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The spinwave modes associated with magnetic vortices in classical easy-plane ferromagnets
(FM) and antiferromagnets (AFM) are studied numerically and compared. We determine
the modes about a static vortex through numerical diagonalization on circular systems
containing up to several hundred spins on a square lattice, as a function of the anisotropy
parameter, λ = Jz/Jxy, where Jz and Jxy are the near-neighbor exchange couplings of the
indicated spin components. In the FM system, a quasilocal mode is associated with the
instability of vortices to transform between in-plane and out-of-plane types at a critical
anisotropy λc < 1. In the AFM system, the corresponding instability mode is a true
local mode for the out-of-plane vortex. Both systems have degenerate pairs of modes for
λ < λc, however, these degeneracies split for λ > λc in the FM system but not in the
AFM system. We relate this to the presence of a gyrovector for the FM out-of-plane vortex,
and corresponding orbital motions associated with the translation modes, both of which are
absent for the AFM out-of-plane vortices.

PACS numbers: 75.10.Hk, 75.30.Ds, 75.40.Gb, 75.40.Mg

I. INTRODUCTION

Two-dimensional magnets with easy-plane (xy) sym-
metry have attracted much attention [1], partly because
the unbinding of vortices is responsible for the topological
Berezinskii-Kosterlitz-Thouless transition [2,3]. The spin
vortices present above the transition temperature TKT

are expected to behave like particles and carry effective
charges (vorticity or in-plane winding number, and gy-
rovector or topological charge), and interact with each
other via logarithmic pair potentials [4–6]. Assuming
they can move about freely in the system, they are also
predicted (using an ideal gas theory [7]) to contribute as
well to dynamic correlation functions, producing the so-
called central peak. Just as in one-dimensional soliton-
bearing systems, a description of the vortex-spinwave in-
teractions in two-dimensional magnets is necessary for a
complete description of the thermodynamics. The spin-
wave spectrum in the presence of a vortex or other type
of topological excitation also contains information about
the stability, internal dynamics, and translational mo-
tion of the excitation, considered as a particle-like object.
Thus there has been continued interest to understand the
interaction of a single vortex with spinwaves [8,9] and
even the spinwave fluctuations associated with a vortex-
antivortex pair [10]. These studies have used continuum
theory, which may not always be a good description of
the vortex core, where spatial gradients are large. Our
goal here is to present studies using numerical diagonal-
ization on discrete lattice systems to determine the effects

of vortex-spinwave interactions for 2D magnets.
Concerning translational vortex dynamics, an equation

due to Thiele [11] for describing the dynamic motion of
domain walls was applied by Huber [12] to describe the
motion of vortices, under the assumption that a slowly
moving vortex does not change its spin structure as a
result of the motion. However, moving vortices can do
so only by changing their structure, e.g., by excitation
of the appropriate translational mode. The excitation of
the translational modes is expected to lead to generation
of a mass, and modification of the Thiele-Huber equation
of motion for vortices [13,14]. Even more alluring is the
question of internal degrees of freedom. Can there be
spinwave modes on a vortex, similar to those found for
1D AFM solitons [15], that correspond to an internal
oscillation of the vortex, that may be localized on the
vortex, and whose frequency is determined only by the
exchange constants, not by the system size?

Previous studies of modes of vortices in easy-plane dis-
crete lattice ferromagnets [16–18] demonstrated the exis-
tence of one particular mode associated with an instabil-
ity of the vortex at a critical value λc of the anisotropy
constant λ ≡ Jz/Jxy < 1. The value of λc depends on
the lattice [19]. For the square lattice, λc ≈ 0.704 . For
λ < λc, the stable vortex is in-plane, with zero out-of-
plane (z) spin components. For λ > λc the stable vor-
tex is out-of-plane, with nonzero out-of-plane spin com-
ponents, whose asymptotic form is known. The mode
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responsible for this crossover was found to become soft
(small but not zero frequency, due to numerical precision
and finite size effects) at λ = λc, with a wavefunction
having a minimum rms size at this critical point [18].
However, the overall frequency scale of this mode, as well
as all other modes in the system, was found to decrease
as the inverse system size, which is to say, it is not a
localized mode. Instead, we can consider it a quasi-local

mode, especially near λc where its rms size is minimum.
The AFM has static in-plane and out-of-plane vortices

that are essentially the same as those in the FM, when
comparing the spins on a single sublattice. As a result,
the AFM exhibits the same in-plane to out-of-plane vor-
tex instability, and the same values for λc as in the FM.
But for the dynamics, it is a different story. Ivanov et al.
[20] found the existence of a truly localized mode of the
out-of-plane AFM vortex. Its rms size and frequency are
dependent only on the exchange constants Jz and Jxy,
provided the system size is large enough compared to
the intrinsic rms size. Its existence is linked to the pres-
ence of the double continuum spectrum for the AFM; this
mode appears in the gap just below the upper continuum.
Such localized modes may be observable experimentally
through resonance experiments.

The purpose of the present article is to analyze the
spinwave spectra in the presence of a vortex for both FM
and AFM models, and to present a detailed comparison
of their λ-dependence. We will concentrate on the quasi-
local and local modes and the translation modes. (The
Ivanov et al. [20] study concentrated on the properties of
the local mode at one value of λ; here we find that this
mode is in fact related to the instability mode as λ → λc.)
For the translation modes, there is an interesting

FIG. 1. The out-of-plane spin components in FM (circles)
and AFM ( + signs) vortices as a function of radius r from
the vortex center, for anisotropy parameters λ as indicated.
Both sublattices are shown for the AFM.

distinction between those for the FM and those for the
AFM, that is related to the absence or presence, respec-
tively, of symmetry in Sz for the static vortex struc-
ture, and also to the corresponding absence or presence
of a nonzero gyrovector [16]. This distinction results in
orbital motions implied by the FM translation modes,
as opposed to linear motions associated with the AFM
translation modes. These results are relevant to describ-
ing vortex motions via collective coordinate types of the-
ories [14,21,22].

