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Los Alamos, NM B7545
Abstract

We have applied previously used guantum Monte Carlo (QMC) techni-
ques to obtain numerically the thermodynamics of two well-studied quasi-
one-dimensional (1-D) easy-plane ferromagnetic models, in the presence
of an applied magnetic field in the easy plane. The checkerboard de-
composition form of the Trotter approximation to the partition functionm
has been used. Internal energy, specific heat, magnetization and sus-
ceptibility have been obtained for model Hamiltonians believed appro-
priate for spin S = % ECﬁHnHHa}CuBr3 (CHAB) and S =1 CsNiF,, in
temperature and field ranges where classical theories have predicted
soliton-like kink excitations. The § = % QMC calculations are verified
and superceded by a numerically exact quantum transfer matrix (QTM)
technigue.

Results for the temperature dependence of the peak in the specific
heat verses field are compared with available experimental results. For
the model applicable to CHAB, it is found that there is no value of the
easy-plane anisotropy parameter from 4% to 10% for which the QTH calcu-
lation can adequately reproduce the experimentally obtained peak height
and position. On the other hand, the QMC results for the model assumed
for CsNiF3 do roughly reproduce the temperature dependence of the
experimental peak positions, but not the peak heights. However,
statistical errors present in our QMC data are large, and a better

method is still needed for computing the quantum statistical mechanics

of § =1 systems.



Introduction

Obtaining a correct theoretical description of the low temperature

thermodynamics of the easy-plane spin-1 ferromagnet EEH:LF3 has been the

subject of a number of investigations in recent vyears, both theoret-

7-10

icall_ﬁ and experimental. More recently, a similar spin-% compound ,

[CE,H HHa)CuBrB, cr ''CHAB", has inspired even further interest in

11

easy-plane ferromagnets (EPFs), especially because of the possible

existence of (or effective consequences of) classical solitary wave

excitations in such a low spin quantum chain.l1 A typical model
Hamiltonian for a spin-1 EPF is’

b = 1 (R R, AG)? - g id

Hgey = nil 1=35 8 A —gBes 1 &Y

where J = 23.6 K, A=9.0 K and g = 2.4 for CsHiFa.E N is the number of

spins and Pg is the Bohr magneton. For a spin-% EPF, the easy-plane

anisotropy must be in the exchange, then the Hamiltonian is usually

taken to be

Lal H Ax-nx nYnY p—zkz g §

H5=1f2 i ni} [{-stnsn+1 * J}Tsnsn‘*l # stnsn+1] - BHg®’ n] - (2)
For CHAB, we take'? J_=J_ = 110K, J, = 1045 K and g = 2.0. In both

Hamiltonians, we will find it convenient to choose the xz plane as the
easy plane, and to apply the field in the z-direction.

Because of the low spin number, quantum effects might be expected a
priori to be strong in both these materials. However, it has been
customary to apply classical mechanics as a first approximation. With a
field in the easy plane which is small in comparison to the anisotropy
(guBB « 2AS), and at low temperatures (T < J), the continuum limit

classical dynamics is approximately described by the sine-Gordon (sG)



equatium.l Then the possible excitations include small amplitude spin
waves, solitons and breathers. Early neutron scattering experiments on
CsHiF3 (Ref. 7,8) and TMMC (a similar antiferromagnet with S = 5/2;
Ref. 13) were interpreted in terms of a gas of weakly interacting soli-
tons and spin waves. More recently this interpretation has been
challenged and the need to include alternative mechanismshpﬁ has been
discussed =-- for example, including higher order spin wave processes.
Also, the soliton-gas rm:ur:h‘:llll:F predicts a peak in the soliton specific
heat verses field at fixed temperature, whose position and height are
proportional to T2 and T respectively. The T2 dependence of the peak
position is approximately observed in experiments on CHAE and CsNiFE,
but the constants of proportionality are only correct if one assumes an
"ad hoc" renormalization of the soliton rest mass. There is no
consistent fit for the peak heights in either material.

Furthermore, linear stability analysesls-lﬁ and numerical simula-
tions of the full classical d}ruamiczﬂ (without approximating the
equations of motion by the sG equation) have shown that there is an
intrinsic instability for the solitons, henceforth referred to as kinks,
to deviate strongly from sG-like behavior for applied fields greater
than a critical field given by gugB_= 2A5/3. As the field is in-
creased toward the critical field, the spins show an increasing tendency
to tilt out of the easy plane, a motion which is assumed small in the sG
approximation. The critical fields are around 18 kG for EsNiF3 and
13 kG for CHAB, somewhat above the ranges where most experiments have
been done. This spin tilting increases continuously as the field ap-

proaches the critical field, and therefore its effects can generally

play a role in the dynamics. For fields greater than the critical



field, the kinks move in a direction opposite to that expected of sG
solitons; these have been referred to as "backwards" negative effective

