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We discuss coupled XY spin chains in three dimensions
and calculate the transition temperature and spin correlation
lengths, as functions of the ratio of the interchain exchange
coupling J ′ to the intrachain coupling J , for chain-like spatial
anisotropy, J ′ < J . We use two different approaches of the
Onsager Reaction Field (ORF) formalism. First we use the
standard ORF theory, in which both the intrachain and in-
terchain couplings are treated equally. Second, we treat one
chain exactly and consider it in the effective field caused by
the other chains, with the ORF formalism applied to the in-
terchain interaction. The transition temperatures obtained
are compared with results from Monte Carlo simulations.
PACS numbers: 75.10.Hk; 75.40.Cx

I. INTRODUCTION

Here we study a set of coupled XY chains in three-
dimensions (3d) described by nearest neighbor exchange
couplings J along the chains and J ′ between chains. We
use the Onsager Reaction Field (ORF) approach,1 and a
modified version of it in order to treat the limit of weakly

coupled chains (J ′ � J). This modified version – which
we call CORF (“chain”-ORF) – was introduced in Ref. 2.
We use a cluster Monte Carlo (MC) scheme to estimate
the critical temperature as a function of anisotropy ∆ ≡
J ′/J to test the two theoretical calculations.

The ORF was first used in magnetism by Brout and
Thomas3 and has since been applied successfully to many
problems.4,5 ORF represents an improvement over the
mean field approximation because it gives a more ade-
quate treatment of the short-range order. The basic idea
is that the spins surrounding any given spin are corre-
lated to the motion of that spin and do not contribute
to the mean field seen by that spin. This is incorporated
into the theory by subtracting the reaction field from the
mean field.

In the modified reaction field approach, CORF, the
idea is to treat a linear chain exactly while its inter-
action with other chains is treated approximately us-
ing the reation field theory. Since individual chains are
treated exactly, we expect this modified ORF approach
to be more appropriate for weak interchain interactions
(∆ � 1). For strongly coupled chains (∆ → 1), we
expect the standard ORF to work better. Obviously,
both approaches are valid only for temperatures above
the critical temperature Tc and outside a very small crit-
ical region around it.

II. THEORY

A. The standard ORF

The Hamiltonian for coupled XY chains is

H = −
∑

(n,m)

Jn,m
~Sn · ~Sm (1)

where the sum is over nearest neighbor pairs (n,m) on
a cubic lattice, and Jn,m = J for bonds along the chains
(z-axis) and Jn,m = J ′ = ∆J for bonds between neigh-
boring chains (x and y axes). The Fourier transformed
Hamiltonian has coupling in ~q-space,

J(~q) = 2J [cos qz + ∆(cos qx + cos qy)] . (2)

In order to incorporate short-range order effects into
the mean field approach we subtract from the molecular
field acting on a given spin the part due to the polariza-
tion by that spin of its neighbors: this part is the reaction
field. The procedure for obtaining the static susceptibil-
ity is analogous to the one used in the standard mean field
approach and we subtract a self-consistent term λ(T )
from the molecular field J(~q), obtaining

χ(~q) =
χ0

1 − χ0[J(~q) − λ(T )]
(3)

where χ0 = S2/2T (henceforth, S = 1). The reaction
field λ(T ) is determined self-consistently2 and the critical
temperature Tc is the highest temperature at which the
susceptibility (3) diverges (See Ref. 5). Tc is given by

J

Tc
=

1

π2

∫ π

0

∫ π

0

dqxdqy
√

[1 + ∆(2 − cos qx − cos qy)]2 − 1
(4)

The solid line in Fig. 1 shows Tc as a function of ∆.
Notice that this procedure correctly predicts the absence
of a phase transition for the 1d limit, ∆ = 0.

Many physical quantities, such as spin correlation func-
tions, correlation lengths, specific heat, etc., can be ob-
tained from the static susceptibility χ(~q). The longitudi-
nal (along z-axis) and transverse correlation lengths, ξz

and ξxy, respectively, can be obtained from the relation

< ~Si.~Sj >= T
∑

~q

χ(~q) exp[i~q.(~Ri − ~Rj)] (5)

by performing a small ~q-expansion. This procedure yields
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ξz(T ) =

[

2T

J
+

λ

J
− 2(1 + 2∆)

]−1/2

,

ξxy(T ) =
√

∆ ξz(T ) . (6)

In the isotropic limit ∆ → 1, we correctly obtain ξz = ξxy

but, for ∆ = 0 and for low temperatures, Eq. (6) gives
ξz = J/T underestimating the exact asymptotic result6

ξexact
z = 2J/T . However, considering the nature of the

approximations we expect that the ORF procedure works
better for the isotropic limit, when all spins surround-
ing a given one are almost equivalent. The procedure is
more likely to fail in the 1d limit because the spins are
much more strongly correlated to their neighbors along
the chains than to those in adjacent chains.
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FIG. 1. Tc vs ∆, from ORF (continuous curve), CORF
(dashed curve), and MC (points).