We begin by first reviewing the static vortex struc-
ture, then describing the notation for the diagonalization
problem, and then relating the notation for the spinwave
functions back to the Cartesian spin components and to
the continuum limit spherical coordinate angles for the
spins. This will be followed by results for FM and AFM
models, with a comparison of the similarities and differ-
ences.

II. THE STATIC VORTICES

The system to be considered is the classical 2D easy-
plane magnet, characterized by near neighbor exchange
J and anisotropy parameter λ, with spin Hamiltonian:

H = ±J
∑

n,a

(Sx
n
Sx

n+a
+ Sy

n
Sy

n+a
+ λSz

n
Sz

n+a
), (2.1)

where (+) refers to the AFM and (−) refers to the FM
model. The subscript n labels the lattice site at position
rn = (xn, yn), and a labels the set of displacements to the
nearest neighbors. The equations of motion and static
vortex solutions as a function of λ for 0 ≤ λ < 1 are well
known [4–6]. Usually it is convenient to represent the
spins using “in-plane” (φ) and “out-of-plane” (θ) angles,

~Sn = S(cos θn cosφn, cos θn sinφn, sin θn). (2.2)

For the static vortex at position r0 = (x0, y0), the in-
plane angles are given by

φ0
n

= q tan−1(
yn − y0

xn − x0
), (2.3)

where the superscripts 0 will be used to indicate quanti-
ties associated with static vortex structures. The corre-
sponding out-of-plane component sin θ0

n
= Sz

n
/S is not

described by a simple analytic function, except when
λ < λc, for which θ0

n
= 0 (See Fig. 1.). For λ > λc, the

out-of-plane component (on one sublattice for the AFM)
has an exponentially decaying asymptotic behavior,

Sz
n
≈ p

√

rv

r
e−r/rv , rv =

1

2

√

λ

1 − λ
, (2.4)

where p = ±1 is the “polarization” of the out-of-plane
component, r = |rn − r0| is the radial distance from the
vortex core, and rv is the vortex core radius. For the FM,
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the product of vorticity q with polarization p leads to the

gyrovector, ~G = 2πpqêz, which plays an important role in

the vortex dynamical equation of motion [12]. (~G is zero
for AFM vortices, due to cancelling contributions from
the sublattices.) Elsewhere, for a finite circular system
with some radius R, one can use a relaxation procedure
[18] for λ > λc to determine the out-of-plane vortex struc-
ture. A Dirichlet boundary condition can be applied by
extending the lattice to fictitious sites outside the radius
R, whose spins are held fixed in the XY-plane along the
directions for the static vortex, Eq. 2.3. For a square
lattice, some typical out-of-plane vortex structures are
shown in Fig. 1. The growth of significant Sz compo-
nents occurs for AFM and FM models above the same
value of λ = λc. The structures for a single sublattice of
the AFM model are identical to those in the FM model.
These are the static vortex structures about which we
find the spinwave spectra.

III. THE NORMAL MODE PROBLEM: METHOD

To set up the spinwave calculation about an inhomo-
geneous state, we use the method in Ref. [18] and define
new local coordinate axes x̃n, ỹn, z̃n, where the z̃n axis
is aligned with the unperturbed spin of the static vortex

(along ~S0
n
). The x̃n axis is taken in the XY-plane, and

then ỹn = z̃n × x̃n. The transformation is

Sx
n

= −Sx̃
n

sin φ0
n
− S ỹ

n
sin θ0

n
cosφ0

n
+ S z̃

n
cos θ0

n
cosφ0

n

Sy
n

= Sx̃
n

cosφ0
n
− S ỹ

n
sin θ0

n
sin φ0

n
+ S z̃

n
cos θ0

n
sin φ0

n

Sz
n

= S ỹ
n

cos θ0
n

+ S z̃
n

sin θ0
n

(3.1)

Then treating the tilde spin components semiclassically,

they are described by an equation of motion, ih̄ ~̇Sn =

[~Sn, H ]. Under linearization in spin components, Ṡ z̃
n
≈ 0,

and a set of equations is obtained for Ṡx̃
n

and Ṡ ỹ
n

[18].
Solutions for the normal mode problem are sought in

the form of creation and annihilation operators B†
k and

Bk, where k is a mode index that includes whatever quan-
tum numbers distinguish the modes, such as principle
and azimuthal quantum numbers. These operators are
appropriate linear combinations of Sx̃

n
and S ỹ

n
:

B†
k =

∑

n

(w
(1)
k,nSx̃

n
+ w

(2)
k,nS ỹ

n
) (3.2a)

Bk =
∑

n

(w
(1) ∗

k,n Sx̃
n

+ w
(2) ∗

k,n S ỹ
n
) (3.2b)

with the complex expansion coefficients w
(1)
k,n and w

(2)
k,n

that define the eigenvectors to be determined. Then B†
k

is the creation operator for mode k provided that the co-

efficients w
(1,2)
k,n are chosen so that Ḃ†

k = iωkB†
k, where

ωk is the normal mode (spinwave) frequency, also to be

determined. The corresponding matrix for this diagonal-
ization problem has elements that depend on the static
structure, θ0

n
, φ0

n
. Once the eigenvectors are known, the

spin components are recovered through the inverse rela-
tionship to Eq. (3.2), specifically,

Sx̃
n

= iS
∑

k

(w
(2)
k,nBk − w

(2) ∗

k,n B†
k) (3.3a)

S ỹ
n

= −iS
∑

k

(w
(1)
k,nBk − w

(1) ∗

k,n B†
k) (3.3b)

For the creation and annihilation operators to satisfy the

standard commutation relation, [Bk, B†
k′ ] = δk,k′ , the

eigenvectors must be normalized by the requirement,

h̄S
∑

n

[(iw
(1) ∗

k,n w
(2)
k,n) + (iw

(1) ∗

k,n w
(2)
k,n)∗] = 1. (3.4)

This requirement is necessary primarily if one is inter-
ested in a thermal population of the modes, and wants
to know the absolute magnitudes of the thermal fluctua-
tions associated with the modes.