17 It is only in the limit of small field and zero velocity

mass kinks.
that the out-of-plane tilting wanishes, and then the sG approximation
becomes exact. Otherwise, the complete classical dynamics is rather
poorly described by the sG equation. This behavior of the kinks also
has been obtained by a wvariational Ansatz calculatiun.IE

The classical EPF Hamiltonian has been further shown to be inade-
quate for explaining experimental data through classical transfer matrix
(TM) calculations. 1ﬁ particular, TH r:.:'nlv:.ula'r.i-:.r:lrns'Er of specific heat
using the full discrete EPF Hamiltonian give results much higher than

experimentlﬂl for CsNiF,, whereas sG theory (with a renmormalized rest

3!
mass) fits much closer to experiment. Similar results have been found
for easy-plane antiferrﬂmagnetslg comparing experiment with classical
Monte Carlo results. It has been suggested that quantum mechanics could
effectively restrict spins to the easy plane (tilted by =zero-point
fluctuations), thereby making sG theory more appropriate than the full
classical Hamiltonian, even for § = 1/2 CHﬁB;ZD.

There could be several corrections necessary to the classical
model, including effects of next-nearest neighbor interactions, impuri-
ties or discreteness. Perhaps even a quite different Hamiltonian is
necessary, especially since parameters are usually dete}mined from fits
to linear properties, whereas soliton bearing systems exhibit intrimsi-
cally nonlipnear phenomena. Certainly the most obvious question to
consider, however, is how to include quantum mechanics in the model.

One approach has been to re-insert the quantum mechanics by simply

replacing the classical sG equation with its quantized version, then the



leading correction to the classical theory is a reduction of the sG sol-
iton rest mass.21 More recently, Johnson and Hright22 reported on the
Bethe Ansatz methndz3 applied to solving the quantized sG equation rele-
vant to easy-plane ferro- and antiferro-magnets -- a similar rest mass
reduction is found, but still theory and experiment for CHAE, CsHiF3 and
TMMC disagree (for specific heat, and therefore probably for other
thermodynamic properties). These authors point out, in particular, that
the corrected classical sG theory, including kink-kink .'i.l:ltm:au:t::i.::n:;sn,2":L
would require a rest mass increase to bring the calculated specific heat
into agreement with e;perimeut for CHAB. This approach of quantizing a
particular limit of the full classical Hamiltonian (the sG limit) seems
gquestionable. By so dniné, the out-of-plane degree of freedom is not
treated properly; it is essentially transformed to a linear degree of
freedom. In view of continuing controversies over the importance of
out-of-plane classical mutiun525 verses the quantization of the sG
model, it seems necessary to include both out-of-plane and quantum
aspects simultaneously.

One way of achieving this is to use the recently developed Trotter-
Suzuki transformation, whereby the thermodynamics of the original 1-D
quantum system is mapped onto the thermodynamics of a 2-D classical
51_.r5tem.26 Numerical evaluation of the internal energy, specific heat,
etc. is carried out by using either Monte Carlo or transfer matrix

methnds.z?

Although this will give no direct information about the
excitations, (e.g., the question of existence of solitons) it can
nevertheless give crucial indications of the importance of quantum
effects and the validity of the assumed Hamiltonians.

In this paper we begin with a brief review of the Trotter-Suzuki

formalism, which converts the trace operation in the partition function



definition into a discrete path integral, thereby adding one dimension.
New Monte Carlo spin-1 updating algorithms will be given,zs these being
somewhat different from the previous spin-% schemes+2? Results relevant
to the CaHiF3 model will be presented, and compared with experiment and
sG theory. Unfortunately, these 5 = 1 data have rather large statisti-
cal errors making quantitative comparisons of limited wvalue. Methods
other than the present QMC may prove to be more precise. One possi-
bility is the "numerically exact" QTM method as studied by Betsuyaku,zg
which will be applied here to the spin-% CHAB thermodynamics. We use a
technique to extrapolate from the finite size lattice to the infinite
limit in both directions on the 2-D lattice, thereby making this pre-

ferred over the previous S = % QMC methud.30

We find that there is no
value of exchange anisotropy from 4% to 10% for which the QTHM results
for specific heat peaks will agree with experiment. We have, however,
tested that the QTM calculation gives results consistent with the QMC
calculation. Finally, a method for calculating the 5 = 1 fundamental
matrix elements is sketched in the ﬁppendix;za these matrix elements

determine the effective energy of the 2-D lattice, and therefore control

the Monte Carlo updating.

II. Trotter-Suzuki Formalism: Checkerboard Decomposition

The original 1-D quantum thermodyanmics spin problem is mapped onto
an approximately equivalent 2-D classical thermodynamics problem via an
. 26

application of a generalized Trotter formula, as suggested by Suzuki.

