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We investigate the scattering of spin wave or magnon modes on planar vortices pinned on holes
in two-dimensional (2D) easy-plane antiferromagnets. Numerical methods on a discrete lattice and
analytical calculations in a continuum model are considered. Numerical calculations use systems
centered on a lattice site, whose spin is removed. The continuum treatment is based on a simple
approach that solves the equations of motion on a 2D support manifold not simply connected (i.e.,
containing a circular hole, which can be seen as a spin vacancy). The phase-shifts for the scattered
states are obtained and a comparison between numerical and analytical results is discussed. The
vortex instability local mode is analyzed as a function of the hole size by several approaches. Its
frequency is found to go to zero at a critical hole size. Larger holes are found to be more effective
for stabilizing vortices in the planar configuration.

PACS numbers: 75.10.Hk, 75.10.-b, 05.45.Yv

I. INTRODUCTION

In the last years much attention has been given to non-
linear excitations in low dimensional magnetic materi-
als. For instance, vortices develop important roles in the
static and dynamic properties of two-dimensional (2D)
magnets with easy-plane anisotropy. In particular, the
scattering of spin waves by vortices in “pure” 2D easy-
plane magnets has been studied both analytically1,2,3

and numerically4,5,6,7,8,9, for a variety of uniform mag-
netic systems in which a single vortex has been placed.
Rich structures have been found, including localized
modes4,5,6 associated with the in-plane to out-of-plane
vortex transition,10,11 a connection between low angu-
lar momentum vortex-spin wave states and vortex trans-
lational motion,7,12 and fascinating effects induced by
a magnetic field perpendicular to the easy plane in
ferromagnets.8 The scattering phase shifts have been in-
vestigated numerically and analytically for pure ferro-
magnets and antiferromagnets, indicating stronger scat-
tering at the lower angular momenta, due to the (low
winding number) effective potential of the vortex core.

However, real compounds are not ideal systems and
lattice defects such as impurities and local fields are
present in any material sample. The effect of impuri-
ties on superconductors has been of theoretical and ex-
perimental interest even in its own right for a long time.
Vortex pinning mechanisms and even antiferromagnetic
correlations in the cuprates13,14 are phenomena related
to impurities. Hence, the interaction of topological ex-
citations with spatial inhomogeneities is of considerable
importance from both the purely theoretical and applied
points of view.

The effect of nonmagnetic impurities (spin vacan-
cies) on vortex excitations has recently been stud-
ied for 2D magnetic models. Recent analyti-

cal calculations,15,16,17,18 spin energy relaxation and
Monte Carlo simulations,17,19,20 and even experimental
results21,22 show that nonmagnetic impurities tend to at-
tract and even pin vortices,16,19,23 and in the process,
lower their energy of formation and lower the transition
temperature24,25,26,27 associated with vortex-antivortex
pair unbinding.28,29,30 A missing spin site also lowers
the easy-plane anisotropy strength needed for planar vor-
tex stabilization,23,34 a static property. Such properties
have aided Zaspel et al.31,32 to experimentally investi-
gate the pinned vortices in isotropic AFMs using elec-
tron paramagnetic resonance. Also, pinned vortices may
be seen in easy-plane magnets using neutron scattering
experiments.33

While various static properties were already consid-
ered for these impurity systems, almost nothing is known
about the dynamics. A natural further step is the study
of the scattering of spin waves by pinned vortices in inho-
mogeneous magnetic materials, the most basic dynamical
property to be understood. Therefore, in this paper we
investigate the scattering of spin waves by a vortex that is
itself pinned on a nonmagnetic impurity in an easy-plane
antiferromagnet (AFM).

We study the vortex–spin wave scattering for planar
AFM vortices assuming that the easy-plane anisotropy
strength is above the critical value that stabilizes a
pinned vortex in the planar form.23,34 We consider both
a continuum model and a discrete lattice model for this
problem.3,35 In the continuum model, it is assumed that
there is a small hole of radius r0 cut from the system cen-
ter, located at the origin, on which a vortex is pinned.
The magnetic degrees of freedom are defined only outside
this hole. This model allows for the investigation of scat-
tering effects as a function of the hole radius (the hole
radius should also affect the vortex stability and pinning
energy.). In the discrete lattice model, using a square
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lattice, the finite system is circular, and one lattice site
or spin has been removed at its center, where a vortex
pins. This latter model allows for the investigation of
effects due to individual atomic impurities. We expect
to be able to compare these models, to a certain extent,
when the hole size is on the order of the lattice constant,
r0 ≈ a.

It should be interesting to determine how the magnon
properties change with the size of the hole. One can ex-
pect the critical anisotropy strength to change with the
size of the hole, which could have future technological
applications. The scattering phase shifts can also be ex-
pected to be different, depending on whether a hole has
pinned a vortex, or not. Scattering could possibly be
used to ”read” the presence of a pinned vortex. Also,
the scattering properties will change with the charge q
of the pinned vortex—the presence of a hole or vacancy
has been found to lead to the possibility of stable doubly-
charged vortices.26 Thus, the scattering could be used to
distinguish the charge of a pinned vortex.

The paper is organized as follows. First, the continuum
model is further described in Sec. II, and then the con-
tinuum limit equations for the acoustic and optical spin
wave modes of a vortex pinned on a hole are discussed in
Sec. III, in terms of the scattering phase shifts expected
in the different angular momentum channels. In Sec. IV
we give a description of the numerical method used to
calculate some of the lowest modes and scattering phase
shifts in a finite square-lattice circular system, as well as
the associated numerical results. For both the continuum
and numerical calculations, modes in which the absolute
angular momentum quantum number is less than the ab-
solute vortex charge merit special attention, due to the
appearance of Bessel functions of imaginary order. This
is followed in Sec. V by a general analysis of the pinned-
vortex instability mode (VIM)–a bound state of strong
out-of-plane amplitude, localized on the vortex (or hole),
and associated with the destabilization towards forma-
tion of an out-of-plane vortex. Finally, implications of
these results for experiments on magnetic materials with
nonmagnetic impurities and/or intentionally placed holes
are given in Sec. VI.

II. MODEL

We consider a 2D AFM easy-plane classical spin sys-
tem, with combined exchange and single ion anisotropy
terms λ and d, with Hamiltonian

H = J
∑

i,j

{1

2
[Sx

i S
x
j + Sy

i S
y
j + λSz

i S
z
j ] + d(Sz

i )2}, (1)

where the sum is over the nearest neighbor sites, J > 0

is the exchange constant and ~Si = {Sx
i , S

y
i , S

z
i } is the

classical spin vector at site located at ~ri. The square
lattice system has lattice constant a. The continuum

limit of this Hamiltonian can be obtained defining nor-

malized vectors of magnetization ~mn = (~S2n+~S2n+1)/2S

and the vectors of sublattice magnetization ~ln = (~S2n −
~S2n+1)/2S, where the subscripts refer to the different

sublattices. Vectors ~m and ~l are related by ~m2 + ~l2 = 1

and ~m · ~l = 0. In the limit of low temperatures, the

condition | ~m |�| ~l |≈ 1 is satisfied and then the
continuum Hamiltonian can be expressed in terms of
~l only. There is a hole cut out centered on the ori-
gin, of radius r0. Then the Hamiltonian can be writ-

ten as15 HI =
∫

d2x h(~l, ∂µ
~l)U(~r), where h(~l, ∂µ

~l) is
the Hamiltonian density (given by the anisotropic non-
linear σ model) and U(~r) is a function that represents
the hole (the nonmagnetic impurity) centralized at ori-
gin, defined as U(~r) = 0 if | ~r |< r0 and U(~r) = 1 if
| ~r |≥ r0. Above, the covariant derivative is defined as
∂µ = ((1/c)∂/∂t, ∂/∂x, ∂/∂y), where c is the velocity of
long-wavelength magnons. A charge q vortex can be as-
sumed to be pinned and centered on the hole; this will
be the preferred configuration that minimizes the static
energy. The desired spin wave (or magnon) modes will
be the small amplitude oscillations around the static spin
structure, which is assumed to be a planar vortex, as long
as the anisotropy is above the critical value. For gener-
ality, we can consider the size of the hole to be as small
as that for a single vacancy (r0 ≈ a), or any size larger
than this.

