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A simple one-dimensional model with scalar variables −1 ≤ sn ≤ +1, coupled according to a
Hamiltonian, H = −J

∑

n |sn−sn+1|, is presented. This Ising-like model is an interesting example
of a graduate-level statistical mechanics problem where the eigenfunctions and eigenvalues of
an integral operator, the transfer integral, can be determined exactly. This can be contrasted
with the determination of eigenfunctions and eigenvalues of differential operators, such as the
quantum mechanical finite-depth square well. In this problem transcendental equations leading
to the eigenvalues and eigenfunctions are also obtained. The largest eigenvalue is identified and
the free energy is determined. The thermodynamic properties depend on the sign of J , unlike
classical Ising or Heisenberg models.
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I. Introduction

There is always interest in statistical mechanics models with exact solutions, even in one
dimension (1D), with the hope that the insight gained may be useful for solving the higher
dimensional model, or perhaps relate to some other problem indirectly. Here I want to discuss
a simple 1D model based on an Ising model1 where the “spins” don’t have just two states, but
instead, a continuum of states over a finite range of a scalar spin variable s. This might be
thought of as similar to taking a quantum spin−S model, perhaps Heisenberg (JSn · Sn+1 near-
neighbor Hamiltonian) or XY interaction (only couple the x and y spin components), and letting
S → ∞, J → 0, while the product JS2 remains finite. Of course doing this sort of limiting
process leads to a vector classical spin variable S, with two degrees of freedom, relating to the
two angles needed to specify its direction. That would then be the classical Heisenberg or XY
model, both of which have exact solutions in one dimension.2,3

Instead, I am now interested in making it a scalar “spin” model, where the variables sn at
each site have the range,

−1 ≤ sn ≤ +1. (1)

An equivalent parameterization with a more obvious physical interpretation
would be to use 0 ≤ sn ≤ +1, if for instance the variables sn represented occupation probabilities
or perhaps sticking probabilities for atoms on the sites. I shall use the symmetric -1 to +1 range
because of its mathematical simplicity; a change of variables can easily be used to get the other
parameterization. The same idea is used in mapping the Ising model into lattice gas models.

The model to be considered, with a nearly linear interaction, is found to be exactly solvable
using the transfer integral method. This is an interesting problem for learning about transfer
integral eigenequations, with a completely determined spectrum. It is also interesting to compare
the method of solution with that for mathematically similar problems such as the finite depth
quantum square well.4 The similarity comes about because the transfer integral eigenvalues are
determined from transcendental equations with multiple solutions that are reminiscent of the
square well problem.

Consider constructing an interaction between these continuum variables sn, that may be
vaguely equivalent to the Ising interaction, with possibilities of ferromagnetic (neighboring sites
similar) or antiferromagnetic (neighboring sites opposite) forms. I do not simply use the Ising
model itself and change the variables from discrete to continuum, because that problem is ana-
lytically difficult. In extending to continuum variables, there may be many different interactions
whose limits in some sense are equivalent to the discrete-valued Ising model. One popular choice
has been the φ4 model used by Wilson, Fisher and others in renormalization group analyses.5

The discrete Ising model was derived as a limit of the continuum φ4 model, to which the renor-
malization group techniques could be more directly applied. The purpose here is simply to point
out that a simpler interaction with effectively ferromagnetic or antiferromagnetic coupling has
an exact solution in one dimension. However, there is not a smooth procedure for obtaining the
discrete Ising model as a limit when some parameter goes to a particular value.

The Hamiltonian under consideration is

H = −J

N
∑

n=1

|sn − sn+1|, (2)

where the sn are continuum variables with a finite range (Eq. 1) and piecewise linear coupling.
The absolute-value interaction corresponds to having a force (−δH/δsn) acting between the spins
that has only two equal but opposite values (repulsive or attractive). J < 0 corresponds to an
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effective ferromagnetic coupling, where neighboring sites prefer to be “aligned”, with neighboring
sn taking on similar values. J > 0 corresponds to an effective antiferromagnetic coupling, where
neighboring sites prefer to be opposite, with the sn alternately +1 and -1. In the lattice gas
language, J < 0 means neighboring sites prefer to have the same occupation, while J > 0 means
neighboring sites prefer to be alternately occupied and unoccupied.

