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The Berezinskii-Kosterlitz-Thouless phase transition for the dilute planar rotator
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The Berezinskii-Kosterlitz-Thouless phase transition for the dilute planar rotator model on a tri-
angular lattice is studied by using a hybrid Monte Carlo method. The phase transition temperatures
for different nonmagnetic impurity densities are obtained by three approaches: finite-size scaling of
plane magnetic susceptibility, helicity modulus and Binder’s fourth cumulant. It is found that the
phase transition temperature decreases with increasing impurity density p and the BK'T phase tran-
sition vanishes when the magnetic occupancy falls to the site percolation threshold: 1 - p. = p. =

0.5.
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I. INTRODUCTION

It is well known that the Berezinskii-Kosterlitz-
Thouless (BKT) phase transition [1-2] caused by the un-
binding of vortex-antivortex pairs is found to be com-
mon in two-dimensional ferromagnetic spin models, such
as the planar rotator model, XY model and easy-plane
Heisenberg model. Recently, the study of nonmagnetic
impurities in these spin models has been the subject of
much interest [3-7]. It is found that the BKT phase
transition temperature decreases with increasing non-
magnetic impurity density p. However, a Metropolis al-
gorithm Monte Carlo (MC) simulation [3] of the planar
rotator model on a square lattice showed that the phase
transition temperature T falls to zero for a magnetic
occupation density ppmeg = 1 — p above the site perco-
lation limit p. ~ 0.59 on a square lattice. This phe-
nomenon was also found in the dilute system of Joseph-
son junctions [8]. These results were somewhat surpris-
ing, because they suggested that a mechanism besides the
disordered (or disconnected) geometry of the impurity-
occupied lattice was responsible for permanently leaving
the magnetic system in a high-temperature disordered
phase. On the other hand, through extensive hybrid MC
simulation, Wysin et al. [6] found that the phase transi-
tion temperature drops to zero at ppmq.q ~ 0.59, the site
percolation limit, where there is no more percolating clus-
ter of spins. The disorder due to impurities, especially
near the percolation limit, greatly increases fluctuations
in the Monte Carlo, making hybrid schemes that include
cluster and over-relaxation updates a necessity for pre-
cise results. This is counterintuitive, because one might
naively expect that the weaker connectivity of the lattice
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near the percolation limit should make the calculations
easier. The problem is interesting, however, because just
as the impurity concentration is getting near that limit
that causes T¢ to fall to zero, and the lattice is less and
less connected, the correlation length is still diverging,
causing all the usual problems that MC faces near a crit-
ical point.

The previous works were all focused on the spin sys-
tem for the square lattice, but of course, there is also
a BKT phase transition in the planar rotator model on
the triangular lattice. The site percolation threshold of
a triangular lattice is p. = 0.5 [9]. On a triangular lat-
tice, cluster MC simulation of the pure system shows
that the percolation temperature, defined as the tem-
perature at which spanning clusters start to appear in
a large system, equals the BKT phase transition tem-
perature for the planar rotator model [10]. Therefore,
the study of the BKT phase transition for the dilute pla-
nar rotator model on a triangular lattice is also inter-
esting as a comparison to the square lattice. The main
question to be answered is whether the BKT transition
temperature falls to zero when the magnetic occupation
density equals the site percolation limit, or whether this
happens at an occupation density higher than the per-
colation limit. We carry this out here using a hybrid
MC simulation that includes over-relaxation and cluster
moves, which are important especially when the system
is near the percolation threshold, where Metropolis single
spin moves become inefficient.

II. METHOD AND RESULTS

The Hamiltonian of the dilute planar rotator spin
model is considered as [3, 6]
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Here J > 0 is the ferromagnetic coupling constant, 6;
are the angular coordinates of two spin components qu =
(S¥,S7) = (cosb;,sinb;) , and < i,j > indicates the
nearest neighbor sites. o is taken to be 1 or 0 depending
on whether the site is occupied or not. A hybrid MC
approach, including Metropolis algorithm [11] and over-
relaxation algorithm [12,13] combined with Wolff single-
cluster algorithm [14], proved to be very efficient for the
model defined by equation (1) on a square lattice [6]. We
apply this approach to this model on a triangular lattice.