III. CONTINUUM CALCULATIONS OF THE

MAGNON MODES ON AN AFM VORTEX

The continuum equations for the magnons on a square
lattice with lattice spacing a are separated Schrodinger-
like equations:3,35

−∇2ξ + V (r) ξ =
(ω

c

)2

ξ, (2a)

−∇2η =
(ω

c

)2

η, (2b)

where the long-wavelength spin wave velocity is c2 =
8(JSa)2 and the effective potential for the out-of-plane
wavefunction ξ, which governs the optical spin waves, is

V (r) =
∆

a2
− |∇Φv|2 =

∆

a2
− q2

r2
. (3)

with

∆ = 4ε+ 2d. (4)

and ε = 1−λ. The parameter ∆ is a generic dimensionless
anisotropy, which determines the gap of the optical spin
wave branch. Apparently, there is no potential effect of
the vortex on the acoustic spin waves, which are governed
by the field for the in-plane oscillations, η. The presence
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of the hole, however, can influence the acoustic spin wave
scattering.

Due to the presence of the hole at origin, the potential
and wavefunction need only be defined in the outer region
r > r0. To completely define the problem, the boundary
conditions at r = r0 must be specified. If the hole is
simply a region cut out of the continuum system of spins,
then the spins on the border of the hole have no particular
constraint on their oscillatory motions. This means that
they are free to vibrate as the rest of the neighboring
spins exerts forces on them. This corresponds to a free
type of boundary condition at r = r0, applied to both
the in-plane (η) and out-of-plane (ξ) (spin wave) magnon
fields. In practice, it means that these fields can be set to
a nonzero constant at r = r0. Note that, alternatively, a
Dirichlet boundary condition (η = ξ = 0 at r = r0) would
require some extra force that literally freezes the spins in
the static vortex spin angles on the hole boundary; such a
constraint is absent here. For r → ∞, the magnon fields
should decay away to zero.

Using polar coordinates (r, ϕ) in Eq. (2a), out-
of-plane wavefunction solutions varying as ξ(r, ϕ) =
ξ(r) exp(imϕ) can be expected in the general case, where
the radial wavefunctions for r > r0 are seen to satisfy

ξ
′′

+
1

x
ξ
′

+ ξ +

(

q2 −m2

x2

)

ξ = 0. (5)

Here x ≡ kr, with a real wavevector determined from

k =
√

(ω
c )2 − ∆

a2 , and primes indicate derivatives with

respect to x.
The integer m represents the quantized angular mo-

mentum or winding number of the mode. For higher
angular momentum modes, with m2 ≥ q2, the equation
is the standard equation for Bessel’s functions, with the
order given by

ν =
√

m2 − q2. (6)

For m2 < q2 we have Bessel functions with imaginary or-
der (see Appendix B) . The unbound states occur above
the optical gap frequency,

ω0 =
√

∆
c

a
, (7)

and have the continuum optical dispersion relation ω =
√

ω2
0 + k2c2.

The in-plane spin deviations at angular momentum m
follow a free-field equation without any potential term
due to the vortex, Eq. (2b), whose radial part for the
region r > r0 is

η
′′

+
1

x
η

′

+ η − m2

x2
η = 0. (8)

Again, primes indicate derivatives with respect to x ≡ kr,
but with the acoustic dispersion relation k = ω/c applied.

General scattering radial solutions for equations (5)
and (8) are respectively

ξm(r) = [B1mJν(kr) +B2mNν(kr)], (9)

ηm(r) = [B3mJm(kr) +B4mNm(kr)], (10)

where Bjm (j = 1, 2, 3, 4) are constants. The values of
these constants must be determined by the appropriate
boundary conditions.

As mentioned above, there is no particular constraint
on the spin wave fields at the hole boundary, r = r0 (free
boundary conditions). From the physical point of view,
the correct boundary condition is determined by the re-
quirement of no net flux of spin wave energy into the
hole, which is a region absent of spin degrees of freedom.
Alternatively stated, the fields must arrange themselves
so that the energy flux in the incoming waves (asymp-
totics like e−ikr) cancels the energy flux in the outgoing
waves (asymptotics like eikr). The large-r asymptotics
of the fields implies a unit magnitude for the complex
S-matrix, however, the field/energy constraint that con-
trols the boundary conditions must be applied at r = r0.

A. Vortex charge q = 1

Here, ν =
√
m2 − 1. The exact scattering phase

shifts can be found by applying the appropriate Neu-
mann boundary conditions at the hole boundary, r = r0.
Considering first m ≥ 1 and using dξm(r)/dr = 0,
dηm(r)/dr = 0 for r = r0, the radial wavefunctions be-
come

ξm(r) = B1m [Jν(kr) − tan(τν(k))Nν(kr)] , (11)

ηm(r) = B3m[Jm(kr) − tan(τm(k))Nm(kr)], (12)

where tan(τν(k)) = −B2m/B1m and tan(τm(k)) =
−B3m/B4m. Explicitly

τν(k) = arctan

[

νJν(kr0) − kr0Jν+1(kr0)

νNν(kr0) − kr0Nν+1(kr0)

]

(13)

and

τm(k) = arctan

[

mJm(kr0) − kr0Jm+1(kr0)

mNm(kr0) − kr0Nm+1(kr0)

]

, (14)

with τm(k) = τ−m(k). By comparing the asymptotic
behavior of these scattered out-of-plane and in-plane
magnon wavefunctions with the behavior of a plane wave
solution in the absence of a vortex and hole [ Jm(kr) ]
we get the phase-shifts. For instance, consider the out-
of-plane magnons solutions with m ≥ 1 at r → ∞ given
by

ξm ∝
√

2

πkr
cos[kr − (ν + 1/2)π/2 + τν(k)]. (15)

It gives the following phase-shift

δ
(1)
ξ(m)(k) = τν(k) + (| m | −ν)π/2, | m |≥ 1. (16)
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In general these phase-shifts are well behaved in the in-
terval in which k varies from 0 to 1/a (for k > 1/a the
continuum approximation is not reliable).

The out-of-plane magnon phase-shift for the angular
momentum channel m = 0 is not usual since ν = ±i is
an Imaginary number. Therefore, it will be treated only
numerically in Sec. IV. However, our analytical calcu-
lations show clearly that the contributions of the hole
and the vortex to the phase-shifts can be identified. We
notice that the phase-shifts of the out-of-plane magnons
(optical modes) contain contributions from both the vor-
tex and the hole. For instance, in Eq. 16 the first term
of the second member contains coupled contributions of
the hole and vortex while the second term contains only
vortex contributions. On the other hand, the phase-
shifts of the in-plane magnons (acoustic modes) given by
δη(m)(k) = τm(k) have only contributions of the hole. A
comparison between the analytical and numerical results
will be presented in Sec. IV.

B. Vortex charge q = 2

Using the same methods of the anterior subsection and
defining µ =

√
m2 − 4, we get for the optical modes

δ
(2)
ξ(m)(k) = τµ(k) + (| m | −µ)π/2, | m |≥ 2, (17)

where τµ is given by an expression like Eq. 13 but with
ν substituted by µ. The same can be done for acoustic
modes; δm(k) = τm(k), (m > 2) is given by Eq. 14. For
m = 0 and m = 1, Bessel functions with imaginary order
will not be treated here.

IV. NUMERICAL CALCULATION OF THE

SPIN WAVE STATES AND PHASE SHIFTS;

VORTEX ON A VACANCY

A limited set of the lowest spin wave modes on a pinned
in-plane vortex can be found using a circular system
defined by a set of classical spins on a square lattice.
The same geometry was used in Ref. 23 to determine
the anisotropy-dependent stability properties of singly-
charged vortices on a vacancy, where it was also shown
that a vortex will be attracted to a vacancy. First, the
system is centered on a lattice site, whose spin is removed.
The single vacancy at the system center then can be con-
sidered as a tiny hole, whose radius is on the order of the
lattice constant a. We did not consider holes larger than
this. Sites within a radius R from the vacancy are in-
cluded into the system. After choosing a particular easy-
plane anisotropy strength (determined by parameters λ
and d, see Hamiltonian 1), a single-vortex spin configura-
tion, centered on the vacancy, is relaxed to a local energy
minimum. In the work presented here, we always choose
adequately strong anisotropy, greater than the “critical

anisotropy”, see Ref. 23, only due to exchange (param-
eter values λ < 1, d = 0), so that the relaxed state is a
planar AFM vortex.