First, the partition function Z is defined in terms of a trace

v tr{e-ﬂH} =3 <U1E-BH|G} 2 (3)
a



where B is the reciprocal of the temperature T (we use Boltzmann's
constant kE =1) and o = {Sn,n =1,2,3...N}, where the Sn are eigen-
values of some appropriately chosen operators, usually éﬁ. It is gen-
erally not known how to compute the required matrix elements in eq. (3),
so the Trotter formula' is used to approximate the operator by one for

~ i
which the matrix elements are easier. The generalized Trotter formula

for the exponential of a sum of k operators is

k = k -
Exp(E al)z Lim [ 1 exp(ﬂi;mj]“‘ , (4)

i=1 m*a i=]

Typically the integer k is N for what has been called32 the "real space

decomposition," and k can be 2 or 4 or even 6 for the "checkerboard
decomposition.” The integer m is referred to as the "Trotter index,"
and represents the number of discrete path integral steps.

The Hamiltonian is written as a sum of two-body operators Hn,n+1'

and it is convenient to assume that each of these two-body operators can

be written as a sum of two parts

- N -

i E n,nt+l ' (5e)
n=1

- - "

Hu,n+1 - Hn,n+1 ¥ vn,n+1 (55

Furthermore, the odd and even n two-body operators are summed separately

-

to define four parts of H (i.e. k = 4);

H = ¥ ¥ g N = I 3 (6a)
°0dd " p=odq ™M1 L T

eren even even

—_— v H° v &b
H Hndd * 1|"'fn::uniln:l ¥ Heven ¥ v:ven ) (6b)



The mth-order Trotter approximation te the partition function, Z{m], is
then defined by
-ﬂ.ﬂ S Aﬂ A
BHndd _ﬁvndd _BHeven _aveven
2™ = trf[(e® e®  )(e® e* N )

All four operators H:dd’ etc., are sums of commuting operators, and so

this is rewritten as

(m) _ x5 3 m
Z = tr{(Ludd Loven’ ¥ o (Ba)
where
5 A
. BHn,n+1 _ﬁvn,n+1
- m m
Laa = n (e e ) . (8b)
n=odd
even
even

Now, (2m-1) complete sets of states are introduced (in addition to that

of the trace itself) Ilabeled by Ur = {En . o= 1:2:9...8}, =
¥

1,2,3...2m. The eigenvalues now have both a position index n and a

state index r. Then

{mJ — : 4 -ew ;
A = z <n:r1ILndﬂluzxczleenluE) <02 |L lo.> . (9)

o A m' even 1
12 2m *

From (9) it is evident that we have an expression for a classical

partition function on a 2-d lattice of size N X Zm:

zZm - 5 n e BElr) (10)

P . b
0,0,°"°0,  <n,r



Here brackets <n,r> indicate a product restricted to terms in which n
and r are both odd or both even, and the 2-D energy function E(n,r) for
a block of four spins on the lattice is given by the fundamental matrix

element

o~BE(n,r) =<s (11)

n,r nt+l,r n,r+l En+1,r¢1}

The r wvariable is the new added dimension. Since the only terms which
contribute to the energy of the 2-D lattice are restricted te n and r
both odd or both even, this has been called a checkerboard decomposi=

tion. In what follows the S _ variables will be eigenvalues of Si

)
operators, for the rth set of states. In the spiu-% problem these can
be t%, while for spin-1 the possibilities are *1 and 0.

The 2-D lattice comsists of %Nm blocks of 4 spins, or "vertices'.
In the limit m =+ o, Z{m] approaches the exact partition function of the
original 1-D quantum system. The 2-D lattice has periodic boundary
conditions in the r (or Trotter) direction, as a result of the trace
operation. For the Monte Carlo calculations, periodic boundary condi-
tions will also be imposed in the spatial direction. For the transfer
matrix calculations, however, it is very advantageous to use free end
boundary conditions in the spatial direction.

Expression (11) needs to be modified slightly, since the resulting
matrix elements will not in general be symmetric with respect to the

interchange of r and r + 1 (i.e. the matrix is non-Hermitian). We

redefine E(n,r) and restore this symmetry:

L]
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_Evn,u+l _BHan+1 _an,n+1

2m m 2m
e e |

-pH(n,r) _
B Sn,r Sn+1,r+1|e

) (12)

>
o,r+l 5n+1,r+1

This is equivalent to using k = 6 in the Trotter formula. These matrix
elements (or vertex weights) for the spin-1 model are calculated in the
Appendix. Epin-% matrix  elements have  alreadv been given
Elsewhere.zﬁ'aﬁ

