DYNAMICS OF UNBOUND VORTICES IN THE 2-DIMENSIONAL XY AND ANISOTROPIC HEISENBERG MODELS

F. G. Mertens¹, A. R. Bishop, M. E. Gouvea and G. M. Wysin

Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.

Abstract. – Assuming an ideal gas of vortices above the Kosterlitz-Thouless transition temperature, the dynamic form factors are calculated. For the in-plane correlations a Lorentzian central peak is predicted which is independent of the vortex size and shape. However, for the out-of-plane correlations the velocity dependence of the vortex structure is decisive for the occurrence of a Gaussian central peak. Both results are in good agreement with combined Monte Carlo-molecular dynamics simulations.

1. Introduction

Quasi-two-dimensional magnetic materials with easy-plane symmetry, e.g. Rb_2CrCl_4 or $BaCo_2 (AsO_4)_2$, have been studied recently both by inelastic neutron scattering experiments [1, 2, 8] and by a phenomenological theory for the *dynamic* correlations [3]. In this theory the anisotropic Heisenberg model with nearest-neighbor interactions

$$H = -J \sum_{m,n} \left[S_x^m S_x^n + S_y^m S_y^n + \lambda S_z^m S_z^n \right]$$
(1.1)

is considered, where \mathbf{S}^m is a classical spin vector and $0 \le \lambda < 1$; $\lambda = 0$ corresponds to the XY-model.

At a critical temperature $T_c(\lambda)$ Monte Carlo (MC) data [5] show a Kosterlitz-Thouless phase transition. Above T_c a part of the vortex-antivortex pairs unbind and the unbound vortices are in motion due to their interactions. Assuming that the positions are random locally, the velocity distribution is Gaussian [4], therefore the unbound vortices can be treated phenomenologically as an ideal gas, in the same spirit as the solitongas approach for 1-d magnets.

The correlations for the in-plane components S_x or S_y are quite distinct from those for the out-of-plane component S_z . We show here that the velocity dependence of the vortex structure is decisive for the out-of-plane correlations, in contrast to reference [3] where only the static structure has been considered.

2. In-plane correlations

We use a continuum description and spherical coordinates for the spin configuration

$$\mathbf{S}(\mathbf{r},t) = S(\cos\phi\sin\theta, \sin\phi\sin\theta, \cos\theta) \quad (2.1)$$

where $\mathbf{r} = (x, y)$. The equations of motion have two static vortex or antivortex solutions [6] $\phi(\mathbf{r}) = \pm \tan^{-1}(y/x)$. Molecular dynamics (MD) simulations have shown [6] that for $0 \le \lambda \le 0.7$ only a planar solution $\theta(\mathbf{r}) \equiv \pi/2$ is stable, whereas for $\lambda \ge 0.8$ only a solution which has an out-of-plane structure $\theta(\mathbf{r}) \ne \pi/2$ is stable; only the former case is considered here. S_x and S_y are not localized, i.e. they have no spatial Fourier transform. Therefore the in-plane correlation function $S_{xx}(\mathbf{r},t) = \langle S_x(\mathbf{r},t) S_x(\mathbf{0},0) \rangle$ is only globally sensitive to the presence of vortices. Thus the characteristic length is the average vortex-vortex separation 2ξ , where ξ is the Kosterlitz-Thouless correlation length.

When a planar vortex starts moving it develops an out-of-plane structure (see next section). However, for $S_{xx}(\mathbf{r},t)$ this is not important because the dominant effect of moving vortices is to act like "2-d sign functions" or "2-d kinks", i.e; every vortex that passes with its center between 0 and \mathbf{r} in time t diminishes the correlations, changing $\cos \phi$ by a factor of (-1), independent of the direction of movement and independent of the internal structure of the vortex [3].

The detailed calculation of $S_{xx}(\mathbf{r},t)$ is published elsewhere [4] and gives a (squared) Lorentzian central peak for the dynamic form factor

$$S_{xx}(\mathbf{q},\omega) = \frac{S^2}{2\pi^2} \frac{\gamma^3 \xi^2}{\left\{\omega^2 + \gamma^2 \left[1 + (\xi q)^2\right]\right\}^2}$$
(2.2)

with $\gamma = \sqrt{\pi}\bar{u} / (2\xi)$. Here \bar{u} is the rms velocity of the vortices which can be taken from Huber [7] who calculated the velocity auto-correlation function. The central peak (2.2) is in excellent agreement with data obtained from combined MC-MD simulations [4]. Moreover there is a qualitative agreement with the above mentioned neutron scattering experiments 1, 2].