The general equations for spin fluctuations around a
given vortex or other local energy minimum spin config-
uration on a lattice have been developed in Refs. 4,6. A
self-consistent Gauss-Seidel (GS) relaxation procedure36

was used to determine the small amplitude normal modes
of the spins around a relaxed pinned vortex spin con-
figuration. We usually applied the slightly faster syn-
chronous updating of the wavefunctions. In cases where
this led to an obviously unstable solution (typically, at
large system radius and/or anisotropy strength close to
the critical value), the calculation was performed instead
by using the sequential or scanning updating of the wave-
function. Dirichlet boundary conditions are assumed at
the outer limit of the system, r = R. The procedure gives
some frequencies and wavefunctions of the discrete prob-
lem, starting from the state of lowest frequency and work-
ing upwards. Using typical double precision, we are able
to calculate as many as 80 modes for systems up to radius
R = 40a. The process works in the direction of increas-
ing frequency, without discrimination between acoustic
and optical modes. In general, any particular mode will
have both nonzero in-plane (η) and out-of-plane (ξ) fluc-
tuations. A mode is identified as being from the optical
branch if its frequency is above the gap (ω > ω0) and
if the magnitudes of its ξ-fluctuations are considerably
stronger than those of the η-fluctuations. Further distin-
guishing features of the two branches are discussed below.
Some modes above the gap were found difficult to iden-
tify as purely acoustic or purely optical; these were not
included in the present analysis.

To compare the numerical results of GS relaxation with
the continuum theory, next we describe the spin fluctua-
tions for the acoustic and optical modes in a pure system
in a uniform antiferromagnetic state (no vortex or va-
cancy). Understanding of the phases of the fluctuations
on the two sublattices is necessary for determining the
continuum fields η and ξ from the original lattice spin

fields, ~Si, and for identification of a mode as acoustic or
optical. Furthermore, the free spin wave dispersion rela-
tions ω(k) are needed to convert the frequencies obtained
from the numerical mode relaxation into the equivalent
wavevectors k.

A. Free spin waves on a square lattice

To accomplish this task, we assume that the two sub-
lattice spin fields (alternating sites on the square lattice,
measured in the laboratory xyz coordinate system) vary

spatially as eik·r, with amplitudes ~SA = S(1, Ay, Az)

on the A-sublattice and ~SB = S(−1, By, Bz) on the B-
sublattice. Then substitution of these into the discrete
lattice equations of motion from Hamiltonian (1) gives
the two distinct solutions for the two spin wave branches,
with lattice dispersion relations for exchange anisotropy,
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acoustic spin waves:   Sx~,  Sy~ in-phase

z~A= x̂

x~A= ŷ

y~A= ẑ

z~B= -x̂

x~B= -ŷ

y~B= ẑ

FIG. 1: (color online) Sketch of the local sublattice coordi-
nates, denoted with tildes (x̃, ỹ, z̃) on sublattices A and B, in
a medium of uniform antiferromagnetism. The bold arrows
represent the fluctuating spins, relative to the uniform AFM
state, in the phase relationships expected for an acoustic spin
wave mode. The faint arrows reference the laboratory xy
plane.

ωk = 4JS
√

(1 ∓ γk)(1 ± λγk), (18)

where upper (lower) signs here and in subsequent equa-
tions are for the acoustic (optical) branches, and

γk =
1

2
(cos kxa+ cos kya) . (19)

Assuming propagation along x̂, as ~k = (k, 0), then one
has k = cos−1(2γk − 1), where γk is obtained from the
frequency, using (18), as

γk = (2λ)−1{∓(1−λ)+
√

(1 − λ)2 + 4λ[1 − (ω/4JS)2]}.
(20)

In addition to this relation for determining k, the spin
wave analysis determines the relative phases of the dif-
ferent spin components. As in previous articles on this
topic,4,6,36 it is convenient to use local spin coordinates
(Sx̃

n, S
ỹ
n, S

z̃
n) at each lattice site, oriented so that the

axis z̃n is placed along the relaxed static spin direction,
while x̃n lies within the laboratory xy-plane, and finally
ỹn = z̃n × x̃n, forming a right handed set. In this nota-
tion, the fluctuations Sx̃

n take place within the laboratory
xy-plane, while the fluctuations S ỹ

n correspond to out-of-
plane motions, see Figs. 1 and 2. Each static spin has
S z̃

n = S, regardless of its sublattice.

1. Square lattice acoustic modes

For the acoustic modes, with ω → 0 as k → 0, the
laboratory spin components on the two sublattices are

optical spin waves:   Sx~,  Sy~ out-of-phase

z~A= x̂

x~A= ŷ

y~A= ẑ

z~B= -x̂

x~B= -ŷ

y~B= ẑ

FIG. 2: (color online) Sketch of the local sublattice coordi-
nates, denoted with tildes (x̃, ỹ, z̃) on sublattices A and B,
in a medium of uniform antiferromagnetism. The bold ar-
rows represent the fluctuating spins, relative to the uniform
AFM state, in the phase relationships expected for an optical
spin wave mode. The faint arrows reference the laboratory xy
plane. The open arrow (red online) tilts below the xy plane.

found to have the phase relationships,

~SA = S(1, Ay, Az), ~SB = S(−1,−Ay, Az). (21)

The combination of in-plane components out-of-phase,
with out-of-plane components in-phase, becomes simpler
if one looks at the local spin components, as suggested in
Fig. 1. The local spin component fluctuations are seen
to have the relations,

Sx̃
A = Sx̃

B, S ỹ
A = S ỹ

B, (22)

that is, the local spin components on the two sublattices
move together, in-phase. The amplitude relationship be-
tween in-plane and out-of-plane local components on one
sublattice, furthermore, shows a predominant in-plane
vibration, and a 90◦ phase relation,

Az =
−iω

4JS(1 + λγk)
Ay ≈ −ika

2
√

1 + λ
Ay . (23)

As k → 0, the out-of-plane fluctuations vanish. Modes
found in the numerical relaxation for the vortex-on-
vacancy problem, with these typical characteristics, can
be expected to belong to the acoustic branch.

2. Square lattice optical modes

In the optical modes, with finite frequency as k → 0,
the laboratory spin components again have a mixed phase
relationship between the sublattices,

~SA = S(1, Ay, Az), ~SB = S(−1, Ay,−Az). (24)
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In this case, when written in terms of the local spin com-
ponents, (Fig. 2) there is a purely out-of-phase relation-
ship between the sublattices:

Sx̃
A = −Sx̃

B, S ỹ
A = −S ỹ

B. (25)

The amplitude relationship between in-plane and out-
of-plane components on an individual sublattice shows
a 90◦ relationship, together with a predominant out-of-
plane motion,

Az =
−iω

4JS(1 − λγk)
Ay ≈ −i

√

2

1 − λ
Ay . (26)

The latter form results from the limiting dispersion re-
lation (gap frequency), ω(0) = ω0 = 2JS[8(1 − λ)]1/2.
Especially in the region of weak easy-plane anisotropy
(λ ≈ 1), the out-of-plane vibrations are enhanced. Modes
from the numerical diagonalization for the vortex-on-
vacancy problem, with these kinds of characteristics, will
be considered as belonging to the optical branch.

3. Mapping onto the continuum fields

The numerical mode relaxation procedure calculates
the local in-plane (Sx̃

n) and out-of-plane (S ỹ
n) spin fields.

In going over to the continuum limit for equations (2),
one finds the relations between the discrete and contin-
uum fields as35

Sx̃
A ≈ η +

1

8JS

∂ξ

∂t
, S ỹ

A ≈ −ξ +
1

8JS

∂η

∂t
, (27a)

Sx̃
B ≈ η − 1

8JS

∂ξ

∂t
, S ỹ

B ≈ ξ +
1

8JS

∂η

∂t
, (27b)

Generally, the second terms in these expressions can be
ignored, to leading order, because we are analyzing low-
frequency modes with ω � 8JS. Then, the η-field is
derived from the smooth variations in the in-plane (Sx̃)
local components, while the ξ-field is derived from the
staggered variations in the out-of-plane (S ỹ) local com-
ponents. The staggered variations can be defined by tak-
ing −1 times the A-sublattice values, and +1 times the
B-sublattice values. Clearly, these mappings show the
generally acoustic nature of the η-field, and the generally
optical nature of the ξ-field. They also suggest, however,
the possibility of a mixing between acoustic and optical
motions, which sometimes makes it impossible to identify
a mode as purely acoustic or purely optical.

