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Easy-Plane Antiferromagnetic Kinks
G. M. Wysin , A. R. Bishop and J. Uitmaa?
Center for Nonlinear Studies and Theoretical Division

Los Alamos National Laboratory
Los Alamos, NM 87545, USA

Abstract
We present an Ansatz for kink excitations in an easy-plane
classical antiferromagnetic chain with a magnetic field in the
easy plane. The Ansatz includes the in-plane (XY) and out-of-
plane (YZ) kinks as belonging to one continuously connected
energy dispersion curve. Results of the Ansatz calculation are
compared with a numerical simulation and with a linear stability

analysis for YZ kinks.
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I. Introduction

Recently there has been considerable experi-
mental and theoretical interest in the low tempera-
ture properties of 1-D easy-plane antiferromagnets,
such as spin-5/2 THMC [1-5]. 1In particular, in the
presence of an applied field in the easy plane, the
spin Hamiltonian is taken to be [2]:

H = i [38_-5 ., + a{sﬁ}z - gHgB S7] (1)
where J and A are positive, g and My are the Lande g
factor and the Bohr magneton respectively. Neutron
scattering experiments [3] on TMMC have shown an
interesting crossover behavior of the in-plane and
out-of-plane spin wave dispersion as the field is
increased. At a "crossover" or "critical" field Be,
there is a switching of the hard axis from the di-
pole anisotropy axis to the applied field axis [4].

This switching is also expected to affect the
relative energies of the nonlinear soliton, or
"kink" excitations. These kink excitations have
been described in a continuum limit by an appr?xi-
mate mapping to the sine-Gordon (sG) equation, and
are rotations of the spins through m around either
the z-axis (XY kinks) or the field axis (YZ kinks)
[5]. At the critical field the stationary XY and YZ
kinks have equal energies, as do the in-plane and

out-of-plane spin waves at the zone boundaries.



Freviously XY and YZ kinks have been considered
to be distinct solutions of the equations of motion,
belonging to separate energy dispersion branches.
Alternatively, here we review an Ansatz which
includes the two as distinct limits of a single
continuously connected dispersion curve [6,7]. Also
we compare with results of a numerical integration
of the discrete equations of motion, as well as

presenting a linear stability analysis for YZ kinks.

II. Continuum sG Limit

Properties of continuum limit XY and YZ kinks
have been given elsewhere [2,5]. Here we present a
slightly different analysis for the YZ kinks.

In order to look for the YZ kink solution, it
is best to use spherical polar coordinates where the
field direction is the polar axis, in order to take
the symmetry of the desired solution properly into
account. So if the spins are parameterized in terms
of x-polar spherical coordinates, then the equation
of motion governing the YZ kinks has been shown to

be [6,7]:
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This is a sG equation with ¢ = 2, with the small
angles 6, ¢ given in terms of © and ¢. The YZ kink

solution is



6 = %n i ®=%2tanexp{ (3a)
E=ywoalz-vt) ; y=(1 - %vgj'lfz (3b)
The YZ kink energy is approximately E&.z = 2y.a JEZ.

Note that the field determines the width and ENErgY
of XY kinks, whereas the anisotropy does so for YZ
kinks. Both XY and YZ sG kink energies increase
monotonically with velocity,

A linear stability analysis [6,7] of YZ sG
kinks leads to the following decoupled eigenvalue
equatiah for & (where one has assumed small pertur-
bations E. 3, 8 and E from the sG profile, and

B = BHpB, /JS):
-YZEQQ + (1 -2 sechzg - g¥§ sech )8 = A8 (4)
N

An instability is indicated by a bound state solu-
tion to this Schrodinger problem with an imaginary

eigenfrequency, where the eigenfrequency w is

2

related to the eigenvalue by w® = 4a(A - 1) + ﬁz.

For v = 0, there is a sech { bound state, with zero

eigenvalue. This corresponds to wz = EE

ever, and can have mz

= ﬁa,-huw-
<0 if B < B, = 2Ju, indi-

cating a structural instability for fields less than

the critical field.
For nonzero v, the potential for © is modified.
The effect of nonzero v can be taken into account

through first order perturbation theory. A short



calculation shows that the stability criterion

becomes v/c * {ﬁu—Bz}f{nﬂJw}.

I11. The Variational Ansatz

The XY and YZ kinks can be connected through a
variational Ansatz, made in terms of the xvz spin
components in a manner similar to that done for the
easy-plane ferromagnetic kinks [B]. Further
motivation and details of this Ansatz calculation
are given elsewhere [6,7]. Essentially, a kink
profilercan be represented by a trajectory of the
spin vectors on the unit sphere, plus information
about the distribution of the spin wvectors along the
trajectory. Specifically, there will be one trajec-
tory for each sublattice, and we assume that the A
sublattice spin trajectory lies in a plane at an
angle Eﬁ to the easy plane, while the B sublattice
spin trajectory lies in a plane at angle EB' The
distribution of the spins along these trajectories
is taken to be sG-like; the angular position within
these tilted planes being ¢ = 4 tan exp[(z -
vt)/w], where w is a width variational parameter.

]

Thus the Ansatz involves three parameters: Eﬁ, B

and w, and for given o and B, these are determined

by locating the extrema of the Langrangian.



IV. Results and Discussion

—

In Figure 1 we show E(v) as obtained from this

]

Ansatz using @ = 0.04 as appropriate for TMMC and
for fields B = 0.3, 0.4 and 0.5 (Bc = 0.4), and for
D < Bﬂ < m. We also show results from numerical
integration of the equations of motion on a discrete
lattice, using Ansatz profiles as initial condi-
tions, and time averaging the kinks in their own
reference frame to remove spin wave contributions to
the energy (a result of having only an approximate
traveling wave inital condition).

It is found from these numerical studies that
the stable kink profile given by the Ansatz can
correspond to either an XY or YZ kink, depending on
EA; the XY and YZ branches are continuously con-
nected. Also, for B < Bc‘ where static YZ kinks are
unstable, there can be stable moving YZ kinks,
consistent with the linear stability analysis
results.

From the numerical integrations, XY kinks are
stable above and below the critical field, for
o =0.04, 0.08 <P < 0.6 and |v/c| < 1. Even for
B >-Hc, they show no tendency to decay to lower
energy YZ kinks. Whether they can be viewed as
slightly perturbed sG kinks is doubtful, especially
for B > Bc. The situation is the same as in the

ferromagnet above the critical field, where the



kinks are dynamically stable but move in a direction
opposite to that predicted by sG theory [9]. We
conclude the XY kinks are not adequately described
by sG theory, and that there is no structural
instability at the critical field.

For small velocities v « ¢, a two parameter

Ansatz for YZ kinks (putting EA + B, = ) reproduces

B
the velocity dependence of the energy given by sG
theory. sG theory adequately describes the YZ
branchi Static YZ kinks are stable only if B > B.-
Dynamic YZ kinks require a minimum applied field to

be stable, where this minimum field decreases with

increasing velocity,
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Figure Caption

Figure 1

Kink energy vs. velocity as obtained from the Ansatz
calculation (drawn curves) and the numerical integra-
tion (data points) with o = 0.04 and B = 0.3 (dashed,
0), B = B, = 0.4 (solid, A) and B = 0.5 (dotted, x).
There are distinguishable XY and YZ segments of each
dispersion curve, although at B = Bc the XY segment is

degenerate (a point at v = 0).
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