The properties of the spin-% matrix elements have also been
discussed.zﬁ'aﬂ It is dimportant to note that zero matrix elements
correspond to infinite energies and therefore prohibited states of the
4-spin blocks or wvertices. For the spin-1 problem, out of the possible
(25 + l]ﬁ = 81 matrix elements, only 19 are nonzero for the isotropic
case in the absence of a field (A = Bz =0). 1f a field is added
parallel to the quantization axis, there will still be only 19 allowed
vertices. However, if a field is added perpendicular te the quantiza-
tion axis, this produces an 81 vertex model. By choosing the quantiza-
tion axis in the easy plane, parallel to the field, one obtains a 41
vertex model, independent of the size of the field. Since we are
interested in studying the field dependence of the thermodynamics, it is
most convenient to choose this last case, so that the ﬁndel under con-
sideration always has &1 allowed wvertices. In this way, updating
acceptance rates will depend only weakly on the field strength for any
chosen spin updating algorithm. For this 41 vertex model, the allowed
vertices are the ones which contain an even number of zeroes (or %1's),

and this influences the choice of an appropriate Monte Carlo updating

algorithm.
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The decision whether to attempt the flipped or unflipped move is based on
the number of zeroes, Nn' along the path before the move, For a given
initial path, there are 2o flipped moves possible, and 2F~No unflipped
ones, for a total of oMo 4 oP~No possible output states. Therefore the
flipped moves should be attempted with probability 2““{ {Zﬂﬂ + EP-H”J,
and the unflipped moves should be attempted with prnbébiligy
EFHNOI(ZNQ + ZP-HQJ. In the absence of any interactions (all wvertex
weights equal), we have tested that this algorithm generates equal

numbers of -1's, 0's and +1's in the lattice, using an equal number of

row, column and square moves at randomly chosen locations.

IV. Monte Carlo Details

We used an approximately constant value of mT ~ 60 K, in order to
make the errors due to the Trotter approximation reasonably indepen-
dent of temperature. This necessitates a larger lattice in the Trotter
direction at lower T. For the CsNiF, parameters, in the temperature
range 5 K < T € 15 K and field range 0 < Ez < 10 kG (in the easy plane),
acceptance rates for row and column moves are « 1%, while square moves
have larger acceptance rates ~ 10%. Because of the inefficiency of this
method compared to Epin-%, we present data here for only 16 spins, using
only square moves,

The initial configuration was taken to be the state with all
sn,r = 0. Vertex weights were found for a temperature 2T, and then the
Monte Carlo algorithm was applied for 3000 to 5000 "steps'", where a step
involved attempting Nm square moves chosen at random positions; this is
two sweeps through the lattice of Nm/2 vertices. The temperature was

then lowered to T, new vertex weights were calculated, and the Monte

Carlo was begun using the final configuration of the stirring or heating
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interval as the initial configuration. The first 64,000 steps were
discarded for equilibration, and then data for expectation values were
saved for 192,000 steps. Expectation values of the internal energy,
specific heat, in-plane magnetization and susceptibility were computed
in a manner identical to that for the Epiﬂ'% problem, as expectation

27 Six bins Of

values of appropriate derivatives of the vertex weights.
32,000 steps were used for estimation of errors. Finally, data from
five such calculations were averaged to obtain the results presented
here.

At zero applied field, it was found to be difficult to obtain zero
average magnetization, due to the strong effective ferromagnetic
exchange, especially at low T. This strong exchange, which is also seen
in apin-% QMC, causes an effective freezing of the QMC algorithm. This
was somewhat alieviated by adding a global spin move (where all spins of
the lattice are reversed in sign) attempted once every step. At zero
field this move is always accepted and the average magnetization must
come out as zero. At nonzero fields the move is accepted with proba-
bility 1 if AE < 0 and probability e-ﬂﬁE if AE > 0, as for any other

elementary move.

V. QMC Results for CsNiFg

Calculations using EsHiF3 parameters were made in the temperature
range 5K < T < 15 K for fields up to 10 kG. The internal energy, speci-
fic heat and in-plane magnetization and susceptibility wverses T are
shown in Fig. 1, for fields 0, 5 kG and 10 kG. In Fig. 2 we present the
changes in energy and specific heat, AU = U(B) - U(0) and AC =

C(B) - C(0), to isolate contributions present only under application of
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the field (including, but not exclusively, "soliton" contributions).
These data have vague peaks and the scatter is considerable. In Fig. 3
the specific heat AC verses field B is shown, at temperatures 5, 6, 7, 8
and 9K. Classical sine-Gordon soliton theory predicts a peak in AC
verses B, whose position (at B = Epeak} and height (ﬂcmax] are propor-
tional to T2 and T, respectively. For these results, it is estimated,
very roughly, ‘that the peaks are at fields 2, 4, 5, 7 and 10 kG. We
plot Epeak verses T2 in Figure 4, and compare with the sG theory
predictinnzfi and with the linear fit to the Ramirez and Wolf

10

experimental data. Linear fits to the three are

Boeak = 014 T2 - 1.4,  QMC data,

Epeak o 0,131 12 y Ramirez and Wolf experiment, (13)
B = 0.114 2 G 24 ’ 2

beak = 114 T y sG theory,” no mass renormalization.

Generally the lack of agreement between experiment and sG theory has
been attributed to a quantum reduction of the rest mass of the solitons.
One can also compare the results of a Bethe Ansatz solution of the
quantized sG equation in Ref. 22. Surprisingly the slopes of the QMC
and experimental data are in good agreement, although this may be coin-
cidental, especially considering the quality of the QMC data. Also,
there is considerable scatter in the QMC data for peak heights verses T;
we can draw no firm conclusion from those data.