For our discussion here, we are instead more interested
in the time dependent spin motions associated with each
mode, in order to understand the role of the mode in the
vortex instability, translation or internal oscillation. In
this case the absolute normalization is not so important,

however, the relation of the eigenvector coefficients w
(1,2)
k,n

to the angular coordinates is useful. If we suppose that
one mode k is excited from the “ground state”, which is
the static vortex, then the mixture of the excited state
with the ground state leads to the time dependent local
spin fluctuations,

〈Sx̃
n
(t)〉 = Re{−w

(2) ∗

k,n eiωkt}, 〈S ỹ
n
(t)〉 = Re{w

(1) ∗

k,n eiωkt}.

(3.5)

Essentially, w
(2)
k,n relates to fluctuations of spin compo-

nents that are only within the original xy-plane, while

w
(1)
k,n contains spin fluctuations that are a combination of

in-plane and out-of-plane spin components. In the case

where the static spin is in the xy-plane, w
(1)
k,n involves

only out-of-plane fluctuations. This can be seen more
readily by relating these coordinates to the more usual
angular coordinates. If we consider the perturbation of
site n in the form, φn = φ0

n
+ϕn, and θn = θ0

n
+ϑn, with

ϕn, ϑn � 1, then substitution into Eqs. (2.2) and (3.1)
leads to the result,

Sx̃
n

= Sϕn cos θ0
n
, S ỹ

n
= Sϑn. (3.6)

This confirms that Sx̃
n

or w
(2)
k,n relate purely to in-plane

oscillation ϕn, and S ỹ
n

or w
(1)
k,n relate to oscillations that

change the amount of out-of-plane tilting of ~Sn (although
this latter motion can contain fluctuations of both in-
plane and out-of-plane spin components).
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IV. RELATION OF WAVEFUNCTIONS TO

CONTINUUM LIMIT ANGLES

In the FM model, the angles ϑn and ϕn that are given

by the coefficients w
(1)
k,n and w

(2)
k,n, respectively, can be re-

placed by their continuum counterparts, ϑ(~r) and ϕ(~r).
For the AFM model, however, the presence of multiple
sublattices means that appropriate linear combinations
of the w(1,2) coefficients on different sublattices will map
over into slowly varying continuum angles to describe the
spin field. The simplest case is that of bipartite lattices
such as square and honeycomb. If n is a site of one sub-
lattice, and n+a is a neighboring site on the other sublat-
tice, then it is usual to define a dimensionless continuum
magnetization vector ~m(r) and sublattice magnetization

vector ~̀(r) as [15]

~m = (~Sn + ~Sn+a)/2S, (4.1a)

~̀ = (~Sn − ~Sn+a)/2S, (4.1b)

for position r = n + a/2. In the case of small deviations
from the antiferromagnetic state, which corresponds to
small gradients on an individual sublattice, and slow time

dependence or low frequency motion, we have |~̀| ≈ 1,
and |~m| � 1. More precisely, the conserved individual

spin length, |~Sn| = S leads to the conditions, ~m · ~̀ = 0,

~m2 + ~̀ 2 = 1.
Definitions (4.1) can lead to a nonzero ~m in the vicinity

of the core of a static AFM vortex, which is an unphysical
result, because static solutions in the presence of strong
AFM exchange should result in ~m = 0. Alternatively, a
more controlled way to define ferromagnetic and antifer-
romagnetic vectors is to define two continuum spin fields
~SA(r) and ~SB(r), in terms of continuous ~̀(r) and ~m(r)
vectors via

~SA(r) = S[~m(r) + ~̀(r)], ~SB(r) = S[~m(r) − ~̀(r)],

(4.2)

We again see that with the requirement, |~SA| = |~SB| = S,

the conditions, ~m(r) · ~̀(r) = 0, ~m(r)2 + ~̀(r)2 = 1, must
hold. These fields are assumed to have small gradients
and are assumed to be defined at any positions in the

plane. ~SA(r) maps onto the spins of one sublattice (say,

the sites n) and ~SB(r) maps onto the sites of the other
sublattice (the sites n + a). As above, taking r to be
between the sites n and n + a; r = n + a/2,

~Sn = ~SA(r − a/2) = S[~m(r − a/2) + ~̀(r − a/2)], (4.3a)

~Sn+a = ~SB(r + a/2) = S[~m(r + a/2) − ~̀(r + a/2)].