One-dimensional models such as this have been considered previously.6 Most of the interest
concerned looking for models that would exhibit transitions to a phase with long range order, in
the thermodynamic limit (number of paricles goes to infinity). Tonks7 introduced a model of a
one-dimensional gas of atoms, interacting by nearest neighbor hard core pair potentials. For a
1D gas there is a restriction on the atomic positions xn such that atom n + 1 is to the right of
atom n, i.e., xn < xn+1. Takahashi8 showed how to find the partition function for a chain of such
atoms with arbitrary pair potentials of finite range, by solving the transfer integral problem using
a Laplace transform. He demonstrated that there could be no phase transition in the model.
Later, Van Hove9 proved that more general 1D gas models with pairwise interactions acting out
to some finite cutoff distance (finite range potentials acting beyond nearest neighbors) cannot
exhibit phase transitions. However, he did not give any general solution for these models.

Kac10 introduced a 1D gas model with long range exponentially decaying attractive inter-
actions combined with a hard core repulsion. He showed that there is also no phase transition
in this model, for any finite values of the parameters in the potential. However, Baker11 looked
at the model more fully and found that in a special limit, where the range of the attractive in-
teraction is allowed to diverge while its strength goes to zero, the model is seen to exhibit a Van
der Waals type phase transition. In general, it is now understood that these types of gas models
will not exhibit phase transitions unless there is an infinite range or cluster potential involved.12

Feynman13 considered 1D gas models with a potential of the form
e−|sn+1−sn| but the solution is difficult because it leads to a complicated integral eigenvalue
equation. A model whose potential bears more resemblance to the model considered here is
the 1D Coulomb gas.14,15 The interaction potential in that case is via an absolute value of the
difference of positions, however, the positions are allowed to have arbitrary values, and the forces
may be repulsive or attractive depending on the signs of the charges involved. A mass was also
assumed for the charged particles, leading to a kinetic term in the Hamiltonian. Here we include
no kinetic energy and consequently no real dynamics. Van Hove’s theorem applies to this model
and there is no phase transition; the model is useful as a good example where the transfer integral
method can be applied to obtain any thermodynamic quantities of interest as well as correlation
functions and related probability distributions of the sn.

II. Short Finite Chain Solutions

Consider a chain of length N with open ended boundaries. The canonical partition function
is given by the integral,

ZN =

∫ 1

−1

ds1

∫ 1

−1

ds2...

∫ 1

−1

dsNeβ|s1−s2|eβ|s2−s3|...eβ|sN−1−sN | (3)

where β ≡ J/kT is the coupling scaled by the temperature and Boltzmann’s constant k. The
integral can be evaluated by sequentially performing each integration, or, by making a coordinate
transformation which effectively decouples the sites. Consider the transformation to variables
σn, defined by

σ1 = s1,

σ2 = −s1 + s2,
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σ3 = −s2 + s3, (4)

and in general, σn = sn − sn−1. The corresponding inverse transformation is

s1 = σ1,

s2 = σ1 + σ2,

s3 = σ1 + σ2 + σ3, (5)

and in general, sn =
∑n

i=1 σi. The Jacobian of the transformation is unity. The decoupling
has been done at the expense of more complicated boudaries of integration. The original cubic
boundaries of integration over the sn variables convert to

−1 ≤ σ1 ≤ 1,

−1 − σ1 ≤ σ2 ≤ 1 − σ1,

−1 − σ1 − σ2 ≤ σ3 ≤ 1 − σ1 − σ2, (6)

and so on. For example, the three site problem is solved by the integral

Z3 =

∫ 1

−1

dσ1

∫ 1−σ1

−1−σ1

dσ2 eβ|σ2|

∫ 1−σ1−σ2

−1−σ1−σ2

dσ3 eβ|σ3|. (7)

In this case there are only two bonds with an interaction, the coupling between s1 and s2, and
the coupling between s2 and s3. By separating each integration into σ < 0 and σ > 0 regions,
all the integrations are trivial, and we directly find the following results for the shortest possible
chains:

Z1 = 2

Z2 = −4/β + 2(e2β − 1)/β2

Z3 = (8 + 4e2β)/β2 + (7 − 8e2β + e4β)/β3. (8)