There are several deficiencies of this QMC calculation, the largest
of which is its inefficiency. A better algorithm is needed with higher
acceptance rates so that the statistical errors are reduced. There is

also a strong tendency for the system to "freeze" at low T; possible
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solutions to this problem might include some annealing procedure, or

-

perhaps a different decomposition of Hn,n+1 into ﬁ;,n+1 and Gn,n+1' The
other major problem is the finite lattice size, in both the spatial and
Trotter directions. This latter problem is difficult to correct without
first tending to the inefficiency problem.

Because of these difficulties, we cannot make any strong conclu-
sions, especially concerning the question of a "quantum seliton" inter-
pretation to the experimental data. Furthermore, it is not possible to
verify the applicability and parameters of the presently accepted

Hamiltenian for CsNiF. without a more accurate calculation. It is

3
likely that quantum effects are important here, and further study,
possibly by other methods, is needed. As a step in this direction, we
present next a quantum transfer matrix calculation for the spin-% model
of CHAB, where the accuracy is much better and dees show that there are

some difficulties to be cleared up in the understanding of the

Hamiltonian currently considered to be appropriate.

VI. Quantum Transfer Matrix Calculation for 8§ = 1/2

The Hamiltonian in eq. (2) is used here. The Trotter formula
applies just as for 8§ = 1, but now the matrix elements are the spin-%
functions given previuusly.z?-aﬂ The coordinate system is oriented so
that it is an 8-vertex model, although this simplification is in no way
necessary.

The computing method used was given by Betsuyaku,zg who adapted
that of Morgenstern and Binderaﬁ as originally applied to spin glass
models, by allowing for the four-spin interactions. It is necesary to
choose free boundary conditions in the spatial direction, while periodic

boundary conditions are imposed in the Trotter direction as a result of

the trace.
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Initially the 22m partial partition functions of the first column

(8

g% ¥ = 1,2,3...2m) are stored in memory. Now consider adding the
¥

spins 52 1 and 52 2 to the lattice, in each of four possible states.
¥ ]

This adds one &4-spin block te the lattice. Since all the interactions

invelving 51 1 and S2 p in the first column have been taken into
? ¥

account, we can perform the trace over them, and save in memory 22m

partial partition functions labeled by the states of 5§ i & ; O i
2,1 2,2 1,r

r > 3. Next, new spins are added at sites 52 3 S2 4 and thus the
L] 1
trace over Sl 3 and S.j 4 can be performed, and the states are now
¥ b
> 1 i -
labeled by 52’1, 52.2' 5213, 52,&, Sl,r r > 5. This procedure is con

tinued until the whole sgecond column of spins has been added to the
lattice, at which point the partial partition functions saved will be

labeled by states of the second column, 5 = 1...2m. This procedure

2,r %
is repeated, adding the spins of the 3rd column by pairs, and tracing
over the spins of the 2nd column pair after pair. Columns are added
iteratively, thereby transferring from the n particle system to the
n + 1 particle system. The procedure is stopped after adding the Nth
column and taking the trace over it, obtaining the total partition

(m)

function Z for any specified temperature. Internal energy, specific
heat, magnetization and susceptibility are then obtained by taking
appropriate derivatives numerically.

The method requires storing the 22m Boltzmann fact;rs == for this
calculation we have used 1 <m € 9. Computing time rises exponentially
with m and linearly with N. Presently the practical limit is m = 9 for
storage as well as CPU time using a CRAY-1 BOOK word machine, while

N > 100 is no practical problem.
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For 1-D magnets, it has been noted that for large N the total
internal energy U scales like U(N)/N = U_ + a/N (Ref. 35) where U_ and a
are constants. Similarly, it has been shown that the leading errors in
the Trotter approximation should be proportional to U'm2 (Ref. 36), a
result which has been demonstrated in the numerical calculations of
Betsuyaku. We have made use of these two facts to extrapolate to the
infinite N, infinite m limit. First, for a given value of m, data from
N =8,14,20,26 and 32 was extrapolated to obtain the N » =, finite m
limit. A weighted least squares linear fit was used, where the weights
were proportional to H See Figure 5 for an example. Then these data,
for a series of m values satisfying JSZImT < 1, were used to extrapolate
to the N+ ®, m+ limit (also in Figure 5). Here a weighted least
squares linear fit was also made, where the weights were 1, 2.5, 2.52,