(4.3b)

Expanding these in Taylor series about the point r, and

supposing that |~̀| ≈ 1, while |~m| � 1, with the gradient

operation also a “small quantity” (∇~̀ similar in magni-
tude to ~m), leads to approximate expressions

~m(r) = (~Sn + ~Sn+a)/2S + (
a

2
· ∇)~̀(r), (4.4a)

~̀(r) = (~Sn − ~Sn+a)/2S, (4.4b)

where second and higher order quantities have been
dropped. The first equation shows that it is possible

to have ~m(r) = 0 and (~Sn + ~Sn+a) 6= 0 when a gradient

of ~̀ is present, such as in the vicinity of a vortex core.
In the presence of local AFM order, ~m(r) = 0, however,
it is possible to have a nonzero gradient of the AFM or-

der, a ·∇~̀. Furthermore, since |~̀ | ≈ 1, both terms in Eq.
(4.4a) are of the same order ( a·∇ ), and must be included
in the expansion [23]. For these reasons, the equations
(4.4) are preferred over the less precise equations (4.1).

We would like to relate spherical coordinate angles for
~̀(r) to appropriate combinations of the w(1,2) coefficients.

Thus, define the angles for ~̀(r) using

~̀ = (cos θ` cosφ`, cos θ` sin φ`, sin θ`). (4.5)

The static vortex structure will possess a finite ~̀, with an-
gles θ0

` , φ0
` , and ~m = 0. Static ~m will be produced in this

model only if an applied magnetic field is present. The

static structure of ~̀ in an AFM vortex is the same as the
static structure of ~S in an FM vortex, and has a small
spatial gradient, especially near the vortex core. The
gradient cancels the first term in Eq. (4.4a), and ~m = 0
results. The dynamic perturbation of this structure leads
to deviations: θ` = θ0

` + ϑ`, φ` = φ0
` + ϕ`. These de-

viations ϑ` and ϕ` relate to the normal mode wavefunc-
tion coefficients w(1) and w(2) respectively, through Eqs.

(4.4b), (3.5) and one like (3.6) for ~̀.

Under the assumption of small gradients, and ~S0
n

≈

−~S0
n+a

for the static structure, we will have approximate
relations between the local coordinate axes on neighbor-
ing sites, one on each sublattice:

x̃n+a ≈ −x̃n, ỹn+a ≈ ỹn, z̃n+a ≈ −z̃n, (4.6)

This will not be valid close to the vortex core where ∇~̀

is large, however, elsewhere it is a good approximation.
Using it in Eq. (4.4b), leads to an expression,

~̀≈ z̃n +

(

~Sx̃
n

+ ~Sx̃
n+a

2S

)

x̃n +

(

~S ỹ
n
− ~S ỹ

n+a

2S

)

ỹn. (4.7)

On the other hand, an equation like (3.6) also holds for
~̀, namely,

~̀≈ z̃n + ϕ` cos θ0
` x̃n + ϑ` ỹn. (4.8)
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Then the direct comparison of these results together with

Eq. (3.5) shows that the dynamic parts of ~̀ are [20]

`x̃ = ϕ` cos θ0
` = Re{−

w
(2) ∗

k,n + w
(2) ∗

k,n+a

2S
eiωkt}, (4.9a)

`ỹ = ϑ` = Re{
w

(1) ∗

k,n − w
(1) ∗

k,n+a

2S
eiωkt}. (4.9b)

Eq. (4.9a) contains purely in-plane movements of ~̀, while
Eq. (4.9b) corresponds to time-dependent out-of-plane

tilting of ~̀. It is assumed here that only one particular
mode k is excited on the vortex.

The above results show that it is possible to determine

the continuum angles for ~̀ in terms of the wavefunction
coefficients; it is clear this can be extended to find the
corresponding mapping for continuum angles associated
with ~m. For our results from discrete lattice diagonaliza-
tions, we will generally present pictures of the wavefunc-
tion complex coefficients only, represented as arrows in

the plane, from which ~̀ and ~m can be determined. The
advantage of this will become clear; particular modes in
the AFM can appear to have either acoustic or optical
nature, depending on whether the two sublattices move
in-phase or out-of-phase, respectively. We will also see
that this aspect is closely coupled to whether the mode
has weak or strong out-of-plane motions, respectively.

V. SOME DETAILS OF THE

DIAGONALIZATIONS

The systems used for either ferro- or antiferromagnetic
exchange were setup as follows. A circular section of
desired radius R was cut out of a larger square lattice
of sites, with the center of the circle coincident with the
center of a unit cell. The spins on sites within the circular
system and also outside it were then set to point in the
directions of a static in-plane vortex, Eq.(2.3), however,
the four sites nearest to the vortex center were given small
Sz components. Then the sites within the circle were
allowed to relax according to the procedure in [18], to
the appropriate vortex structure for the given value of λ
(in-plane or out-of-plane vortex). During the relaxation
procedure, the sites outside of the circle were held fixed
in their in-plane vortex directions. This then sets a kind
of Dirichlet-vortex boundary condition.

The normal mode problem and matrix was setup by
considering the perturbation around this initial configu-
ration inside the circular system, but where its boundary
sites interact also with sites outside of the circle, still held
in the directions for the static in-plane vortex. Further
details of the definition of the normal mode matrix are
found in Reference [18].

Diagonalizations were performed on a Sun Sparc-20
with 128MB RAM, for FM and AFM models using a

range of λ between 0 and 1, and system radii R from 5
to 21. The system with R = 21 contains 1396 sites, and
is the largest system that we could do by this method,
requiring the storage of (2 × 1396)2 matrix elements (2
degrees of freedom per site), and an equal number of ele-
ments of the eigenvectors. Although the matrix is sparse,
it is not symmetric nor even Hermitian, so the EISPACK
subroutine, RG (real general matrix) was used to find the
eigenspectrum, in double precision. The complete eigen-
spectrum (eigenvalues and wavefunctions) was saved for
two closely spaced values of λ, to allow for tracking of
the modes with changing λ, and this also increased the
memory requirements (possible only for R ≤ 19).