B. Numerical Mode Spectra, q = 1
Vortex-on-vacancy

We consider a single q = 1 planar vortex pinned on
a vacancy at the system center. The numerical relax-
ation procedure36 was applied for anisotropy constant

15 20 25 30 35 40
R / a

0

0.5

1

1.5

2

 ω
 / 

JS

λ = 0.954

0

1
2
3
4

VIM

4 3 2 1 0

1, sub-gap mode

Optical Modes

Acoustic Modes

0

FIG. 3: (Color online) Partial mode spectrum for λ = 0.954.
Integer numbers by data curves indicate the azimuthal quan-
tum numbers m. The gap frequency is ω0/JS ≈ 1.213. Only
the lowest scattering modes at each m, for each branch, are
shown. The VIM and sub-gap mode occur at relatively con-
stant frequency, while usual scattering modes have a depen-
dence on 1/R.

λ = 0.90, 0.95, 0.954, values approaching the vortex-on-
vacancy critical anisotropy,23 λcv ≈ 0.9545, below which
the vortex remains planar. In order to get a range of pos-
sible wavevectors k, the calculations were performed for a
range of system sizes between R = 15a and R = 40a. Up
to the lowest 80 modes were found for each system. To go
to larger systems is possible, but the computational time
becomes excessive. To go to many more modes is not
possible, because the accumulation of numerical errors
eventually leads to instability in the calculation. Gener-
ally speaking, very few optical modes could be found for
the larger systems, because the acoustic mode frequen-
cies generally fall lower and lower as the system size is
increased, pushing the optical modes up out of the lowest
80.

1. Modes at λ = 0.954

At anisotropy strength very close to the critical value
(λcv ≈ 0.9545), the spectrum takes it simplest form, be-
cause the VIM occurs at a frequency lower than all of the
other modes, for the system sizes studied. The frequen-
cies of some of the lowest acoustic and optical modes
are shown in Fig. 3, as functions of the system radius
R. The usual scattering states have typical e±imϕ spa-
tial dependence, for example, for R = 15a, the lowest
m = 1 acoustic mode and lowest m = 2 optical mode
are shown in Figs. 4 and 5. The unfilled (filled) arrows
in these figures indicate the complex Sx̃ (S ỹ) fluctuat-
ing spin components. (Sx̃ are in-plane fluctuations, S ỹ

are out-of-plane fluctuations.) The differences between
acoustic and optical mode wavefunctions are apparent.
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λ = 0.9540

mode 3 /JS = 0.72713ω

FIG. 4: (Color online) Lowest m = 1 acoustic mode wave-
function (Sx̃) for λ = 0.954, in a system of radius R = 15a.
In-plane oscillations of the spins are represented by arrows
with unfilled triangular heads (blue online), whose magni-
tudes and directions give the complex amplitudes, Sx̃. The
negligible out-of-plane oscillation component for this mode is
not shown.

Scattering modes at other m have similar appearances,
but with a different number of lobes depending on m.
From observation of the wavefunctions, the values of m
can be assigned.37 Then the scattering phase shifts can
be calculated as described below.

The instability mode (VIM) takes a dramatic form,
Fig. 6, characterized by a wavefunction dominated by
out-of-plane fluctuations concentrated near the vortex
core, with circular symmetry (m = 0). The exponen-
tial decay of the VIM wavefunction with radius leads to
a low frequency nearly independent of the system size,
determined primarily by the anisotropy strength and the
size of the hole on which the vortex is pinned. Although
it is well below the optical gap, its vibrations are like that
of an optical mode. It is a localized bound state, hence,
there is no scattering analysis for its out-of-plane field.
The properties are further analyzed in Sec. V.

Just below the optical gap frequency ω0, another
unusual state occurs with nearly size-independent fre-
quency, and quantum numberm = 1. It has been marked
in Fig. 3 as the sub-gap mode. A wavefunction structure
is shown in Fig. 7; although its frequency is below the
gap, its structure is that of an optical mode: strong out-
of-plane fluctuations that are out of phase on the two
sublattices. This state is interesting because it is always
the lowest frequency mode that appears to belong to the
optical branch. Yet, we are not able to calculate a scat-
tering phase shift for this state, because it is not possible

λ = 0.9540

mode 19 /JS = 1.50381ω

FIG. 5: (Color online) Lowest m = 2 optical mode wave-
function (Sỹ) for λ = 0.954, in a system of radius R = 15a.
Out-of-plane oscillations of the spins are represented by ar-
rows with filled triangular heads (red online), whose magni-
tudes and directions give the complex amplitudes, Sỹ. For
this and most of the optical branch states, the in-plane oscil-
lation component is negligible and is not shown.

to assign a value for the wavevector k by using Eq. (20),
which requires ω > ω0. It seems likely that the mode is
indeed the lower limit of the optical branch, whose gap
has been reduced by the vortex-hole interactions. It is
not otherwise analyzed in this work.

2. Modes at λ = 0.95 and λ = 0.90

At anisotropy strength λ = 0.95, farther from the crit-
ical value (λcv ≈ 0.9545), the spectrum is somewhat dif-
ferent, because the VIM frequency now moves up into
the acoustic branch spectrum for the system sizes stud-
ied. The frequencies of some of the lowest acoustic and
optical modes are shown in Fig. 8, as functions of the
system radius R. The gap has increased slightly com-
pared to that for λ = 0.954, but this has no significant
effect on the modes. Primarily, the higher frequency
VIM mixes with acoustic states, and in this sense, it
is not really possible to say that there is an individual
VIM state. Various modes low in the spectrum have the
appearance of strong out-of-plane oscillations near the
vortex core, together with circular symmetry. At sys-
tem radius R = 20a, for example, the two lowest modes’
wavefunctions, shown in Fig. 9 and Fig. 10, both exhibit
strong centralized out-of-plane oscillations, but with dif-
ferent phases compared to the in-plane fluctuations. The
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mode 1

λ = 0.9540

/JS = 0.09954ω

FIG. 6: (Color online) Central region of the vortex instability
mode (VIM) wavefunction for λ = 0.954, in a system of radius
R = 15a, using arrows as in Fig. 5. Only the out-of-plane field,
Sỹ is shown; the in-plane component is negligible. Although
well below the optical gap, ω0/JS ≈ 1.213, the structure is
that of an optical mode. The wavefunction amplitudes are
concentrated near the vortex core, with a length-scale that
depends on the hole size and anisotropy strength.

in-plane fluctuation components also have different ra-
dial dependence. With increasing system size, different
modes take on the appearance of the strong out-of-plane
centralized oscillations. Generally, other higher-m modes
have appearances similar to those in the wavefunction
plots for λ = 0.954 .

At even stronger easy-plane anisotropy, λ = 0.90, both
the gap and the VIM frequency increase substantially,
see Fig. 11 for a partial spectrum versus system radius.
Several m = 0 modes in the acoustic frequency range
have strong out-of-plane oscillations centralized on the
vortex core, being indicated as VIM-like on Figure 11.
Because of the larger gap, the calculation of the opti-
cal mode spectrum becomes rather difficult; fewer modes
of the optical branch can be determined by the GS re-
laxation procedure. A sub-gap mode, however, is still
present. Whether this mode is present when there is no
vacancy cannot be determined; an anisotropy parameter
as low as λ ≈ 0.70 would have to be used (the critical
value without a vacancy), but this would lead to such a
large gap frequency, that no optical modes can be easily
calculated.

mode 9

λ = 0.9540

/JS = 1.21073ω

FIG. 7: (Color online) Central region of the sub-gap m = 1
optical mode wavefunction for λ = 0.954, in a system of radius
R = 15a. Unfilled (filled) arrows describe in-plane or Sx̃

(out-of-plane or Sỹ) spin fluctuations. This mode typically
maintains a nearly constant frequency just below ω0 as R is
changed.
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0
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4 3 2 1 0

1, sub-gap mode

Optical Modes

Acoustic Modes

0

VIM-like

FIG. 8: (Color online) Partial mode spectrum for λ = 0.95,
following the notations of Fig. 3. The gap frequency is
ω0/JS ≈ 1.265. Now the two lowest m = 0 modes have a
centralized strong out-of-plane oscillation, or VIM-like prop-
erties.