., @35 m increases. The restriction JSzfmT < 1 is necessary since the
Trotter errors actually scale with the square of this parameter.
Curiously this parameter must be much smaller to obtain good results in

an XY model than for a Heisenberg mm:hel.z.IIr

VII. QTM Results for CHABE

First the method was tested for m = 8, N = 32, at 5% anisotropy

28,30 Results

(Jnyx = 0.95) to compare with previous sPiu-% QMC data.
for internal energy, specific heat, magnetization and suﬁceptihility all
agreed to within about 5% over the temperature range 4 K to 20 K. Then
we applied this methed to model (2) with anisotropy ranging from 4% to
10%, in order to compare with the experimental specific heat data of
Kopinga et al.'l As for CsNiF,, AC is plotted verses field for a series

of temperatures, and then the peak position and height are determined
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and plotted verses T2 and T respectively. Some representative AC verses
B curves are shown in Figure 6, for the case of 5% anisotropy. The data
lie on smooth curves, making the determination of peak positions and
heights possible. Interpolation, using a parabolic fit to the peaks,
provided a simple accurate way to determine the heights and positions.
and ﬁEmax are shown, for anisotropias

eak
4%, 5%, 6%, 8%, and 10%, and compared with classical sG theory and

In Figure 7 the resulting Bp

experiment.
The drawn curves in Fig. 7 are classical sG theory results using a

1f2, that is, with no adjusted para-

2 - T 3
soliton rest mass EsG = 8(JS ngBz}
meters, as in Ref. 24, The predictions of classical sG theory are
independent of the anisotropy. Expressions given by Sasaki and
Tsuzukizﬁ include contributions from spin waves, solitons, and solitonm-

gsoliton interactions. Their calculations predicts that the general

result for a sG ferromagnet is

2

B AT, A = (ﬁﬁtingJS3]-1 . (14)

peak %

where o= TJE:G = 0.190 has determined the peak position. The corres-

ponding peak height is found to be given by

AC = A'T , A" =0.196/J8° . (15)
max

We see that agreement between this classical theory and experiment is
fair for Bpeak but not as good for ﬁﬂmax. None of the chosen values of
anisotropy for the QTM fit well to the experimental CHAB data over this
temperature range. If the sG soliton rest mass is ad-hoc renormalized
such that the slopes of the sG theory Bpeak curves agree with the exper-

imental slope, then the implied changes in the sG theory AC  are not
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adequate to cause them to simultaneously fit the experimental data. It
has not been apparent how to resolve this problem with classical sG
theory. The QTM data presented here obviously should require no such
quantum renormalization, but nevertheless systematically disagree with

experiment.

VIII. Discussion of Results

The lack of efficiency and resulting lack of accuracy of the § = 1
QMC algorithm presented here led us to consider other methods of ob-
taining the low-temperature thermodynamics, the first of which is a
quantum transfer matrix method. This transfer matrix method as intro-
duced by Betsuyaku was applied here to the S = 1/2 CHAB thermodynamics,
thereby making earlier S = 1/2 QMC data obsolete, due to the much
greater precision of the newer method (i.e. no statistical errors). The
results obtained for specific heat with an in-plane field are in dis-
agreement with presently available experimental data. Other values of
easy-plane anisotropy, from 4% to 10%, different from the accepted value
of 5%, produced no good fit to the experimental data. It continues to
be somewhat surprising how well the classical sG theory is capable of
explaining the CHAB specific heat data. We have shown that the quan-
tized wversion of the ferromagnet Hamiltonian gives approximately the
same low-T thermodynamics as the classical sG Hamiltonian, for the case
of §=1/2 CHAB. This can be compared with the classical transfer
matrix calculatiunszn for the ferromagnet Hamiltonians, which give much
larger low-temperature specific heat peaks. Apparently the quantum
mechanics plays a strong role in restricting the spins to the easy plane
(perhaps including a =zero-point out-of-plane component} thereby making

the classical theory more appropriate than might at first be expected.
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Unfortunately, this QTM method cannot be applied in its present
form to the 5 = 1 CsHiF3 problem, essentially because of computer memory
limitations. Generally one expects that the errors due to a finite
value of m in the Trotter approximation should scale with the parameter
JSzfmT+ For the m-extrapolation methed to work well, at a given
temperature one needs data at several values of m satisfying JSzfmT @ 1.

2

Coincidentally, JS° ~ 25 K for CsNiF, as well as for CHAB, and since the

3
interesting soliton regimes are both near T = 5 K, one necessarily must
use several points for which m > 5. For § = 1/2, the computer memory
needed is of the order of 2-22m words, which is 520,000 words for m = 9.
This size was the practical limit (also in terms of cpu time) of avail-
able CRAY-1 machines (800 K words) at Los Alamos. For S = 1, the com-
puter memory needed will be of the order of 2'32m words, which is about
1 M word for m = 6. This memory requirement is excessive and yet m = 6
is too small for the extrapolation. The present QTM method cannot be
used for this S = 1 problem without taking into account the intrinsic
symmetry of the Trotter subsystems of the 2-D lattice (the columns,
along the Trotter direction). (See Ref. 36, 37.) Including these
symmetries, possibly by using coherent spin states as in Ref. 37, will

reduce the number of states being stored, thereby easing the computer

memory limitation problem.
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Appendix 1. Calculation of Spin-1 Matrix Elements

-

. ) 2 : o it
The two-site Hamiltonian is brokem up into Hn.n+1 and vu,n+l as
o .
EHn,.n+1Jlrm - K(ann+l : yn?n+1 ’ znzn+1] 1 (A-1)
BV per/m = BV /m - BV /m
= "H{?z +y: . )+ bz +z ) (A-2)
) n " Yn+1 n n+l :
where
K=Bl/m , o=PpA/2m , b =pB/2n (A-3)

o X oY L s
and X Wt and zn represent spin-1 operators Su’ S“ and Sn‘ The moti

vation here is that V is a moderate perturbation on H®
n,ntl n,

n#i (24/J ~

0.38 for EsHiFB}, with very weak dependence on the field strength.