FIG. 2. The lowest frequency modes as a function of
anisotropy parameter λ, for a radius R = 5 system, containing
80 sites: a) FM, b) AFM. Here and in Figs. 3 and 4 doubly
degenerate modes are indicated by the solid data points. Solid
and dotted lines are used only to distinguish nearby modes.
T, TL, and TH refer to the translation modes, and QL and
LM denote the quasi-local and local modes for the FM and
AFM systems, respectively.
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VI. RESULTS: COMPARISONS OF RESULTS

FOR FM AND AFM

Next we show some typical results for the FM and
AFM models, where the only difference between the two
models is the sign of the exchange constant.

A. Spectra

Some eigenfrequency spectra of the lowest modes ver-
sus λ for both models are shown in Figs. 2, 3 and 4, for
systems with radii R = 5, R = 10, and R = 15, respec-
tively. In these Figures, the different line styles are used
to distinguish nearby modes, and solid circles are used to
indicate doubly degenerate modes.

FIG. 3. The lowest frequency modes as a function of
anisotropy parameter λ, for a radius R = 10 system, con-
taining 316 sites: a) FM, b) AFM.

Both the FM and AFM models exhibit the crossover
from in-plane to out-of-plane static vortex, as seen by
the presence of interesting features around λc ≈ 0.70.
These features include downward cusps in some modes
at λc, breaking of degeneracies in the FM mode at λc,
and more subtle changes in some of the modes (such as
downward turns) for the AFM model at λc.

In the FM, modes that are degenerate below λc split
suddenly at λc into higher and lower components. In
Ref. [18], the splitting was found to be associated with a
“winding number” or azimuthal quantum number m for
the mode, which determines how the phase of its wave-
function changes with azimuthal coordinate. We have
the following approximate continuum description of the
wavefunctions far from the vortex core:

w
(1,2)
k (r, χ) ∝ f

(1,2)
k (r)eimχ, (6.1)

FIG. 4. The lowest frequency modes as a function of
anisotropy parameter λ, for a radius R = 15 system, con-
taining 716 sites: a) FM, b) AFM.
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where the winding number m is an integer, (r, χ) are
the polar coordinates of a position in the system, and

f
(1,2)
k (r) determines the radial dependence. For λ < λc,

the in-plane vortex has modes with ±m that are degener-
ate. For λ > λc, the presence of static Sz components for
the out-of-plane vortex causes the +m and −m modes to
become nondegenerate — the out-of-plane polarization
p = ±1 of the vortex induces a preferred sense of phase
change of the spinwave mode that has lower frequency.
In general, for vorticity q = +1, polarization p = +1, the
mode with m < 0 falls below the mode with with m > 0.
(Also see Section VI C below for wavefunction diagrams.)
In fact, it is possible to show [24] that the continuum

equation of motion for the perturbation ϑ̇ contains one
term proportional to

S0
z∇φ0 · ∇ϑ ∝ pqm ∝ Gm, (6.2)

and similarly for ϕ, where G = 2πpq is the z-component
of the gyrovector. Therefore, for m 6= 0 modes, if the
gyrovector is present, a splitting will occur.

The most obvious difference of the AFM spectra com-
pared to the FM spectra is the persistence of the de-
generacies for λ > λc. This is due to the symmetry of
the AFM out-of-plane vortex with respect to reversing
its static Sz spin components and simultaneously inter-
changing the sublattices. To the contrary, the static FM
out-of-plane vortex does not possess this symmetry. Be-
low we discuss this more fully with respect to the trans-
lation modes, which have winding numbers m = ±1 and
are degenerate below λc, and remain degenerate above
λc for the AFM model, but split for the FM model, as
discussed above. This difference is interesting because
it accounts for the particularly different motional prop-
erties of the out-of-plane vortices of the two models, an
aspect that has been previously linked to the presence
(FM) or absence (AFM) of the vortex gyrovector [16,25].

Finally, the other important difference between the FM
and AFM models can be seen by comparing the spectra
for different sized systems. For the FM model, increasing
the system size results in lowering the frequencies of all
of the modes; the frequencies diminish approximately as
1/R at fixed λ. For the AFM model, this result also holds
for most of the modes, except that there is one mode in
particular whose frequency is approximately unaffected
by system size, although it is seen to mix with nearby
modes. This interesting mode has its frequency deter-
mined primarily by λ, rather than R, indicating that it is
truly intrinsic to the vortex, and not a result of boundary
conditions. For λ > λc, it is the localized mode discussed
by Ivanov et al. [20].

B. The Instability Mode and Local Mode

For λ < λc, the in-plane vortex in each model has the
“instability mode” with a downward cusp approaching
close to zero frequency as λ → λc. For the FM model,

this is the lowest frequency mode for any λ < λc, whereas
for the AFM model, the instability mode is the lowest fre-
quency mode only for λ near λc. For the FM model, even
the frequency of the instability mode diminishes with in-
creasing system size as approximately 1/R. Because the
wavefunction associated with this mode has an rms ra-
dius that approaches zero near λc, it can be considered a
“quasi-local” mode for the FM vortices. (Marked by QL
in the Figures.)