C. Scattering States and Phases Shifts, q = 1
Vortex-on-vacancy

Depending on the assigned value of azimuthal quantum
number m, as obtained from the wavefunctions, together
with identification as an acoustic or optical mode, some-
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λ = 0.9500

mode 1 /JS = 0.27855ω
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λ = 0.95,  R = 20a
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FIG. 9: (Color online) Central region of the lowest mode
wavefunction for λ = 0.95, R = 20a, (a) following the no-
tations of Fig. 7 and (b) showing the radial structure. This
mode exhibits a centralized strong out-of-plane oscillation, or
VIM-like structure, in combination with moderately strong
in-plane oscillations.

what different analysis was applied to the wavefunctions,
to extract the scattering phase shifts.

1. Wavefunction fittings for m2
≥ q2

With the exception of the optical modes where m2 <
q2, the determination of the scattering phase shifts fol-
lows standard procedures, summarized here. For the
acoustic modes, the in-plane field obtained from the nu-

λ = 0.9500

mode 2 /JS = 0.37711ω
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FIG. 10: (Color online) Central region of the second lowest
mode wavefunction for λ = 0.95, R = 20a, (a) following the
notations of Fig. 7 and (b) showing the radial structure. This
mode also exhibits a centralized strong out-of-plane oscilla-
tion, or VIM-like structure, in combination with relatively
strong in-plane oscillations. Note that the phase relation-
ships between the in-plane and out-of-plane components are
different here than for mode 1, Fig. 9.

merics is fitted to the form,

η(r, ϕ) = [a1Jm(kr) + b1Nm(kr)] eimϕ

+ [a2Jm(kr) + b2Nm(kr)] e−imϕ. (28)

The combination of ±m modes is necessary due to their
approximate degeneracy on a square lattice.7 The con-
stants a1, b1, a2, b2 were determined by a least squares
fitting, Appendix A, of the entire wavefunction data to
this functional form. This then defines scattering ampli-
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FIG. 11: (Color online) Partial mode spectrum for λ = 0.9,
following the notations of Fig. 3. The gap frequency is
ω0/JS ≈ 1.789. Now various m = 0 modes in the acoustic
spectral range have a centralized strong out-of-plane oscilla-
tion, or VIM-like properties.

tudes,

ρm(k) = b1/a1, ρ−m = b2/a2, (29)

which should be nearly identical and real. The large-
r asymptotic form of η for a single angular momentum
results from the asymptotics of the Bessel functions, and
gives an amplitude that can be written as a sum of an
incident wave and a modified scattered wave,

ηm(r → ∞) ∼
√

1

2πkr

[

e−i(kr−φm) + Sm(k)ei(kr−φm)
]

.

(30)
The Bessel phase is φm ≡ π

4 (2m + 1). The scattering
phase shift δm(k) of the outgoing wave compared to the
incoming wave is related to the S-matrix and scattering
amplitudes, according to

Sm(k) =
1 − iρm(k)

1 + iρm(k)
= e2iδm(k). (31)

Then, the scattering phase shift is found to be

δm(k) = − tan−1 ρm(k). (32)

The same analysis applies to the calculation of the scat-
tering phase shifts for the optical modes, as does Eq. (32),
but using the data for the ξ-field, and fitting to Bessel

functions of order ν =
√

m2 − q2 in Eq. (28), which need
not be integer.

Applying the above described analysis, the scattering
phase shifts δη for λ = 0.954, for modes in the acoustic
spectrum, are shown in Fig. 12. The points on these and
similar graphs below were obtained from calculations on
lattices of radii ranging from R = 15a to R = 50a, in or-
der to produce sets of data over a wide enough range of k.
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m=30.034 0.035 0.036

-1
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1

λ = 0.954

(VIM)

acoustic

FIG. 12: (Color online) Acoustic mode scattering phase shifts
versus wavevector for λ = 0.954, at the indicated angular mo-
mentum values m. The inset shows the analysis of the in-
plane oscillations of the vortex instability mode, which occur
at significantly lower frequency. The dashed vertical line in-
dicates the wavevectors beyond which the acoustic spectrum
overlaps with the optical spectrum. Modes to the right of this
line may have optical as well as acoustic properties.
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FIG. 13: (Color online) Acoustic mode scattering phase shifts
versus wavevector for λ = 0.95, in the notation of Fig. 12. The
modes where the m = 0 scattering passes π/2 have VIM-like
structure.

A dashed vertical line has been placed at the value of ka
corresponding to the wavevector above which the acous-
tic branch frequencies overlap with the optical branch
frequencies. Generally, the data beyond this point come
from modes that appear to be acoustic, but still have
significant influence of the optical states. As such, these
data do not follow a simple trend.

The strongest acoustic scattering effects take place at
m = 0 and m = 1; there is very weak scattering at higher
angular momenta. The inset of Fig. 12 shows the analysis
even including the VIM; its in-plane wavefunction was
used in the analysis, even though it is dominated by its
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FIG. 14: (Color online) Acoustic mode scattering phase shifts
versus wavevector for λ = 0.90, in the notation of Fig. 12.
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FIG. 15: (Color online) Acoustic mode scattering phase shifts
versus wavevector for λ = 0.95, in the notation of Fig. 12,
comparing modes with m > 0.

out-of-plane component. It is intriguing to note that the
m = 0 phase shift passes through π (or equivalently, −π)
at a finite but small wavevector, see the VIM inset. That
this is indeed a general phenomenon at m = 0, can be
seen by comparing with the corresponding results at λ =
0.95 and λ = 0.90, shown in Fig. 13 and Fig. 14. Again,
including the modes with VIM-like structure, the m = 0
scattering phase shift passes through π at a finite value
of ka, and eventually through zero at a higher value of
ka. The scattering at λ = 0.95 for m > 0 is shown in
Fig. 15. There is again a moderate scattering effect for
m = 1 only, and very little at higher m. The same holds
for λ = 0.90 .

A comparison between these results for the acoustic
modes with the simple analytical approximation of Sec.
III [see Eq. 14] shows that the continuum theory works
very well for m 6= 0. In fact, there is a good qualitative
and even quantitative agreement between the numerical

λ = 0.9540

mode 14 /JS = 1.35246ω

FIG. 16: (Color online) Lowest m = 0 above-gap optical
mode wavefunction (Sỹ) for λ = 0.954, in a system of radius
R = 15a. The meaning of the arrows is given in Fig. 5; the
negligible Sx̃ field is not shown. There is always at least one
nodal ring surrounding the central core region for these states.

and analytical results for angular momentum channels
| m |> 0. However, the analytical result is completely
different from our numerical analysis in the case m = 0.
This disagreement may be justified by the fact that this
particular wave (s wave) can approach the zone of strong
influence of the hole, which involve small scale and hence
the continuum theory should be viewed with caution. We
will return to this discussion after treating the optical
modes. For now we just remember that m = 0 modes
were not considered in the continuum theory for the out-
of-plane magnons (optical modes).

2. Wavefunction fittings for m = 0 at q = 1

For vortex charge q = 1, the m = 0 optical modes
are unusual, in that their analysis involves the use of
Bessel functions of imaginary order, ν = i, see Sec. III.
A typical wavefunction obtained numerically is shown
in Fig. 16. The functions Ji(x) and Ni(x), defined by
appropriate power series and other relations, Appendix
B, are complex, unlike the (real) Bessel functions at real
order. In order to develop a definition of the scattering
phase shift, one needs to interpret the ξ-wavefunction as
composed from a linear combination of incoming incident
wave together with a scattered outgoing wave, using the
asymptotics of these Bessel functions.

The ξ-field from the numerical relaxation is fitted by
a least squares procedure, Appendix A, to the functional
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FIG. 17: Lowest m = 0 above-gap optical mode radial wave-
function for λ = 0.95, in a system of radius R = 35a, with
frequency ω = 1.2742JS and wavevector ka = 0.056475. Data
symbols show calculations on a square lattice using the nu-
merical GS-relaxation method; solid curves are least square
fits to Eq. (33). The complex fitting parameters are a1 =
(0.09126723, 0.1231743) and b1 = (0.1129695, −0.09951148),
leading to ρ0 = (−0.082838, −0.978532) and scattering phase
shift δ0 = 0.679533, using (40).

form,

ξ(r, ϕ) = [a1Ji(kr) + b1Ni(kr)] , (33)

leading to the complex amplitude coefficient, ρ0(k) =
b1/a1. For example, the quality of such fittings is shown
in Fig. 17 for the lowest m = 0 optical mode for a
system with λ = 0.95 and R = 35a, which has fre-
quency ω = 1.2742JS, corresponding to a wavevector
ka = 0.056475 . The graph shows the out-of-plane spin
fluctuations, S ỹ; the staggered values on the sublattices
defines ξ. This mode is very similar in structure to that
shown in Fig. 16. These wavefunctions are pure imag-
inary, as indicated by the vertically oriented arrows for
S ỹ. The fitted function (solid curves in Fig. 17) is for all
practical purposes, pure imaginary; there are opposite
signs of the imaginnary part of S ỹ on the two sublat-
tices. Note that there are no data within the hole r < a,
although the fitted curve is shown there. Another exam-
ple of the accuracy of these fittings is displayed in Fig.
18, for the second lowestm = 0 optical mode, of the same
system, which has frequency ω = 1.3482JS, correspond-
ing to wavevector ka = 0.172089 . This is essentially the
same scattering state, but observed at a higher energy
and wavevector.