Matrix elements of the two parts will be found separately; we sketch

the method for Hz n+1? the same method can be applied even more easily
1

-

to vn,n+1'

The exponential of (A-1) is needed, i.e.

- . =8 -
M=exp kM= 3 L kPWP | (A-4)
p=0 P’
where
G xnxn‘*l a ?nyn+1 *® znzn+1 * (4-5)

oy - .
A method is given here which produces MP . from HP, using the

anticommutator for symmetrizing the algebra;

yP*1 - %{n, MPy (A-6)
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By iteratively taking higher powers of M, it is found that MP will gen-
erally involve 8 different simple spin-1 operators, with coefficients of
these operators depending on p, so we can write
~ 8 -
W= Ioc(p)O . (AT
k= k k
=1
The sum is over the B operators ﬂk‘ One can use the fundamental

commutator

z = l[xn, yn] (A-8)

to write all operators in terms of x and y operators. Then the symmetry
of M with respect to interchange of x and vy operators simplifies the
calculation. The B operators are:

# -

0, = x x4 * Ixoyl 5 05 = Gexyy) (exyy) o, + fxey]
5 - xzxz + {x—=y} 5 = (xyvx) (xyyx) + {xe=y} :
2 n n+l ¥ ! ¥ YYR)ARYYX) 041 ¥ !

=]
n

5= Oxy) (xy) ot {xey) 5 00 = Gay) (yx) o)+ fxeoy]

L=
]

g = (axy) Oxxy) o+ [xe=y) aﬂ = (xyyx)_(yxxy) ., + {x=y}

where {x+*y} indicates another term with the x and y operators inter-

changed. The anticommutators of these, divided by two as in (A-6), are

.1 e - N - ES lﬁ

210p,M} =0, + 0, - 30,

lo.My=o0, -0+

710, 1 "9 7 3%

- -

Eiﬂa'H} = 2% "~ %

Yo, My =0, -0 +0 +0 (A-10)
2104, 3 T Y * Y



23

1

Hog, M} = 0,

D - 1"
7104,M} 0y * 39,
lo.M} =0

2107, 8

I
o

1A -
21081 = 0y

Inserting (A-7) into (A-6), we see that the Ek(p+1] coefficients are

found from the Ck{p} coefficients by two matrix relationships:

Cl 0 l_l] O 0 0 El
€, 1 0 0 0 00 |c,
C 1-1 0 1 0-1] |c
3 - g
= 1% -5 1 % 1 ’ (A-11)
Cs 222721 31 |%
C 000 10 0f|c
| Ce [0 0-1 1 0 of Lcgd
p+l P
c, _ o 1] [c,
(o 1 o) [cg
ptl P . (A-12)
Now since
M=0 -0,+0, , (A-13)

the system is solved subject to the initial condition
¢,(1) =¢,(1) =1 , €4(1) = =1 , all other C, (1) =0 . (A-14)

The simplest way to solve the 6-variable system is to expand the ipitial

condition in terms of the eigenspectrum of the matrix transformation.
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One finds the eigenvalues A = -1, +1, =2 and -% with =1 triply
degenerate. Then applying the transformation (p - 1) times to the

initial condition easily gives the following solutions for the operator

coefficents:
¢, () = C,(p) = 31 = (-1)P] oy
C,(p) = Cg(@) = 311 + (-1)P]
C,(p) = 31(-2)F - 1) (a-15)
C,() = ~Co(p) = = 7 + F(-1)P = 3(-2)P
Co(p) = = g = 3¢-1IP + 2(-2)P

Multiplying these by Kpfpi and summing on p, the following operator

result is found for M = exp KM:

-

= 1 + sinh K {01 + D?] + (cosh K - 1)(&2 + ﬂa)

S -2K. - 1K 1.-K. 1 <2% .° 7
- -EP(E -e ]Da + {Ee - 3¢ +* 3¢ :l':_ﬂﬁ = Dﬁ}
1 1K 1-K_, 1-2K. -,
+ {E ze z&  + e )05 . (A-16)

A calculation similar to the above gives the following expression for

the other part of the Hamiltonian:

exp(-ﬁ?ﬂfim} = Exp{-%uyﬁ + %han}
=14 (2. llyﬁ + by ™% sian y z,

Ie_afﬁ(cush y + %ﬂr-l sinh y) - llixyyxln

+

[E-af -a/2

+

ﬁ{cnsh Y - %01-1 sinh y) - e ](?nyin ¥

y = %{bE + %ﬂz}lfz . (A-17)
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-~