For the AFM, however, this instability mode is iden-
tified with the truly localized mode mentioned above.
(Marked by LM in the Figures.) It is seen that it mixes
with other modes, depending on the system size, but far
from the values of λ where the mixing occurs, its wave-
function has a simple form expected for this instability
mode, with winding number m = 0. On the other hand,
as λ approaches zero (XY-limit), the instability mode in
the AFM model can go through a set of different mixings
with other modes (the number depends on the system
size; there is no mixing for the R = 5 system), until
approaching a frequency around 1.4 for λ = 0. The lim-
iting value of ω = 1.4 does not depend on the system
size. For the out-of-plane vortex spectrum, this same
mode reaches a maximum frequency of about ω = 1.6 for
λ ≈ 0.88, and these numbers also do not depend on the
system size. These results hold because this mode is the
same as the local mode found in Ref. [20], whose proper-
ties are only determined by λ, provided that the system
size is larger than the vortex core length scale rv [Eq.
(2.4)]. However, that work considered only the case of λ
approaching 1 (Heisenberg limit), where the continuum
theory is a valid description of the spin dynamics on the
discrete lattice. Thus, it is especially interesting to see
this lack of system size dependence for this mode even
for λ approaching zero.

1. FM: Instability Mode Wavefunction

The wavefunction for any mode is easily represented
by using arrows in the plane for each of the complex

amplitudes, w
(1)
k,n and w

(2)
k,n, where the angle of the arrow

measured from the x-axis is the phase of the complex
amplitude. These kinds of diagrams were used in Ref.
[18] and [20]. Such diagrams for the FM instability mode
are shown in Fig. 5, for the R = 10 system, at different

values of λ. We use open arrows ( —> ) to represent w
(1)
k,n

(out-of-plane fluctuations) and closed arrows ( —� ) to

represent w
(2)
k,n (in-plane fluctuations). It was necessary

in these diagrams either to exaggerate the w
(1)
k,n or w

(2)
k,n

arrows such that both could be seen on the same diagram.
For the FM instability mode, there is a considerable

concentration of the amplitude w
(1)
k,n around the vortex

core for λ approaching close to λc, and the phase of the
wavefunction is constant around the vortex. This means
that the winding number is m = 0. Further analysis of
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FIG. 5. The wavefunction for the FM quasi-local mode, in the
R = 10 system. Open arrows ( —> ) represent the complex

coefficients w
(1)
k,n (out-of-plane fluctuations) and closed arrows

( —� ) represent w
(2)
k,n (in-plane fluctuations). a) λ = 0.0,

with w
(1)
k,n arrows exaggerated by a factor of 4 relative to w

(2)
k,n

arrows, but phase relations preserved. b) λ = 0.70 ≈ λc, with

w
(2)
k,n arrows exaggerated by a factor of 6. c) λ = 0.88, with

w
(1)
k,n arrows exaggerated by a factor of 2.

this mode was presented in Ref. [18], for example, the rms
size of this wavefunction was found to decrease sharply
near λc.

2. AFM: Local Mode Wavefunction

The AFM local mode (LM) wavefunction is shown for
several different anisotropies in Fig. 6 for the R = 10
system. Again we use the same notation as for the FM

wavefunctions and present the complex amplitudes w
(1)
k,n

and w
(2)
k,n as arrows. The in-plane spin fluctuations are

quite weak and difficult to see in this mode which is dom-

inated by out-of-plane fluctuations. The w
(1)
k,n arrows are

seen to be out-of-phase on the two different sublattices.
In a sense, they have an “optical motion” as opposed to
the “acoustic motion” (two sublattices are in-phase) of
the spins in the quasi-local mode of the FM vortex. By
using Eq. (4.9b), it is seen that the optical motion of the
local mode translates into large continuum out-of-plane
fluctuation, ϑ`. On the other hand, out-of-phase motion

of the w
(2)
k,n arrows is also present for the local mode, and

by Eq. (4.9a), this optical motion translates into very
small continuum in-plane fluctuation, ϕ`. Both of the
variables ϕ` and ϑ` follow the form of Eq. (6.1) with
winding number m = 0, i.e., all sites on one sublattice
move completely in phase.

This mode is truly local, in the sense that when the
diagonalization is done on larger and larger systems, its

8



FIG. 6. The wavefunction for the AFM local mode, in the
R = 10 system, with notation as in Fig. 5. a) λ = 0.0, with

w
(1)
k,n and w

(2)
k,n arrows in the same scale. b) λ = 0.70 ≈ λc,

with w
(2)
k,n arrows exaggerated by a factor of 8. c) λ = 0.88,

with w
(1)
k,n and w

(2)
k,n arrows in the same scale.

frequency converges to a value that depends only on the
anisotropy parameter λ, and its rms size is primarily de-
termined by λ. The size dependence of frequency and
rms size of several modes, including the local mode, are
shown in Figs. 7 and 8, for the particular value λ = 0.88,
which is the point where the LM frequency is maximum,
with a value near 1.61JS/h̄. The frequencies of other
modes, such as the translation mode, decrease with in-
creasing system radius R. The rms sizes of other modes
increase strongly with R. The LM rms size possibly
shows a weak increase with system size, however, at cer-
tain system sizes (R = 13, 19) its strong mixing with a
nearby “continuum” mode leads to an anomalously large
rms size. With this exception, the local mode is truly a
mode of the vortex itself, and provided the system used is
large enough, is only weakly affected by the boundaries.

C. The Translational Modes

For the translation modes (marked in the Figures by T
where degenerate, or TL and TH where nondegenerate),
the result is simplest for the AFM. There the transla-
tional mode is doubly degenerate for any λ, and corre-
spondingly, for either the in-plane or out-of-plane vortex.
However, the translation mode frequency has a distinct

cusp at λc, and then falls towards much lower frequency
for λ > λc. Its frequency is not zero, as would be usual
for a translational mode, due to the pinning potentials
of the discrete lattice. The double degeneracy is in some
vague sense related to the two different directions of mo-
tion possible for the vortex, however, it is more deeply
connected to the symmetry of the AFM vortices with re-
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FIG. 7. The AFM local mode (LM), translation mode (T)
and m = 0 nonlocal mode (nl0) frequencies vs. system radius
R, for λ = 0.88. (see Figs. 6,11, and 12).