The processes used in the hybrid MC scheme work as
follows. In a Metropolis single spin update, one spin is
selected randomly from total spins. The new candidate
spin, obtained by a small increment to this spin in a ran-
dom direction, is renormalized to unit length. Then the
energy difference is obtained according to equation (1).
The new spin is accepted or not according to a standard
Metropolis judgement. An over-relaxation update re-
flects a spin selected randomly across the effective poten-
tial of its nearest neighbors, defined as B} = JZajgj,

J

with the reflection effected by qu — 2%3 — 5‘;-. This
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algorithm is non-ergodic and it must be mixed with other
updates to achieve ergodicity. The Wolff cluster algo-
rithm is similar to the application to a pure system, ex-
cept that spins at vacant sites are set to zero length.
The Over-relaxation and Wolff cluster algorithms gener-
ally reduce autocorrelations better than Metropolis single
spin updates, especially at low temperatures where the
spin components tend to freeze.

From an initial spin configuration by randomly oc-
cupying sites with probability 1 — p, the simulation is
performed with periodic boundary conditions for system
size N = L2, where the size of lattice is considered as
L = 20,30,40,60, and 80. Then the number of mag-
netically occupied sites is Npqg = N(1 — p). A hybrid
MC step consists of one Wolff update of planar compo-
nents of the spins followed by one Metropolis update and
four over-relaxation updates, which change the configu-
ration but keep the energy unchanged. For each algo-
rithm of our scheme, one update is defined as attempt-
ing Npag spin moves. During the simulation, 1 x 104
MC steps are used for equilibration and about 4 x 10°
MC steps are used to get thermal averages at each tem-
perature. To avoid correlations, measurements are taken
every 2 ~ 6 MC steps. We used three different methods
described in Ref. [6] to get the phase transition temper-
ature Teo. As the MC proceeds, some thermodynamics
are observed. For adequately sized systems, and small
enough impurity density, averaging over different place-
ments of the impurities makes little difference in the av-
erages [6]. Therefore, we did not average over different
placements of impurities for large sizes when p <= 0.3.
While the presence of impurities tends to amplify finite
size effects, for large enough systems the fluctuations due
to impurity disorder will become averaged out[6], and av-
erages over impurity disorder become less necessary with

increasing L. Therefore, the focus is on the temperature
dependence of thermal averages especially for the larger
systems. Also, in the scaling with system size (such as for
the susceptibility), the fluctuations (error bars) caused by
impurity disorder should diminish rapidly with increas-
ing L.

According to the magnetization M = (Mz, M,) =
> aigi, the susceptibility and susceptibility components

(2

are given by

X =[< (M)? >~ < M >?|/NyagksT, (2)

X* = [< M2 > — < My >%/NpagksT, (3)

where kp is the Boltzmann constant. With the average
of x* and xY, the in-plane susceptibility is obtained

X' =" +xY)/2. (4)

The Binder fourth order cumulant is also defined via the
usual relation [14]
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FIG. 1: Application of Binder’s fourth order cumulant to esti-
mate the phase transition temperature for several lattice sizes
at p = 0.05. The inset shows the view near the estimated crit-
ical temperature.

In the figures, the error bars that are not visible indi-
cate the statistical errors are smaller than the symbols.
For convenience, temperatures are measured in units of
the exchange constant, J.

Binder’s fourth order cumulant Uy, is used to estimate
the location of T¢ in the thermodynamic limit. At the



0.6 T T T T T T T T T T T T
—e—1-20
—o—1-30 |
s L=40
—v—1=60
—o—1=80
N
03} \\3¥RD\ .
N
N
I °§7 AT
0, \
02}k AN
0.1 " 1 " 1 " 1 " 1 1 1 "
115 120 125 130 135 140 145 150

T

FIG. 2: Application of the finite-size scaling of in-plane sus-
ceptibility to estimate the phase transition temperature for
p = 0.05.

phase transition temperature, Ur, is expected to be ap-
proximately independent of the system size. Therefore,
Tc can be obtained from the crossing point of Uy for
different lattice sizes. As an example, Fig. 1 shows Up
for different lattice sizes at p = 0.05. The phase tran-
sition temperature is estimated at T¢ = 1.328 £ 0.002.
Generally speaking, this method overestimates T. With
increasing L, the estimation of T will be more accurate.
Due to the statistical uncertainties, however, more com-
puting time is required to calculate near T¢, especially
in this model with nonmagnetic impurities.

Another method to estimate T proved to be very use-
ful in many references [5, 6, 16, 17]. This method starts
from the finite-size scaling analysis of the in-plane suscep-
tibility x’. Near and below T¢, the susceptibility scales
with a power of the lattice size, ¥’ o« L?~", even in the
presence of nonmagnetic impurities. The critical expo-
nent is 7 = 1/4 at the BKT phase transition temperature
for the planar rotator model and XY model. Therefore,
using 7 = 1/4, from the common point of intersection
of the curves x//L7/* vs T, the phase transition tem-
perature can be obtained. Fig. 2 shows the application
of this method at p = 0.05. The estimation of Ty is

<H> 272
\/gNmag \/ng TNyznag

T(T) = -

Here é;; is the unit vector pointing from site j to site . &

1.316 £ 0.003, a little lower than the result from Ufy,.