The nonzero matrix elements of M, the isotropic exchange operator,

are given here, where the notation is

2.2  i.z'.z!
<Ensnﬂlmsn 5n+l
<00| M| 00> = %[EEK + e

3
1M1 = <=1-1|M]-1-1> = e¥
<01|M|01> = <10|M|10> = <0-1|M|0-1> = <=10|M|=10> = cosh K
<01| M| 10> = <10|M|01> = <0-1|M|-10> = <-10|M|0-1> = sinh K
- > N _Apk =BR
<00| Ml 1-1> = €1-1|M|00> = <00|M|=11> = <=11|M|00> = E{e -e )
<1-1[MI1-1> = <=11|yl-11> = 1eX ¢ 1o7F 4 L%
3 2 3

c1-1|yl-11> = <-11| Yl 1-1> = %EK - %E‘K + %E‘EK

There are a total of 19 different nonzero vertex weights; all
others are zero. When this interaction is combined with that due to the

-

V. pp term (symmetrized as in (12)), one finds that 41 of the posible
§

81 vertices are allowed. These allowed vertices are the only ones with
an even number of 0's.

We alsoc note that for arbitrary 5§, the isotropic exchange

Hamiltonian will relate to a Hv-vertex model, where

2

NV =2(1 +2° + 32 + === ¢ [25)2 + (25 + 1}2 ¢

obtained by counting those vertices which conserve total magnetization
between states. For example, 5 = 3/2 would be described by a 44-vertex

model in the isotropic limit.
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Figure Captions

Fig. 1
Fig. 2
Fig. 3
Fig. &

Representative spin-1 QMC data for CsNiF._ parameters, using 16

3
spins and m ~ 60K/T. The drawn curves are least square poly-
nomial fits to the QMC averages, for in-plane fields 0 kG (0O,
solid), 5 kG (A, dashed) and 10 kG (+, dotted). All gquantities
are per spin.

The differences AU = U(B) - U(0) and AC = C(B) - C(0) wverses
temperature, derived from Fig. la and Fig. 1b, for fields 5 kG
(4, dashed) and 10 kG (+, dotted). The drawn curves are the
differences of the_least square polynomial fits in Fig. 1, while
the data pﬂints are obtained by direct subtraction of the Fig. 1
data points,

The differences AC = C(B) - C(0) verses B, as obtained from the

spin-1 QMC calculation for CsNiF, parameters (see text). The

3
data points correspond to temperatures 5K (©), 6K (x), 7K (+),
BK (&) and 9K (0). There are only vague peaks in each set of
data at fixed temperature, although these represent averages
over 5 ¥ 192,000 states.

Field B , at which AC ws. B is maximum, Verses Tz. from

peaks
experimental and model calculations. The dashed line is a

10

linear fit to the Ramirez and Wolf experimental data for

CgHiFB. The data points are rough estimates from the QMC cal-
culation, and the solid line is a linear fit to those data. The
dashed line is the prediction of classical sG theory of Sasaki
and Tsuzuki,za which includes effects of soliton-soliton

interactions, as well as multiple spin wave and spin

wave-soliton processes,



Fig. 5
Fig. 6
Fig. 7
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An example of the extrapolation to N = ®, m=» =, for the
specific heat per particle C/N, as used in the spin-1/2 QTM
calculation. (Similar curves can be obtained for the internal
energy, and in-plane magnetization and susceptibility.) CHAB
parameters are used here; Jx = Jz = 110 K, Jy = 104.5 K. The
in-plane field is Bz = 5.5 kG, and the temperature is T =
7.20 K. (a) Extrapolations to N + e at fixed wvalues of
m=3(@), m=51(0), m=7 (A) and m=9 (+). The straight
lines are weighted least square fits. (b) Extrapolation to
m+ @, using 3 <m < 9. The data points are the values already
extrapolated to N + =, as found from the intercepts of curves as
in (a). The straight line is a weighted least squares fit.
Some typical results for AC vs. B as obtained with the spin-1/2
OTHM calculation using CHAB parameters (5% anisotropy). The data
correspond to temperatures T = 4.0 K (V), 4.4 K (), 4.9 K (x),
5.5 K (+), 6.2 K (A) and 7.2 K (0), and have been extrapolated
to N + e, m=+ &=,

Spin-1/2 QTH results for (a) Epeak and (b) ﬂcmax’ using model
(2) with Jx = Jz = 110 K, for a series of wvalues of anisotropy
JYMx = 0.96 (&), 0.95 (0), 0.94 (A), 0.92 (+) and 0.90 (x).
These are all data from the extrapolation to N + @, m + ®. The
solid data points (e) are the experimental data on CHAB by
Tinus et al.zu The dashed lines are the classical sG theory of

Sasaki and Tsuzuki.zﬁ
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