FIG. 8. The AFM local mode (LM), translation mode (T)
and m = 0 nonlocal mode (nl0) rms sizes Rrms vs. system
radius R, for λ = 0.88. (see Figs. 6,11, and 12).

spect to reversing Sz and interchanging sublattices. In
the FM, however, this operation reverses the sign of the
polarization and therefore the gyrovector, whose coupling
to the winding number induces the splitting according to
expression (6.2).

For the FM vortices, the translation modes are more
interesting. For the in-plane vortex (λ < λc), the trans-
lation modes are doubly degenerate, as in the AFM. For
the out-of-plane vortex (λ > λc), however, this degen-
eracy is split, and there is a considerable difference in
frequency of the two translation modes, marked by TL
and TH. To understand the reason for this splitting, it is

necessary to consider the wavefunctions associated with
the modes, and also to verify what motions result when
a small amplitude of any of these modes is added to the
original static vortex structure. We see immediately be-
low that the translational modes have winding numbers
m = ±1, and this fact is the source of the splitting for
the FM but not for the AFM model.

1. FM Translational Modes: Wavefunctions and Motions

Typical arrow diagrams for the FM translational
modes of a R = 10 system are shown in Figures 10 (TL)
and 9 (TH), for both the in-plane (λ = 0) and out-of-
plane (λ = 0.88) vortices. By adding a small amplitude of
any mode to the static vortex structure, and then evolv-
ing it according to its known eiωt time dependence, one
can observe the particular spin motions associated with
the mode, as well as the motion of the vortex center it
causes. Consider λ = 0. The mode in part a) of Fig. 10
produces linear vortex motion approximately in the “x”
direction, while the other translation mode in part a) of
Fig. 9 produces linear vortex motion in the “y” direction.
Furthermore, by considering the spin arrows, for λ = 0
these modes are mixtures of m = +1 amd m = −1 states.
The relative phases in the mixture result in the different
orientations of the modes and the different directions of
motion. But since m = +1 and m = −1 are degener-
ate, we could just as well have shown the wavefunctions
for the “pure” states, which would have resulted in two
modes each corresponding to circular motions in the two
opposite senses.

For λ = 0.88, the spin arrows in part b) of Fig. 10
are now seen to behave with only the m = −1 wind-
ing number. The motion that results from this mode
is circular motion in the clockwise sense. Now it is not
degenerate with the other (higher) translation mode in
Fig. 9b, which is seen to have m = +1 and causes cir-
cular motion in the counterclockwise sense. The static
vortex used had polarization p = +1, vorticity q = +1,
and therefore positive gyrovector G = +2π. Thus it ap-
pears that translation mode that makes the product Gm
negative has the lower frequency, and produces vortex
circular motion in the sense opposite to that determined
by using the right hand rule applied to the gyrovector.

2. AFM Translational Modes: Wavefunctions and Motions

Typical arrow diagrams for the AFM translational
modes of a R = 10 system are shown in Figure 11 (T),
for both the in-plane (λ = 0) and out-of-plane (λ = 0.88)
vortices. In this case, we show only one mode, as the
other mode is similar but just rotated by 90o. The mode
shown produces linear motion in the x-direction even for
λ > λc. That is, the two translation modes remain de-
generate for all λ, and there is no energy difference for
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FIG. 9. (above) Wavefunction for the higher translational
mode (TH) of the FM model, using arrows as explained in

Fig. 5. a) λ = 0.0, with w
(1)
k,n arrows exaggerated by a factor

of 4. b) λ = 0.88, with w
(1)
k,n arrows exaggerated by a factor

of 2. In b), this mode has winding number m = +1 and
produces a counterclockwise motion of the vortex center.

FIG. 10. (below) Wavefunction for the lower translational
mode (TL) of the FM model, using arrows as in Fig. 5. a) λ =

0.0, with w
(1)
k,n arrows exaggerated by a factor of 4. b) λ =

0.88, with w
(1)
k,n and w

(2)
k,n arrows in the same scale. In b), this

mode has winding number m = −1 and produces a clockwise
motion of the vortex center.
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FIG. 11. Wavefunction for one of the translational modes
(T) of the AFM model, using arrows as described in Fig. 5.

a) λ = 0, with w
(1)
k,n arrows exaggerated by a factor of 2.

b) λ = 0.88, with w
(1)
k,n and w

(2)
k,n arrows in the same scale.

This mode is a mixture of m = ±1 states and produces a
linear motion of the vortex center approximately in the x-
direction.

circular motion in the clockwise sense compared to the
counterclockwise sense. The basic translation modes can
be taken as linear combinations of m = +1 and m =
−1 states to produce linear motions. Again, there is no
splitting of the m = ±1 states because the gyrovector for
AFM vortices is identically zero, due to a cancellation of
contributions from the different sublattices.

D. AFM: Nonlocal m = 0 Mode

For comparison with the local mode wavefunction, we
also show the other low frequency m = 0 mode wavefunc-
tion in Fig. 12. This mode is the lowest frequency mode
at λ = 0 (See Figs. 2b, 3b and 4b) and undergoes no par-
ticular changes as a function of λ. The mode is spread
out over the system, and is dominated by the w(1) (in-
plane) fluctuations–in the Figure the out-of-plane fluc-
tuations have been exaggerated by a factor of 4 so they
can be seen. The other important difference compared
to the local mode shown in Fig. 6 is that the w(1,2) ar-
rows on the two sublattices are in phase with each other
for this mode, as opposed to the out-of-phase behavior
in the local mode. This is effectively an acoustic motion,
in contrast to the optical motion in the local mode. By

using Eq. (4.9b), the acoustic motion of w
(1)
k,n translates

into small continuum out-of-plane fluctuation ϑ`, and by

Eq. (4.9a), the acoustic motion of w
(2)
k,n translates into

large continuum in-plane fluctuation ϕ`.