3. Out-of-plane correlations

 $S_z(\mathbf{r}, t)$ is localized for a single vortex, therefore correlations are sensitive to the vortex size and structure. We assume a dilute gas of N_v unbound vortices with positions \mathbf{R}_i and velocities \mathbf{u}_i and consider the incoherent superposition

$$S_{z}(\mathbf{r},t) = S \sum_{i=1}^{N_{\mathbf{v}}} \cos \theta \left(\mathbf{r} - \mathbf{R}_{i} - \mathbf{u}_{i}t\right).$$
(3.1)

The thermal average in $S_{zz}(\mathbf{r},t) = \langle S_z(\mathbf{r},t) S_z(\mathbf{0},0) \rangle$

¹Permanent address: Physics Institute, University of Bayreuth, D-8580 Bayreuth, F. R. G.

is evaluated by integration over ${\bf R}$ and ${\bf u}$

$$S_{zz} (\mathbf{r}, t) =$$

$$n_{\mathbf{v}} S^{2} \int \int d^{2}R d^{2}u P(\mathbf{u}) \cos \theta (\mathbf{r} - \mathbf{R} - \mathbf{u}t) \times$$

$$\times \cos \theta (\mathbf{R}) \quad (3.2)$$

where n_v is the vortex density and $P(\mathbf{u})$ is the velocity distribution. Introducing the vortex form factor $f(\mathbf{q}) =$ Fourier transform of $\cos \theta(\mathbf{r})$, we get

$$S_{zz} \left(\mathbf{q}, t \right) = \frac{S^2}{\left(2\pi\right)^2} n_{\mathbf{v}} \int d^2 u \left| f\left(\mathbf{q}\right) \right|^2 \times \\ \times P\left(\mathbf{u}\right) e^{-i\mathbf{q}\cdot\mathbf{u}t}. \quad (3.3)$$

This can be evaluated easily if the *static* vortex solutions are inserted [3]. However, for $\lambda \leq 0.7$ only the planar solution turns out to be stable [6] and S_{zz} would then vanish, in contradiction to the MC-MD simulation [3].

Therefore the velocity dependence of $\theta(\mathbf{r})$ must be taken into account. For $\lambda \leq 0.7$ and small velocity u the equations of motion yield the asymptotic solution (in the moving frame, with time unit \hbar/JS)

$$\cos \theta = \frac{-1}{4\delta} \frac{\mathbf{u} \cdot \mathbf{e}_{\varphi}}{r}, r \to \infty$$
(3.4)

which has been checked by MD-simulations; $\delta = 1 - \lambda$, and \mathbf{e}_{φ} is the azimuthal unit vector in the *xy*-plane. The solution for $r \to 0$ can be obtained also, but we are interested here only in the correlations for small qwhere the asymptotic solution should be a good approximation. This leads to a velocity dependent form factor and eventually to

$$S_{zz}\left(\mathbf{q},\omega\right)\frac{n_{\mathrm{v}}}{32\sqrt{\pi}\delta^{2}}\frac{\bar{u}}{q^{3}}\exp\left\{-\left(\frac{\omega}{\bar{u}q}\right)^{2}\right\}.$$
 (3.5)

This is a Gaussian central peak which reflects the velocity distribution. The width $\Gamma_z = \bar{u}q$ has a linear *q*-dependence, which is very well supported by the MC-MD data [3]. The integrated intensity is

$$I_{z}(q) = \frac{n_{v}}{32\delta^{2}} \frac{\bar{u}^{2}}{q^{2}}.$$
 (3.6)

Here the divergence for $q \to 0$ results from the infinite range of the structure (3.4). However, the actual radius of a vortex must be on the order of ξ (see introduction), which can be taken into account e.g. by an ad-hoc cut-off function $\exp(-\varepsilon r/\xi)$ with a free parameter ε . This gives an extra factor of κ^2 in (3.6), with $\kappa = 1 - 1/W$ and $W = \left[1 + (\xi q/\varepsilon)^2\right]^{1/2}$. The final result for $I_z(q)$ is consistent with our MC-MD data for small q (Fig. 1). Note that absolute intensities are compared here; we have chosen ε such that I_z is smaller than the data because other effects can also contribute to the central peak, e.g. 2-magnon difference processes and vortex-magnon interactions which will be treated in future publications.

Fig. 1. – Intensity I_z of central peak for a temperature $T > T_c \simeq 0.8$. Data points result from MC-MD simulations on a 50×50 lattice (circles) and 100 × 100 lattice (crosses). Solid line from (3.6) including the cut-off, with \bar{u} and ξ from reference [4].

Acknowledgments

The research of FGM and MEG was supported by DFG (Germany) and CNPQ (Brazil), respectively.

- Hutchings, M. T., Day, P., Janke, E. and Pynn, R., J. Magn. Magn. Mater. 54-57 (1986) 673.
- [2] Regnault, L. P., Boucher, J. P., Rossat-Mignod, J., Bouillot, J., Pynn, R., Henry J. Y. and Renard, J. P., *Physica B* 136 (1986) 329.
- [3] Mertens, F. G., Bishop, A. R., Wysin, G. M. and Kawabata, C., Phys. Rev. Lett. 59 (1987) 117.
- [4] Mertens, F. G., Bishop, A. R., Wysin, G. M. and Kawabata, C., Phys. Rev. B, in press.
- [5] Kawabata, C. and Bishop, A. R., Solid State Commun. 42 (1982) 595; J. Phys. Soc. Jpn 52 (1983) 27; Solid State Commun. 60 (1986) 169.
- [6] Wysin, G. M., Gouvea, M. E., Bishop, A. R. and Mertens, F. G., Computer Simulation Studies in Condensed Matter Physics: Recent Developments (Springer, Berlin) 1988, in press.
- Huber, D. L., Phys. Rev. Lett. A 76 (1980) 406;
 Phys. Rev. B 26 (1982) 3758.
- [8] Wiesler, D. G., Zabel, H. and Shapiro, S. M., Int. Conf. on Neutron Scattering, Grenoble, July 1988, preprint.