Once a fit to any state has been accomplished, we con-
sider how the fitted value of ρ0 determines a correspond-
ing value of scattering phase shift. Importantly, the state
ξ ∼ Ji, with ρ0(k) = 0, is not a state of zero scattering,
as can be seen from the asymptotics of these Bessel func-
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FIG. 18: Second lowest m = 0 above-gap optical mode ra-
dial wavefunction for λ = 0.95, in a system of radius R = 35a,
with frequency ω = 1.3482JS and wavevector ka = 0.172089.
The complex fitting parameters for Eq. (33) are a1 =
(−0.06647212, 0.2149658) and b1 = (0.1971564, 0.07247664),
leading to ρ0 = (0.048877, −0.932266) and scattering phase
shift δ0 = −0.325185, using (40).

tions at large argument x ≡ kr � 1:

Ji(x) ≈
√

1

2πx

[

e−
π

2 e−i(x−π

2
) + e

π

2 ei(x−π

4
)
]

, (34a)

Ni(x) ≈ i

√

1

2πx

[

e−
π

2 e−i(x−π

2
) − e

π

2 ei(x−π

4
)
]

. (34b)

In each of these functions, the outgoing wave [ei(x−π

4
)]

is stronger in amplitude than the incoming wave, hence
neither could represent a state of no scattering. Using
these expressions, we can construct a state ξNS, that cor-
responds to no scattering, by a linear combination with
synchronized equal-amplitude in and out waves,

ξNS ≈
√

1

2πx

[

e−i(x−π

4
) + ei(x−π

4
)
]

, (35)

ξNS →
√

2

πx

[

cosh
(π

2

)

Ji(x) − i sinh
(π

2

)

Ni(x)
]

.

The latter form corresponds to the analytic continuation
of the asymptotic expression. It shows that a zero scat-
tering state has the pure imaginary coefficient, ρNS =
−i tanh π

2 . Extending this idea to states where scatter-

ing takes place, with scattering S-matrix, S0(k) = e2iδ0(k)

different from unity, the ξ-field can be expected to have
the asymptotic form,

ξ0 ≈
√

1

2πx

[

e−i(x−π

4
) + S0(k)e

i(x−π

4
)
]

, (36)

which is analytically continued to all r by the expression
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FIG. 19: (Color online) Optical mode scattering phase shifts
versus wavevector for λ = 0.954, at the indicated angular
momentum values m.

ξ0(r) =
e

π

2 + S0(k)e
−π

2

2
Ji(kr) − i

e
π

2 − S0(k)e
−π

2

2
Ni(kr)

(37)
The latter result correctly reduces to (35) in the no scat-
tering limit, S0(k) → 1.

The result (37) determines ρ0(k) in terms of S0(k),
from which the scattering phase shift can be found:

S0(k) = eπ

[

1 − iρ0(k)

1 + iρ0(k)

]

= e2iδ0(k). (38)

The physical requirement of energy conservation in the
scattering process implies |S0(k)|2 = 1. This then places
a constraint on the real and imaginary parts of ρ0(k),

Im[ρ0(k)] = −1

2
tanh(π)

[

1 + |ρ0(k)|2
]

. (39)

It forces the imaginary part to be more negative than
− 1

2 tanh(π), providing a check on the calculations. Eq.
(38) leads to the phase shift,

δ0(k) = −1

2
tan−1

{

2 Re[ρ0(k)]

1 − |ρ0(0)|2
}

. (40)

One can note, in fact, that this last equation also applies
to all the phase shifts at non-zerom, as it reduces to (32)
when ρ is pure real.

The resulting scattering phase shifts δξ for λ = 0.954,
for modes in the optical spectrum, are shown in Fig. 19
and Fig. 20. At m = 0, the scattering phase shift ranges
from +π/2 at small k, passing through zero at ka ≈ 0.12,
until finally approaching −π/2 for larger k. The phase
shift at m = 1 apparently falls slowly from π/2 at small
k and possibly drifts towards zero for larger k. These
m are particularly distinctive. On the other hand, the
phase shifts at m = 2, 3, 4, are very small in the range of
ka that was accessible.
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FIG. 20: (Color online) Optical mode scattering phase shifts
versus wavevector for λ = 0.954, at the indicated angular
momentum values m.
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FIG. 21: (Color online) Optical mode scattering phase shifts
versus wavevector for λ = 0.95, at the indicated angular mo-
mentum values m.
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FIG. 22: (Color online) Optical mode scattering phase shifts
versus wavevector for λ = 0.95, at the indicated angular mo-
mentum values m.
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For comparison, the corresponding optical mode phase
shifts at λ = 0.95 are shown in Figs. 21 and 22. The
results are very similar to those at λ = 0.954, including
the zero-crossing of the m = 0 shift near ka ≈ 0.12 .
This is in contrast to the drastically different π/2 crossing
points in them = 0 acoustic phase shifts displayed above.

The simple analytical result for the optical modes ob-
tained by using the continuum approach [see Eq. (16)]
shows an overall qualitative and even quantitative agree-
ment with the numerical calculations. For example,
the case m = 1 with r0 = a leads to δξ(1)(k) =
π/2 + arctan[J1(ka)/N1(ka)], which is in good quanti-
tative agreement with the numerical results presented
in Fig. 19. Indeed, the term arctan[J1(ka)/N1(ka)] is
small and negative in the range in which ka is accessi-
ble, making δξ(1)(k) decrease slowly from π/2 as ka in-
creases. However, our simple continuum theory does not
present the same success for the cases m ≥ 2. In these
cases, there is only a qualitative agreement with the nu-
merical calculations. Actually, the analytical phase-shifts
for m > 1 are also much smaller than that of the case
m = 1, but they are relatively much larger than the nu-
merical ones shown in Figs. 19 and 20. In these fig-
ures one can see clearly that, for m > 1, δξ(m)(k) → 0
as k → 0, while the analytical calculations imply to
δξ(m)(k) → (| m | −ν)π/2 as k → 0. Hence, numeri-
cal and analytical calculations differ essentially by a con-
stant term, which tends to zero only for m � 1. We
notice, therefore, that the causes of this quantitative dis-
agreement for relatively large values of m must not be
due to the boundary conditions used at the hole border.
In fact, in these cases, the centrifugal barrier given by
the term −m2/x2 in the scattering equation (5) becomes
large, expelling the magnons from the center of the vor-
tex and consequently from the border of the hole. Then
the influence of the vacancy on the magnon phase-shifts
should decrease as the angular momentum m grows. It
is really confirmed by both the analytical and numerical
calculations presented here.

V. VORTEX INSTABILITY LOCAL MODE

The VIM for vortices in a pure lattice (no vacancy)
has a nearly circular symmetry, and is dominated by the
out-of-plane fluctuations, corresponding to the field of
the optical spin waves, ξ. It means that the angular
quantum number m = 0 for this mode; for this reason it
is not governed by the usual Bessel’s equation, see Eq.
(6) above. One can expect the same symmetry (m = 0)
to apply for a vortex pinned on a vacancy or a circularly
symmetric hole in the system. Furthermore, the η fluctu-
ations can be ignored for analysis of the AFM VIM. The
other essential physical feature of the VIM is the expo-
nential decay with radius. This mode is localized on the
vortex and its frequency falls within the gap of the opti-
cal spin wave branch, although it can be considered to be
a state removed from that branch. It is a bound state of

the effective potential V (r), Eq. (3), and has no nodes,
being the ground state of the Schrodinger problem (2a).