The tedium of the algebra increases dramatically with increasing N . These results for finite
systems do not demonstrate that there must be a closed-form solution in the thermodynamic limit
N → ∞, but they are suggestive that this almost linear (actually, piecewise linear) interaction is
analytically tractable. Of course, being able to solve finite chains doesn’t really tell us anything
about how to get the thermodynamic limit. Clearly, solutions for finite systems for the usual Ising
model could be obtained in any dimensions if the system is small enough, but the thermodynamic
limit has been obtained only for one and two dimensions.16

III.A The Transfer Integral Method

In this section the partition function is developed in terms of the eigenfunctions and eigen-
values of a transfer integral operator, a formalism in which the thermodynamic limit is greatly
simplified.17 We can also consider how the eigenspectrum can be used to get various probabilty
distributions for the spin variables. It turns out that the eigenfunctions of this transfer operator
contain all the information needed to describe how the spins are distributed and how they are
correlated with their neighbors, and so on.
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Suppose we have the nth partial partition function zn(sn), where all of the spins up to sn−1

(in Eq. 3) have been integrated out, and the last spin is in the state sn. The total partition
function for a chain of n sites would be determined by integration over the nth site:

Zn =

∫ 1

−1

dsn zn(sn). (9)

A subsequent partial partition function zn+1(sn+1) is generated by adding the spin sn+1 and
integrating over its interaction with sn, defining the transfer integral operation,

zn+1(sn+1) =

∫ 1

−1

dsn zn(sn) eβ|sn−sn+1|. (10)

Or, we may just write this in terms of the transfer integral operator T as

zn+1(sn+1) = T {zn(sn)}. (11)

One obtains the N -particle partition function ZN by repeated application of this operation onto
z1(s1) = 1, with an integration over the states of the last particle,

ZN =

∫ 1

−1

dsN T N−1{z1(s1)} (12)

This operation is characterized by the eigenspectrum of the transfer operator T . If z1 is ex-
panded in the eigenspectrum of the transfer operator, with eigenfunctions ui and corresponding
eigenvalues λi, we can write

z1(s) = 1 =
∑

i

ci ui(s), (13)

where the ci are the expansion coefficients, and the sum is over the complete set of eigenfunctions
(an infinite set). The eigenspectrum itself is determined by solutions of the following integral
equation:

T {ui(s
′)} =

∫ 1

−1

ds′eβ|s−s′|ui(s
′) = λiui(s). (14)

The transfer operation (10) has a symmetric kernel, eβ|sn−sn+1|, and is self-adjoint. As a result,
its eigenfunctions can be made orthonormal;

∫ +1

−1

ds ui(s) uj(s) = δij . (15)

With this orthogonality condition the expansion coefficients in (13) are determined to be

ci =

∫ +1

−1

ds ui(s). (16)

Using the expansion (13), and the above constants ci, repeated application of the transfer oper-
ation gives ZN for a chain of N sites,

ZN =

∫ 1

−1

dsN

∑

i

ciλ
N−1
i ui(sN ) =

∑

i

c2
i λ

N−1
i . (17)
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In the thermodynamic limit N → ∞, the free energy per particle is proportional to the largest
eigenvalue of T ;

F/N = −(kT/N) lnZN → −kT lnλmax, (18)

where λmax is the largest eigenvalue of the integral equation (14). Then once the free energy is
known, any desired thermodynamic quantities can be obtained through appropriate derivatives.

The above calculation can also be made alternatively by rewriting the kernel in terms of the
eigenfunctions, which makes the calculation even easier. Using an expansion as in (13), one finds
for the kernel,

eβ|s1−s2| =
∑

i

λi ui(s1) ui(s2). (19)

Then sequentially integrating over s1, s2, and so on, and making use of the fact that N-1 of
the integrations in the definition of ZN (Eq. 3) are just transfer operations on eigenfunctions,
again (17) results for the chain’s partition function. The added bonus of this method is that it
also makes the calculation for a ring of N sites (i.e., N sites with periodic boundary conditions)
simplify. With the help of (19) the result for a ring of N sites is easily found to be

ZN =
∑

i

λN
i , (20)

and again in the thermodynamic limit, the free energy is given by the logarithm of the largest
eigenvalue, Eq. (18).