FIG. 12. Wavefunction for the acoustic m = 0 mode (nl0) of
the AFM model, for λ = 0, using the notation of Fig. 5. The
w

(1)
k,n arrows have been exaggerated by a factor of 4.
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VII. CONCLUSIONS

We have compared the (low-lying) spin wave modes
of easy-plane FM and AFM models in the presence of a
single static vortex for different values of the anisotropy
parameter λ.

Spectra—For λ < λc we find both models have simi-
lar spectra with single and degenerate modes, the latter
ones reflecting the mirror symmetry with respect to the
easy-plane (which is not destroyed by the presence of a
single static in-plane vortex). For λ > λc the spectra
for FM and AFM show distinct differences. In the AFM
a nonzero out-of-plane component does not destroy the
mirror symmetry of the system, because the spins of the
two sublattices point in opposite z-directions, and the de-
generate modes remain. The nonzero out-of-plane com-
ponent for an FM vortex, on the other hand, destroys the
mirror symmetry, generates a nonzero gyrovector, and
according to Eq. (6.2), all degenerate modes split at λc.

The soft mode—The crossover from the in-plane vor-
tex for λ < λc to the out-of-plane vortex above λc is
accompanied by a particular mode which becomes soft
at λc. In the FM system this mode is quasi-local, i.e.
its frequency decreases and its rms size increases as the
system size increases, even though it becomes localized
around the vortex center close to λc. In the FM with the
Dirichlet boundary condition used, this mode is always
the lowest lying one for λ < λc.

For the AFM system, in contrast, this soft mode is a
truly localized mode, and its frequency is independent of
the system size. This leads to “mode crossing” for in-
creasing system size, when the non-local modes decrease
in frequency and the local mode falls well within con-
tinuum modes. The mixing with other modes leads to
sudden increases in the rms size of the local mode, but
away from these situations, the LM rms size has only a
weak dependence on the system size, and is considerably
less than the rms size of other modes of similar frequency.
The LM frequency peaks at the value ω/JS ≈ 1.61 for
λ ≈ 0.88, while the rms size is around 3 lattice constants
except when the mixing occurs.

In both systems there are non-local modes higher up
the spectra, which also show distinct downward cusps at
λc. These modes show a similar symmetry as the (quasi-)
local mode.

The translation modes—The first degenerate mode for
λ < λc in both models corresponds to translational mo-
tion of the vortex. The degeneracy shows that the vortex
motion is equivalent in both independent directions for
λc (x- and y-translation or left- and right-rotation). For
the AFM this is also true above λc, though the soften-
ing of the two translational modes indicate that the out-
of-plane vortex moves “easier” than the in-plane vortex
(due to the extended out-of-plane structure which helps
to overcome discreteness effects). The translational mode
in the FM system splits at λc with one mode (TL) soft-
ening (as in the AFM model), the other (TH) hardening

slightly from its frequency at λc. This indicates that
the translational motion of the vortex in one of the two
independent directions is favored. The inequivalency of
the two directions is a direct consequence of the cou-
pling of the winding number m = ±1 for the translation
modes with the nonzero gyrovector, as mentioned in Eq.
(6.2). For an out-of-plane vortex with positive vorticity
(q = +1) and positive polarization (p = +1), the lower
translation mode has winding number m = −1 while the
higher translation mode has m = +1. This is the result
for a positive gyrovector G = 2πpq; the winding num-
bers of the lower and higher translation modes will be
interchanged for a vortex with negative gyrovector. We
should also mention that the net motion that results in
these modes is partly determined by the Dirichlet type
boundary condition we have applied, which exerts an ef-
fective force on the vortex towards the center of the sys-
tem. Thus, the results presented here will be important
for further analysis of vortex dynamical equations of mo-
tion which consider combined effects due to gyrovector,
external forces, and vortex effective mass [13,22].
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Mertens, in ”Computer Simulations Studies in Con-
densed Matter Physics,” D.P. Landau et al., eds.,
Springer-Verlag, Berlin (1988).

[20] B. A. Ivanov, A. K. Kolezhuk and G. M. Wysin, Phys.
Rev. Lett. 76, 511 (1996).

[21] R. Boesch, P. Stanicoff and C.R. Willis, Phys. Rev. B
38, 6713 (1988); R. Boesch and C.R. Willis, Phys. Rev.
B 42, 6371 (1990).

[22] F.G. Mertens, G. Wysin, A.R. Völkel, A.R. Bishop and
H.J. Schnitzer, in ”Nonlinear Coherent Structures in
Physics and Biology,” F.G. Mertens and K.H. Spatschek,
eds., Plenum, New York (1994).

[23] A similar gradient term for the 1D AFM is present in Eq.
(3) for ~m of Ref. [15], whose static limit, however, does
not give ~m = 0. For λ ≈ 1, an alternative expression of

Eq. 4.4 is [20] ~m = (h̄/8JS)~̀× ~̀̇, and which is valid for
both the static and dynamic spin fields in the absence of
an external magnetic field.

[24] B. A. Ivanov, private communication.
[25] A. R. Völkel, F. G. Mertens, G. M. Wysin and A. R.

Bishop, J. Magn. Magn. Mater. 104-107, 766 (1992).

14