B. Chain-ORF: weakly coupled chains

In order to study quasi-one dimensional systems, ∆ ≈
0, we treat the linear chain exactly and consider the inter-
chain interaction in the context of the Onsager reaction
field. This kind of approach — but using mean field in-
stead of ORF – was applied7 to study coupled chains.
Our proposal, first presented in Ref. 2, is that we con-
sider each chain in the effective field of the neighboring
chains. We refer to this procedure as CORF (“chain”-
ORF). The steps that lead to the static susceptibility are
analogous to those in a mean field approximation, but the
“molecular” field is J ′(~q⊥) = 2J∆(cos qx + cos qy). Here
the temperature dependent Onsager correction term is
designated by λc(T ). We find that the susceptibility is

χc(~q) =
χ1d(qz)

1 − χ1d(qz) [J ′(~q⊥) − λc(T )]
, (7)

where superscripts c stand for chain approximation, and
χ1d(qz) is the susceptibility of a single isolated chain,
calculated exactly by Joyce8:

χ1d(qz) =
1

2T

1 − u2

1 + u2 − 2u cos qz
, (8)

where u = I1(J/T )/I0(J/T ), and In(x) are the modified
Bessel functions of order n.

The critical temperature T c
c can be obtained2 by nu-

merically solving the equation

2uc

1 − u2
c

=

∫ π

0

∫ π

0

dqxdqy/π2

√

[1 + Bc(2 − cos qx − cos qy)]2 − 1
,

(9)

where Bc = ∆(J/T c
c )(1 − u2

c)/2uc is calculated at the
transition temperature. The only differences of this equa-
tion compared with the ORF expression for Tc, Eq. (4)
are the factors involving 2uc/(1−u2

c). From this similar-
ity, it can be seen that if the full ORF result Tc(∆) over a
range of ∆ is known, then a mapping9 to the correspond-
ing CORF result can be obtained without a self-consistent
solution of Eq. (9). In Figure 1, the dashed line shows
T c

c as a function of ∆.
Performing a small ~q-expansion of Eq. (7), we obtain

the longitudinal and transverse correlation lengths

ξz =

{

(1 − u)

u

[

(1 − u) − (4J ′ − λc)

2T
(1 + u)

]}−1/2

,

ξxy =

√

J∆

T

(1 − u2)

2u
ξz (10)

In the 1d-limit we obtain ξxy = 0, and the correct low-
temperature limit,6 ξz = 2J/T , This shows that in the
∆ → 0 limit, CORF is better than the standard ORF.
In the other limit, ∆ → 1, for temperatures where the
Onsager Reaction Field approach is valid (T > Tc) the
argument J/T of the Bessel functions appearing in u [Eq.

(8)] is small. Then Eq. (10) gives ξz ≈
√

∆ξz as in Eq.
(6). This shows that for high temperature CORF and
ORF are equivalent as ∆ → 1.

III. MC CALCULATION OF TC

A MC scheme based on the Wolff10 single-cluster algo-
rithm was used to estimate the critical temperatures, in-
corporating the spatially anisotropic exchange by build-
ing clusters as follows: First, a random seed site of a
L × L × L periodic lattice was chosen, and “flipped” by
inversion of its component along a randomly chosen unit
vector r̂ within the XY plane:

~S ′

n
= ~Sn − 2(~Sn · r̂)r̂. (11)

Then each of the six neighboring sites m were tested to
see if they should be included into the cluster according
to a Metropolis-like decision, determined by the energy
change ∆En,m ≡ Enobond−Ebond for not forming a bond
from site n to site m:
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FIG. 2. Fourth order cumulant ratio [Eq. (14)] used to de-
termine Tc ≈ 0.62J for ∆ = 0.1, for indicated system lengths
L.

∆En,m = −Jn,m
~S ′

n
·
(

~Sm − ~S ′

m

)

. (12)

Primes indicate that the flipping operation (11) has been

applied, using the same value of r̂ as for ~Sn. A bond
(or link) from n to m is now placed with probability
(1−pnobond

n,m ), where a Metropolis decision gives the prob-
ability for not putting a bond to be

pnobond
n,m = min[1, e−∆En,m/T ]. (13)

When site m is added into the cluster, it is immedi-
ately flipped. The total energy E is then incremented

by ∆En,m and the total magnetization ~M is incremented

by (~Sm − ~S ′

m
), summing over all neighbors of the site n

being considered, regardless of whether the neighbor m

is included into the cluster or not. Any sites added to
the cluster also have their neighbors tested for inclusion
in the same way, until the cluster stops growing.

This process builds and flips one cluster. The cluster
tends to be large at low temperature, leading to rapid
changes in phase space. At high temperature, however,
only small clusters are formed, leading to slower sampling
of phase space. Therefore, we defined one MC cluster
step to mean that we form and flip individual clusters
until the total number of sites that were included into
clusters is greater than L3/4. Using similar numbers of
steps at all temperatures we can get uniform error bars.