While the largest eigenvalue of the transfer operation determines the free energy, the cor-
responding eigenfunction determines the probability distribution for the spin variables. The
probability distribution for a single site, pN(sn), is defined by integrating over all sites except
the one of interest in Eq. (3), and then normalizing by ZN . For a closed ring of N sites, we have
for the distribution of site 1,

pN(s1) ≡ Z−1
N

∫ 1

−1

ds2

∫ 1

−1

ds3...

∫ 1

−1

dsNeβ|s1−s2|eβ|s2−s3|...eβ|sN−s1| (21)

But again using the expansion (19) for the s1−s2 interaction converts the subsequent integrations
over s2, s3, etc., into transfer operations. Finally there results,

pN(s) = Z−1
N

∑

i

λN
i u2

i (s). (22)

The subscript on s1 was dropped since it is clear that all sites are equivalent. In the thermody-
namic limit, the sum is dominated by the largest eigenvalue, with corresponding eigenfunction
umax(s), and

p(s) = u2
max(s). (23)

This result also holds for the infinite length chain of sites. However, for the finite chain there
results for pN (sn), with 1 ≤ n ≤ N ,

pN (sn) ≡ Z−1
N

∫ 1

−1

ds1

∫ 1

−1

ds2...

∫ 1

−1

dsn−1

∫ 1

−1

dsn+1...

∫ 1

−1

dsN

eβ|s1−s2|eβ|s2−s3|...eβ|sN−1−sN |
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= Z−1
N

∑

i

∑

j

λn−1
i ciui(sn) λN−n

j cjuj(sn). (24)

For the finite chain the probabilty distribution does indeed depend on the particular site.
Other higher order probability distributions can be defined, such as a two-site distribution

that could be used to get correlation functions. Simply generalizing the one-site distribution’s
definition into one for a two-site joint distribution suggests the definition (for a ring of sites)

pN(s1, s1+n) ≡ Z−1
N

∫ 1

−1

ds2

∫ 1

−1

ds3...

∫ 1

−1

dsn

∫ 1

−1

dsn+2...

∫ 1

−1

dsN

eβ|s1−s2|eβ|s2−s3|...eβ|sN−s1| (25)

The spatial separation of the sites is chosen to be n, and it is interesting to consider the depen-
dence of this function on n. Once again employing the kernel expansion (19) leads to

pN(s1, s1+n) = Z−1
N

∑

i

∑

j

λn
i λN−n

j ui(s1)uj(s1) ui(s1+n)uj(s1+n). (26)

In the thermodynamic limit, this function’s dependence on the separation n is dominated by the
ratio of the first two largest magnitude eigenvalues, λmax, and λmax−1;

p(s1, s1+n) ≈ umax(s1)umax(s1+n)×

[umax(s1)umax(s1+n) + (λmax−1/λmax)
n

umax−1(s1)umax−1(s1+n)] . (27)

This exponential distance dependence on n will also appear in any correlation functions that are
defined, and leads to a correlation length ξ given by

ξ−1 = ln |λmax/λmax−1|. (28)

The other important point to note about Eq. (27) is that the sign of
λmax−1/λmax indicates what kind of short range order is present. When this ratio is positive,
neighboring sites tend to be alike, as in a ferromagnetic sense. When the ratio is negative,
however, it means that correlation functions will oscillate with a factor (−1)n, and neighboring
sites will tend to be opposite, in an antiferromagnetic sense.

The function p(s1, s1+n) can be used to compute probability distributions for other quanti-
ties of interest. For example, the correlations between two sites might be characterized by the
difference, yn ≡ |s1 − s1+n|. Then the probability distribution d(yn) for yn is derived using a
delta function:

d(yn) ≡

∫ +1

−1

ds1

∫ +1

−1

ds1+n pN(s1, s1+n) δ(yn − |s1 − s1+n|). (29)

It is clear that pN (s1, s1+n) can be used for the calculation of any desired probability distribution
involving s1 and s1+n via similar definitions. To get explicit expressions for such objects, the
eigenfunctions ui(s) must first be determined, as developed in the following section.