Using m = 0 in Eq. (5), and under the assumption of
a bound state, ω < ω0, the VIM field is seen to satisfy a
modified Bessel’s equation of imaginary order,

ξ
′′

+
1

x
ξ
′ − ξ +

q2

x2
ξ = 0, (41)

where now x = αr, with a pure imaginary wavevector

k = iα, and real α =
√

∆
a2 − (ω

c )2. The order of the

associated modified Bessel functions is ν = ±iq. The
natural length scale in the problem is the radius of the
hole. We seek an eigenfunction satisfying the boundary
conditions ξ(r0) 6= 0, ξ(∞) → 0. This can be accom-
plished in various ways. For example, we initially tried a
variational approach, where the solution to Eq. (41) far
from the origin is exponentially decaying like the func-
tion ξ(r) = ξ0 exp(−αr). Close to the origin, however,
the wavefunction will be modified from this, due to the
presence of the hole and its pinned vortex. The vari-
ational calculation works well and shows the basic im-
portant properties of the VIM. It can give only an over-
estimate of the VIM frequency, however, because the trial
wavefunction is accurate only far from the vortex core.
Since it over-estimates E = (ω/c)2, it must underesti-
mate the critical anisotropy values.

We get better estimates of desired quantities by a
numerical solution of the ordinary differential equation
(ODE) (41), using a standard shooting method. To do
so, it is more convenient to write it using the physical
coordinates, as the radial Schrodinger equation

d2ξ

dr2
+

1

r

dξ

dr
+ [E − V (r)]ξ = 0. (42)

Importantly, the ODE is integrated towards larger r,
starting from a nonzero value ξ(r0) = ξ0 at the edge of
the hole, with a small (or zero) initial slope. At the same
time, the ODE is integrated towards smaller r, starting
from some large radius R (the system outer cutoff), with
fixed initial value ξ(R) = 0, and a small nonzero neg-
ative slope. The integration was effected by converting
the problem to coupled first order ODEs and applying
fourth-order Runge-Kutta integration with a fixed step
size. The eigenvalue E = (ω/c)2 was adjusted together
with the initial slopes iteratively until the two solutions
and their first derivatives match at some intermediate
point, which we took to be the classical turning point.
Once convergence is achieved, the solution is exact to
the numerical precision used. We used a grid along r of
20000 points, with R = 100a, for a hole radius r0 ≤ 4a.

For vortex charge |q| = 1, typical normalized wave-
functions are shown in Fig. 23. The wavefunctions do
not depend on the value of anisotropy ∆, which effects
only a linear shift in the eigenenergy. One can note that
the length scale of the wavefunction is truly determined
by r0; the wavefunction spreads in proportion to the
hole radius. The curves shown will overlap if plotted as
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FIG. 23: Typical bound state radial wavefunctions of the
AFM VIM for singly-charged vortices, for the indicated hole
radii, obtained from numerical shooting of Eq. (42).

r
1/2
0 ξ(r/r0). Due to this scaling, and consistently with

the variational approach, the energy E is proportional
to ∆/a2 and falls to zero at the critical anisotropy. The
numerical result obtained is

E = (ω/c)2 =
∆

a2
− 0.10226

r20
. (43)

The last term is the squared inverse length parameter
α2, hence, the actual length scale of the wavefunctions
is α−1 ≈ 3r0. The anisotropy where the frequency goes
to zero determines the critical anisotropy, below which a
planar vortex develops nonzero out-of-plane components.
The critical exchange and single ion anisotropy values
result from the generalized anisotropy according to εc =
1
4∆c and dc = 1

2∆c. The results can be summarized,

∆c ≈ 0.10226
a2

r20
, dc ≈ 0.0511

a2

r20
, εc ≈ 0.0256

a2

r20
.

(44)
The normalized wavefunctions for vortex charge

|q| = 2 are compared to those for |q| = 1 in Fig. 24,
with both shown in scaled form. The deeper potential
for |q| = 2 produces a wavefunction more tightly local-
ized on the vortex. The numerical result for the energy
is found to be

E = (ω/c)2 =
∆

a2
− 1.137

r20
. (45)

In this case, the wavefunction length scale is α−1 ≈ r0.
The resulting estimates of the critical anisotropies are:

∆c ≈ 1.137
a2

r20
, dc ≈ 0.568

a2

r20
, εc ≈ 0.284

a2

r20
. (46)

As for the case |q| = 1, the shooting solution is more
accurate than the variational approach, because it ac-
counts for the wavefunction better near the core region
of the vortex.
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FIG. 24: Comparison of the bound state scaled radial wave-
functions of the AFM VIM, for singly and doubly charged
vortices, obtained from numerical shooting of Eq. (42) (solid
curves) and from GS relaxation solution on a square lattice,
scaled using r0 = 0.726a.

It is clear that the above shooting results can be in-
terpreted alternatively in terms a minimum (or critical)
hole size rc, necessary to stabilize the vortex in the pla-
nar form. The VIM frequencies can be expressed in the
form,

(ωa

c

)2

= ∆

(

1 − r2c
r20

)

, (47)

which implicitly defines the critical hole radii. For ex-
ample, using the shooting solutions for q = 1 we have
rc = a

√

0.10226/∆, and for q = 2, rc = a
√

1.137/∆.
The result shows clearly how a larger hole is needed to
stabilize planar vortices if the anisotropy is weak. If the
hole radius is smaller than rc, the vortex will change into
an out-of-plane configuration. Furthermore, multiply-
charged planar vortices require an even larger hole radius
to be stabilized.

VI. DISCUSSION AND CONCLUSIONS:

PHYSICAL EFFECTS OF A SPIN VACANCY OR

HOLE

In this article, we have considered the problem of the
interactions of magnons with pinned planar vortices in
doped quasi-two-dimensional classical magnetic materi-
als. Both analytical and numerical calculations were ap-
plied. Our calculations indicate that strong antiferro-
magnetic fluctuations around the vacancies have impor-
tant effects in the scattering process. They affect the
phase-shifts and also the vortex internal mode consider-
ably. These results may have also some relevance to the
counterpart 2D quantum spin systems. Indeed, recent
nuclear-magnetic-resonance measurements have shown
that when a Cu2+ in the Cu − O plane of the cuprates
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is substituted by a strong nonmagnetic impurity, such as
Zn2+, the antiferromagnetic correlations are enhanced,
not destroyed, around impurities13,14. Below we discuss
and summarize the main results obtained here.

A. The Scattering States

In real antiferromagnetic systems it is expected that,
besides isolated impurities, there will be also clustering
of nonmagnetic impurities. Our results can also be ap-
plied to this situation, where vortices could be, in princi-
ple, pinned on two or more nearest neighbor nonmagnetic
impurities. In this case, the size of the hole (r0) would
be related to the number of nearest-neighbor impurities.
The calculations presented here show that r0 has a strong
influence on the scattering process, changing the phase-
shifts considerably. For holes larger than a, the change
in the scattering of the out-of-plane magnons comes from
the first term of Eq. 16 (the coupled vortex-hole contri-
butions for the phase-shifts). The second term of Eq. 16
(the vortex contribution) is not modified as r0 is varied.
The change in the in-plane magnons comes only from the
hole contribution (it seems that planar vortices do not
affect the acoustic waves). However, the scattering prob-
lem considering next-nearest-neighbor impurities needs a
more detailed analysis when a vortex is present. Indeed,
the system will have at least two centers of scattering
(probably, having an elliptical symmetry, instead of a
circular one). Besides, the presence of a vortex may in-
duce an effective interaction between vacancies, which is
attractive17, leading to stronger spin fluctuations in the
region between the impurities. Certainly, it also affects
the scattering of magnons.

For only one vacancy, we notice that our analytical cal-
culations for the scattering interactions between magnons
and the vortex pinned on a hole work relatively well for
optical and acoustic modes only for | m |> 0. How-
ever, our continuum approximation fails completely for s-
waves and, in our analysis, the reason is simple: in exper-
imental situations involving small scales (as a small hole
with size of the order of the lattice constant a) the appli-
cation of the continuum theory, which is a long wave-
length theory, should be viewed with caution, mainly
when spin motion is taken into consideration. Here, with-
out a centrifugal barrier, s-waves (m = 0) are able to
strongly hit the vortex core and hence the border of the
hole. It should imply that, for m = 0, the spin fluc-
tuations in the small region around the hole become ex-
tremely complicated to be described by a long wavelength
theory. Of course, it is already expected that strong dis-
crete lattice effects not well described by the usual con-
tinuum approximation always appear from the core of
the in-plane vortices.