We made simulations with L = 4, 8, 16, 32, using
200,000 to 400,000 steps for averages, after a short re-
laxation of 2000 steps, since the Wolff scheme has an
extremely short correlation time. We looked at the scal-
ing of the results with system length, using the common
crossing point of Binder’s11 fourth order cumulant ratio,

UL(T ) = 1 − 〈|M |4〉
2〈|M |2〉2 . (14)

to estimate Tc for 0.01 ≤ ∆ ≤ 1.0. A typical plot of
UL(T ), for ∆ = 0.1, is shown in Fig. 2. For ∆ = 1.0,
we find Tc ≈ 2.20, in agreement with Kohring et al.12

on lattices with L ≤ 14. For smaller anisotropies (∆ <
0.01), however, it is difficult to get a single crossing point
in the UL(T ) plot for these values of L. For ∆ = 0.01
we found it necessary to go to L = 64 in order to get
Tc accurately. There the finite size effects apparently are
much stronger, as well as the MC becoming more difficult
when T � J .

IV. DISCUSSION OF RESULTS

A. Critical Temperature and λ(T )

In Fig. 1 we compare Tc vs. ∆ obtained from MC with
the ORF and CORF results. The comparison to the MC
values favors the CORF results in the whole ∆ region,
more so in the small ∆ region (∆ < 0.1). We could have
anticipated this because the Onsager correction term
(Fig. 3) is necessarily smaller in the CORF, leading to
higher Tc, because it includes less spins than the ORF.
At the other limit, ∆ = 1, ORF gives Tc = 1.95J , CORF
gives T c

c = 2.00J , both much more accurate than mean
field theory, T MF

c = 3.0J .
On intuitive grounds, we expect that the critical On-

sager term, λc, shown in Fig. 3, should increase continu-
ously with ∆ in both treatments because the interaction

with spins in neighboring chains becomes stronger as ∆
increases. This is true in the CORF approach: a fit to
the curve in Fig. 3 gives λc

c = 1.45∆, a result that can
also be obtained analytically. The curve obtained for λ
in the standard ORF shows a minimum around ∆ ≈ 0.1:
this unexpected result may show why the ORF treatment
is not appropriate for ∆ < 0.1.
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FIG. 3. λc vs ∆, from ORF (continuous curve) and CORF
(dashed curve) calculations.
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B. Correlation Lengths

Typical correlation lengths for ∆ = 0.1, ∆ = 1.0, are
displayed in Fig. 4. The overall behavior does not differ
appreciably from one treatment to the other, and in both
cases the longitudinal and transverse correlation lengths
behave as ξ ≈ tη with the exponent η being independent
of the interchain coupling J ′ (typically, η is in the range
0.80 − 0.90). However, based on the behavior obtained
for the correlation lengths in the ∆ = 0 limit and for the
transition temperatures in the ∆ ≤ 0.1 region, we can
believe that ∆ = 0.1 is better described by the CORF
results. We note that at ∆ = 1 the CORF and ORF pro-
cedures give completely equivalent results for high tem-
peratures T � Tc, with ξz = ξxy as they should (see
discussion after Eq. (10)). This is an interesting result.
For ∆ = 1 all neighbors of a given spin, whether in the
same or neighboring chains, are completely equivalent.
This is represented correctly in the ORF where all neigh-
bors are included equivalently in the reaction field. In the
CORF procedure, on the other hand, only the spins in
the neighboring chains are included in the reaction field;
those along the chain are treated exactly.

V. CONCLUSIONS

We have discussed two ways of implementing the
Onsager Reaction Field formalism to study three-
dimensional systems built from weakly coupled magnetic
chains. In the standard ORF, exchange interactions in
different directions were treated equivalently, although
the exchange couplings are different. In the CORF, we
considered each magnetic chain in the modified mean
field due to the neighboring chains, integrating the spatial
anisotropy into the calculational approach. It seems rea-
sonable to expect that the CORF approach gives a better
description of the system when J ′ � J while for J ′ ≈ J
the standard ORF treatment should work better because
in this limit, all neighbors to a given spin are approxi-
mately equivalent, independent of being along the chain
or not. In fact, in the ∆ → 1 limit, the two procedures
give almost indistinguishable results, except for small dif-
ferences in Tc. Both CORF and ORF estimate values for
Tc in good agreement with our MC data, however, the
entire range 0 ≤ ∆ ≤ 1 is better described by CORF.
This was anticipated from the spin correlation lengths
obtained in each treatment: for ∆ = 0 and low tempera-
tures, CORF gives the exact result for ξz while the ORF
underestimates it by a factor of 2. Thus we suggest that
the CORF approach can be a useful improvement over
the mean-field and ORF theories for other models with
strongly anisotropic couplings.
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