III.B The Transfer Integral Solution
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The absolute value interaction suggests splitting the integral in (14) into two regimes:

T {u(s′)} =

∫ s

−1

ds′eβ(s−s′)u(s′) +

∫ 1

s

ds′e−β(s−s′)u(s′) = λu(s). (30)

This equation can be converted to a nearly equivalent differential equation for the eigenfunctions.
For instance, multiply Eq. (14) by eβs and take the derivative d/ds, giving

∫ s

−1

ds′e−βs′

u(s′) = (λ/2β)e−2βs(d/ds)[eβsu(s)] (31)

Differentiating once more with respect to s gives

u(s) = (λ/2β)eβs(d/ds){e−2βs(d/ds)[eβsu(s)]}. (32)

This is equivalent to the elementary differential equation,

d2u

ds2
= (β2 + 2β/λ)u. (33)

The equation has the fundamental solution

u(s) = Aeαs + Be−αs, (34)

where
α = (β2 + 2β/λ)1/2. (35)

The constant coefficients A and B and the eigenvalue λ are yet to be determined. This has
an interesting contrast with the usual differential equation eigenvalue problems encountered in
quantum mechanics or electrostatics that we are more familiar with. For differential equation
eigenvalue problems, once the general form of the solution is known, the eigenvalues and constant
coefficients are determined by forcing the solution to satisfy appropriate boundary conditions.
However, for integral equation eigenvalue problems such as this, instead the eigenvalues are
determined by an integral or global condition, which is the integral equation itself acting as a
constraint. Applying the transfer operation Eq. (14) to the fundamental solution Eq. (34) gives

T {Aeαs′

+ Beαs′

} =
2β

α2 − β2
(Aeαs + Beαs)

+[(
eα

α + β
)A − (

e−α

α − β
)B]eβe−βs − [(

e−α

α − β
)A − (

eα

α + β
)B]eβeβs (36)

The operation reproduces the original function plus two extra dependences on s. In order to
enforce that we have an eigenfunction, there are the conditions that the coefficients of the extra
terms vanish (the global constraint referred to above),

(
eα

α + β
)A − (

e−α

α − β
)B = 0,

(
e−α

α − β
)A − (

eα

α + β
)B = 0. (37)
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The eigenvalue is identified as
λ = 2β/(α2 − β2). (38)

This last equation just reproduces Eq. (35). The homogeneous Eq. (37) has nontrivial
solutions only when the determinant of the coefficients vanishes. This leads to two types of
solutions, even or odd, which have either A/B = +1 or A/B = −1, respectively. Correspondingly,
there result transcendental equations for the parameter α, which then implicitly defines the
eigenvalues λ and thus the free energy. The even symmetry solutions are determined according
to

u+(s) = coshαs, (39a)

α tanhα = β, (39b)

λ = 2β−1 sinh2 α, (39c)

and the odd symmetry solutions are determined by

u−(s) = sinhαs, (40a)

α coth α = β, (40b)

λ = −2β−1 cosh2 α. (40c)

These implicitly represent the solution for the eigenvalues, which must be derived by first
solving for α. The original integral operator is self-adjoint, ensuring that the eigenvalues are
real. This further implies via Eq. (35) that α must be pure real or pure imaginary, leading to
either hyperbolic functions or to sinusoidal functions, respectively. With these points in mind,
these transcendental equations are seen to have an infinite set of solutions, corresponding to a
complete set of eigenfunctions, mutually orthogonal on the interval from s = −1 to s = +1. This
whole process through which the eigenspectrum is identified is very similar to the solution of the
quantum 1-D finite square potential problem, except that here we are considering an integral
operator rather than a differential operator.

