORRELATION FUNCTION

Contrary to the in-plane structure, the out-of-plane structure (2.3) of a
vortex is localized. Therefore we expect that Szz(?,t]=<sz(?,t)Sz[3,0)>
depends on the shape of this structure. We are mostly interested in small

wave vectors and therefore we evaluate

=
ZzZ

ikr li);)
ST = <e sin [e

o(Z,t)] + sin 9(3,0)> (4.1)

for large r where ¢ is small, and obtain <9(%,t)o(3,0)>. Using (2.3) we
obtain in a vortex-gas approximation, similarly to the ferromagnetic cases,

a Gaussian CP

n u
s“(q,w) = x E 5 ©XP {-[w/(uq)]z} ‘ (4.2)
32(1+A)°JVm q
Here 1 + A appears, instead of 1 - A for the ferromagnet. However,

otherwise the formula is the same, i.e. in both cases there is a CP with a
maximum at 3 = (0,0) and w = 0. The reason is that the z-components of
neighboring spins on the two sublattices have the same sign, thus the

out-of-plane structure of an antiferromagnetic vortex shows a local

ferromagnetic order.

Because (4.2) is proportinal to the density n_ of free vortices, the CP
is very small, cf. the different scales in the Figs. 1 and 4. Moreover, the
stiffness constant of the out-of-plane spin waves suffers no sudden jump to
zero at Tc. contrary to the in-plane magnonsa. Therefore magnon peaks show
up in the out-of-plane dynamic form factor also for T > Tc. though they are
much broader than for T < Tc. Unfortunately there is an "acoustic" branch
that interferes with the CP (4.2) for small q, where chances are best to
observe the CP. Therefore CP and magnon contributions here cannot be
distinguished clearly.

Fig. 4 shows simulation data for small q, together with a plot of (4.2)
using the values for u and n obtained from the in-plane correlations. From
such figures for different temperatures we can verify that the CP-width is
consistent with the prediction I'* = uq resulting from (4.2). However, the

intensity



nu
v

I*(q) = (4.3)
32(1+A)20%w ¢°

cannot be tested because of the difficulty to separate the magnon
contributions. (Remark: The singularity in (4.3) for q » 0 can be avoided
by introducing a cut-off in the order of £ in order to account for the

finite size of the vortices due to the presence of the other vorticess.)
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Fig 4. Out-of-plane dynamic form factor for A = 0 (XY-model). Solid line:
simulation data; dashed line: Gaussian (4.2) with u and £ from the in-plane
correlations.

S. CONCLUSION

Single vortices in easy-plane antiferromagnets with A < A have a static
c

structure with a locally perfect antiferromagnetic order. Therefore the

in-plane dynamic form factor Sxxtg.w), which is only globally sensitive to
the presence of vortices, shows a squared Lorentzian CP at the Bragg

points.



The finite velocity of the vortices causes small deviations from the
above structure, producing a localized out-of-plane structure with a

ferromagnetic character. Therefore the out-of-plane dynamic form factor

Szz(&),w] shows a Gaussian CP at the center of the Brioullin zone. The
gq-dependence of S** reflects the shape of the ferromagnetic out-of-plane
structure and the w-dependence reflects the velocity distribution of the
vortices.

Both CP’s are observed in computer simulations which allows to fit the

phenomenological parameters § and u.
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