B. The Local Mode

For a q = 1 vortex on a square lattice system without a
hole, the critical anisotropies are known to be dc = 0.4690
and εc = 0.2966 . These apply to a vortex centered in a
plaquette–which can roughly be thought of as a hole with
a radius less than one lattice constant. We can note here
that the present calculations can reproduce these critical
values approximately, if we take a hole size on the order
of r0 ∼ 0.3a, although it is impossible to match both
simultaneously since the discrete critical values are not
in a 2 to 1 ratio.

A better comparison with the discrete lattice results
can be obtained for a vortex centered on a single spin va-
cancy in the square lattice. There, the critical values are
known to be dc = 0.0824 and εc = 0.0455, reduced con-
siderably by the presence of the vacancy, consistent with
these continuum predictions. For a single spin vacancy,
there is the question: What hole size should be used in
the corresponding continuum theory, to model a single
vacancy? A choice of r0 = a is probably too large, if
we consider that each lattice site has some effective half-
width on the order of a/2. We can suppose that the hole
radius should be slightly less than a, and try to choose it
so that the continuum results roughly match the discrete
results. Indeed, using r0 = 3

4a in (44) gives dc = 0.091
and εc = 0.0454, both reasonably close to the discrete
values.

Clearly, in a physical system where a larger set of spins
is removed to form a larger circular spin hole, the contin-
uum approach should be more precise, and Eqs. (44) will
be more reliable. Then, these results indicate that vor-
tices can be readily stabilized in the planar form, using
very weak easy-plane anisotropy, if they can be formed
around a large enough hole [radius greater than critical
radius rc, Eq. (47)] cut out of the spin system or ma-
terial. The planar stability increases effectively with the
area of the hole. Only in the limit r0 → ∞ do the criti-
cal anisotropy values fall to zero, which would destabilize
any planar vortex.

C. Pinned Doubly Charged Vortices

Numerical stability calculations for doubly-charged
vortices pinned on a single spin vacancy in a square lat-
tice indicated the critical exchange anisotropy εc ≈ 0.46
(or λc ≈ 0.54). These vortices also have only a narrow
range of weaker anisotropy where they remain as stable
out-of-plane vortices – without adequate anisotropy, a
q = 2 vortex splits into a pair of q = 1 vortices. As-
suming that the vacancy is modeled by a hole size on the
order of r0 = 3

4a, as used above, our shooting solution
for the continuum limit [Eq. (46)] produces εc ≈ 0.51 .
Considering that the q = 2 vortex spin field within 1 –
2 lattice constants of the core cannot be very well ap-
proximated by a continuum field, the agreement between
these is remarkable. Most significantly, this calculation
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shows that the instability of planar pinned q = 2 vortices
to develop out-of-plane components is related to a local-
ized dynamic oscillation mode of the vortex, analogous
to that for pinned or unpinned q = 1 vortices.

One can also try to understand why stable doubly-
charged vortices never occur in the pure square lattice
(no vacancies) system with exchange anisotropy, using
the present theory. This cannot simply be due to their
higher energy (proportional to q2) compared to singly-
charged vortices. We can suppose a q = 2 vortex centered
in a plaquette, considered as a hole of size r0 ≈ 0.3a,
as used for the q = 1 stability question, which is also
the same order as the cutoff needed to fit the contin-
uum vortex energy to the discrete lattice energy. Then
the shooting solution equations (46) predict critical ex-
change anisotropy εc ≈ 3, or λc ≈ −2. This is signifi-
cantly outside the realm of anisotropy constant valid for
the easy-plane model; typically values of ε greater than 1
(XY model) are not considered, because they would im-
ply exchange couplings of the opposite sign for the out-of-
plane spin components. Stated otherwise, the exchange
anisotropy required to stabilize a planar q = 2 vortex is
not achievable in the usual easy-plane Heisenberg model.

In conclusion, the above results indicate that planar
vortices with q = 1 or q = 2 may be found even
in nearly isotropic diluted magnetic compounds. Pos-
sible candidates can be the layered structures (R −
NH3)2MyMn1−yX4, where R is an organic radical sep-
arating the MnX planes and the X ligand is either Cl
or Br. The spin of Mn ion (S = 5/2) ensures that these
compounds are well approximated by a classical Hamil-
tonian, and the nonmagnetic doping ions M can be Mg
or Cd.

APPENDIX A: LEAST SQUARES

WAVEFUNCTION FITS

A general wavefunction ψ (either η or ξ) is fitted to
the expression with fitting parameters a1, a2, b1, b2,

ψfit(r, ϕ) = [a1Jν(kr) + b1Nν(kr)] eimϕ

+ [a2Jν(kr) + b2Nν(kr)] e−imϕ. (A1)

For acoustic modes, the order is ν = m, whereas for

optical modes, ν =
√

m2 − q2. When m = 0, we can set
a2 = b2 = 0 and define a function with only two fitting
parameters. From actual wavefunction data points, ψn,
where n refers to lattice sites, the parameters need to be
chosen to minimize the sum of squared deviations,

χ =
∑

n

|ψn − ψfit(rn, ϕn)|2. (A2)

Taking partial derivatives with respect to the fitting pa-
rameters leads to a matrix problem,

MX = Y, (A3)

where the matrix M is composed from a sum over terms
on each site of the lattice,

M =
∑

n

mn, (A4)

and each mn is given by a matrix









JνJ
∗
ν JνJ

∗
ν e

−2imϕ NνJ
∗
ν NνJ

∗
ν e

−2imϕ

JνJ
∗
ν e

2imϕ JνJ
∗
ν NνJ

∗
ν e

2imϕ NνJ
∗
ν

JνN
∗
ν JνN

∗
ν e

−2imϕ NνN
∗
ν NνN

∗
ν e

−2imϕ

JνN
∗
ν e

2imϕ JνN
∗
ν NνN

∗
ν e

2imϕ NνN
∗
ν









(A5)
It is understood that each Bessel function is evaluated
at argument x = krn, and additionally, the angular ar-
guments are the angular positions of the lattice sites,
ϕ = ϕn. X is a column vector containing the unknown
fitting parameters, and Y is a sum over lattice sites, using
the given mode wavefunction:

X =







a1

a2

b1
b2






, Y =

∑

n









ψnJ
∗
ν e

−imϕ

ψnJ
∗
ν e

imϕ

ψnN
∗
ν e

−imϕ

ψnN
∗
ν e

imϕ









(A6)

The linear system (A3) is solved for X by Gauss-Jordan
elimination, leading to the least-squares estimate of the
fitting parameters. For acoustic modes and for optical
modes with m2 > q2, ν is real and so are the Bessel func-
tions. For the special case of optical modes withm2 < q2,
ν becomes imaginary, as do the Bessel functions, a sit-
uation whose calculations are further elaborated in Ap-
pendix B.

APPENDIX B: BESSEL FUNCTIONS Ji AND Ni

For the fitting of them = 0 optical mode wavefunctions
on a q = 1 pinned vortex, the complex Bessel functions
Ji(x) and Ni(x) are required. These are not commonly
available in a standard C or FORTRAN subroutine. In-
stead, Ji(x) was implemented using C-programming with
complex arithmetic, of the series expansion,

Ji(x) =
(x

2

)i ∞
∑

n=0

(−x2

4

)n
1

n! Γ(n+ i+ 1)
. (B1)

The sum was arranged as Ji(x) =
∑∞

n=0 tn, where suc-
cessive terms are obtained by an iteration:

tn =
−x2

4

tn−1

n(n+ i)
, t0 =

(x

2

)i 1

Γ(i+ 1)
. (B2)

The value Γ(i+ 1) = iΓ(i) ≈ 0.498016− i 0.15495 (from
Maple or Mathematica) is used to initiate the series. The
iteration is terminated when the sum for Ji converges to
machine double precision. Typically, less than 30 terms
are needed as long as argument x is less than 10, which
is almost always the case for these low frequency modes
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on small lattices (i.e., xmax = k×R ≈ 0.1×40 = 4). The
Neumann function at this order is subsequently obtained
from the standard relation between Jν and Nν ,

Ni(x) =
Ji(x) cos iπ − J−i(x)

sin iπ
, (B3)

where additionally, the relation J−i(x) = J∗
i (x) holds.
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