IV.A The Eigenvalues, Eigenfunctions

The eigenvalues α are found as indicated graphically in Figures 1 and 2, by plotting the
LHS vs. the RHS of Equations (39b) and (40b), and looking for points at which the curves cross.
First consider the even symmetry eigenfunctions for β > 0. The LHS of Eq. (39b) increases
monotonically, implying that there is only one solution where α is real, see Fig. 1a. Note that
this solution exists only when β > 0, for the effective antiferromagnetic coupling. This solution
will be refered to as u+

0 (s), with eigenvalue λ+
0 ;

u+
0 (s) = coshα+

0 s, (41)

where α+
0 is the only real solution to Eq. (39b). However, it is realized that Eq. (39b) also has

an infinite set of solutions where α is pure imaginary, e.g., α = ia with a real. These will be
cosinusoidal eigenfunctions:

u+
l (s) = cos a+

l s, (42a)

a+
l tan a+

l = −β, (42b)

λ+
l = −2β−1 sin2 a+

l . (42c)
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The index l refers to the lth root of Eq. (42b), suggested graphically in Fig. 1b. As l → ∞,
subsequent α+

l increment by π. It is also interesting to note that when β changes sign from
positive to negative, the real α+

0 solution disappears while an additional a+
l solution appears at

a = 0. In this sense the number of solutions (which is infinite) is independent of β.
Similar statements apply to the odd symmetry solutions. For β > 1, there will be only one

real solution to Eq. (40b) (Fig. 2a), denoted α−
0 , with eigenvalue λ−

0 and eigenfunction

u−
0 (s) = sinhα−

0 s. (43)

This solution exists only for β > 1. There are additionally pure imaginary solutions to Eq. (40b)
(Fig. 2b). Again putting α = ia, with a pure real, these must satisfy

u−
l (s) = sin a−

l s, (44a)

a−
l cot a−

l = β, (44b)

λ−
l = −2β−1 cos2 a−

l (44c)

The graphical solutions are depicted in Fig. 2. Again, at the point β = 1 where the real solution
disappears, an extra imaginary solution appears.

IV.B The Largest Eigenvalue

Now we can determine the largest eigenvalue. In fact all that is needed is the largest positive

eigenvalue, since it is clear that ZN ≈ λN
max must be positive definite, regardless of whether N is

even or odd. First we consider β > 0.
For the imaginary solutions, the eigenvalues can be written as λ = −2β/(a2 + β2), so that

the eigenvalue with the largest magnitude must have the smallest a. However, these are always
negative for β > 0. Therefore, if β > 1, the largest eigenvalue must be either λ+

0 or λ−
0 . A short

analysis shows that in the limit β → ∞, these have asymptotic forms

λ+
0 ≈

(

e2β + 4β − 1
)

/(2β), (45a)

λ−
0 ≈ −

(

e2β − 4β + 1
)

/(2β). (45b)

In fact, λ−
0 is always negative, and therefore λ+

0 is always the largest eigenvalue for the entire range
β > 0, i.e., for antiferromagnetic coupling, with corresponding hyperbolic cosine eigenfunction,
Eq. (41). When β > 1, the second largest eigenvalue is λ−

0 , so that the ratio λmax−1/λmax =
λ−

0 /λ+
0 < 0, and neighboring sites exhibit short range antiferromagnetic order. For 0 < β < 1,

the second largest eigenvalue becomes λ+
1 , which is also negative, and the short range ordering

is still antiferromagnetic.
When β < 0, only the imaginary solutions exist. It is easily seen in Figs. 1 and 2 that

the the solution with the minimum value of a is λ+
1 ≤ π/2, with corresponding cosinusoidal

eigenfunction, Eq. (42a). This remains the largest eigenvalue for all β < 0. It is also clear that
the lowest odd imaginary solution, λ−

1 , is the second largest eigenvalue, and is also positive. With
the ratio λmax−1/λmax = λ−

1 /λ+
1 > 0, neighboring sites exhibit short range ferromagnetic order

for all β < 0.
Therefore, for any temperature we have the largest eigenvalue of the transfer operator, and

thus the resulting equilibrium thermodynamic functions can be found in the usual way, through
derivatives of the free energy. Additionally, since the second largest eigenvalue also is known,
information about correlations, such as the correlation length, Eq. (28), can be extracted.
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Thermodynamic Results and Conclusions

Quantities such as the internal energy per site can be found via derivatives of the partition
function, Z ≈ λN

max. For example, for the internal energy per site U and the specific heat per
site C, we have

U = − lim
N→∞

(J/N)(∂/∂β) lnZN (β) = (J/λmax)(∂λmax/∂β), (46a)

C = ∂U/∂T. (46b)

The latter partial derivative of λmax can be evaluated in terms of β and α, producing the following
results using Eq. (37) and Eq. (40):

U =
J

β

(

α+ 2
0 + β2 − β

−α+ 2
0 + β2 − β

)

for β > 0, (47a)

U =
J

β

(

−a+ 2
1 + β2 − β

a+ 2
1 + β2 − β

)

for β < 0, (47b)

Alternatively, the derivatives can be found from numerical differentiation. For results shown here,
λmax was determined numerically using a Newton’s method to solve for α(β), then these partial
derivatives were evaluated numerically. I do not give more complete analytic expressions for the
thermodynamic quantities—however, they can be evaluated to any desired degree of accuracy
without using statistical methods such as Monte Carlo. In this sense the calculation is exact.

These results are shown in Fig. 3, for positive and for negative J . A comparison with the 1D
Ising model can be made, also shown in Fig. 3, for which U = −J tanh(β), and C = β2sech2(β).
An obvious difference between the two is that the sign of J is irrelevant for the Ising model,
while it plays a crucial role in the model discussed here. This can be understood by looking at
the transfer integral eigenfunctions. For β > 0 (J > 0), according to the discussion in Section
III.A, the probability distribution for the spin at a single site is determined from the normalized
eigenfunction with largest eigenvalue,

p(s) = u+
0 (s)2 =

2α+
0 cosh2 α+

0 s

2α+
0 + sinh 2α+

0

. (48)

This distribution is shown in Fig. 4a, for high and low temperatures. At very low temperatures,
(β → ∞), to a very good approximation, α+

0 ≈ β. Then the distribution is concentrated symmet-
rically at s ≈ ±1, and approaches a pair of delta functions at ±1. This is an antiferromagnetic
situation, with the sites alternately +1 and -1.

For β < 0 (J < 0), the probability distribution changes to

p(s) = u+
1 (s)2 =

2a+
1 cos2 a+

1 s

2a+
1 + sin 2a+

1

. (49)

This is shown in Fig. 4b. For low temperatures, with β → −∞, the parameter a+
1 → π/2. Then

the distribution goes to zero at s = ±1, and the most probable value is s = 0. The sn, however,
do not concentrate at s = 0, rather, there is an appreciable population on both sides of zero.
This is in sharp contrast to the case with J > 0, and is responsible for the dependence on the
sign of J .
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To summarize, the model given by Hamiltonian (1) represents an interesting example for
application of the transfer integral method to one-dimensional continuous variable systems. Ther-
modynamic functions and correlation functions can be found from the knowledge of the eigen-
spectrum of the transfer operator. The eigenfunctions contain information about the probability
distributions for the spin variables, which leads directly to desired correlation functions.
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Fig. 1. Graphical solutions for the values of α corresponding to even symmetry eigenfunctions. In
a), the real solution α+

0 for the eigenfunction u+
0 (s) = coshα+

0 s is determined by using Eq.
(39b). The intersections with horizontal lines at the given value for β = J/T determine the
solutions. Only positive values for α need to be considered. The real solution α+

0 exists only
for β > 0. In b), a+

l for the eigenfunction cosa+
l s is determined by using Eq. (42b), with

α = ia. Here and in Fig. 2b there are an infinite number of intersections with a line at
constant β, corresponding to an infinite set of eigenvalues and eigenfunctions.
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Fig. 2. Graphical solutions for the values of α corresponding to odd symmetry eigenfunctions. In

a), the real solution α−
0 for the eigenfunction u−

0 (s) = sinhα−
0 s is determined by using

Eq. (40b). This solution exists only for β > 1. In b), a−
l for the eigenfunction sin a−

l s is

determined by using Eq. (44b), with α = ia.

14



0.0 0.5 1.0 1.5 2.0
T/|J|

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0
U

/|J
|

J<0

Ising

(a)

J>0

0.0 0.5 1.0 1.5 2.0
T/|J|

0.0

0.5

1.0

1.5

2.0

C
/k

J<0

Ising
(b)

J>0

3. Results for (a) internal energy per site U and (b) specific heat per site C. The dashed curves

represent the 1D Ising model for comparison.
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4. The single site spin distribution for (a) J > 0 and (b) J < 0. The curves are described by
Eqs. (48) and (49).
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