In our practical application for this model, the statis-
tical errors become even greater with the increase of p.
More MC steps and averages are needed to reduce the er-
rors when p increases, especially near the site percolation
threshold p. = 0.5. Therefore, using the largest lattice,
we get T at high nonmagnetic impurity density based
on the calculation of the helicity modulus.

The helicity modulus, T, obtained by a measure of the
resistance to an infinitesimal spin twist A across the sys-
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FIG. 3: Helicity modulus as a function of temperature for
several lattice sizes at p = 0.05. The inset shows the view
near the estimated critical temperature.

tem along one coordinate, is an efficient method to calcu-
late the BKT phase transition temperature [18-20]. An
expression applicable to any general model Hamiltonian
is [6]

2H/0A? < (82> < o2
T:<8 /0 >—ﬁ (5~) 557" ()
N N
where 8 = (kpT)~! is the inverse temperature. For

the dilute planar rotator model, defined by equation (1),
based on the derivation process of Ref. [21], we can get
the expression of helicity modulus on the triangular lat-
tice

[Z (éij : JA,‘)O'iO'j Sil’l(ei — ej)]Q > . (7)

(2,7)
[

is a selected basis vector in one coordinate. According to



Q
\
< 0.
: .D\D\? o FV\VA‘?\O‘OFO‘U‘Q .
0.0 0.5 1.0 1.5 2.0
T

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
T

FIG. 4: Helicity modulus as a function of temperature for lattice size L = 80 at different nonmagnetic impurity densities p.
The overall trend and the results near the percolation threshold are shown in (a) and (b) separately.

the renormalization group theory [2], there is a univer-
sal relation between the helicity modulus and the phase
transition temperature. T¢ can be estimated from the in-
tersection of the helicity modulus Y (7') and the straight
line T = 2kpT /7. Meanwhile, the MC data of Y (T') will
have a deeper drop in the critical region with increased
lattice size. For larger lattice size, the intersection will be
nearer to the critical temperature. Therefore, an overes-
timate of T generally will be obtained by this method.
As an example, Fig. 3 shows the results for different lat-
tice sizes at p = 0.05. It is clear that a BKT phase tran-
sition exists at finite temperature in this model. From
the largest lattice size L = 80, we estimate the critical
temperature Tc = 1.349£0.002, a little higher than that
from the in-plane susceptibility x’. But that is to be ex-
pected, and only by going to much higher lattice size will
the helicity-based approach give results that agree with
those based on the susceptibility. It is noted that there is
a greater statistical fluctuations at smaller L, while the
statistical errors are almost smoothed out at large size.
The helicity modulus for different p at L = 80 is shown
in Fig.4(a) and Fig.4(b).

Due to the critical slowing down at low temperature, it
is clearly seen that the statistical errors are greatest when
the magnetic occupation density pmqg4 is near p., where
there is no spanning cluster to appear. The helicity mod-
ulus almost disappears at p = 0.50, as shown in Fig.4.
As a comparison, for example, Fig.5 shows the results of
finite-size scaling of in-plane susceptibility at p = 0.45.
The statistical errors at small L are clearly more obvious
than those at large L. The estimated phase temperature
is Te = 0.126 £0.01, which is comparable with the result
of helicity modulus as shown in Fig.4. The last results for
phase transition temperature from the different methods
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FIG. 5: Application of the finite-size scaling of in-plane sus-
ceptibility to estimate the phase transition temperature for
p = 0.45.

mentioned above are summarized for different p in Fig.
6. We find that T¢ is nearly linear with p and decreases
with the increase of p. According to the linear fit of T
from Y, we find that the BKT phase transition tempera-
ture falls to zero near p = 0.498 £0.003, almost the same
as expected from the site percolation threshold p. = 0.5.
This shows that the BKT phase transition vanishes when
the magnetic site occupancy 1 — p reaches the triangular
lattice percolation limit, the same result as obtained for



this model on a square lattice.
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FIG. 6: Phase transition temperature estimated by the three
methods for different nonmagnetic impurity densities p. The
straight line is a linear fit to Tc obtained from the helicity
modulus.

III. CONCLUSIONS

In summary, with the application of a hybrid MC simu-
lation, the BKT phase transition temperatures of a dilute
planar rotator model on a triangular lattice are obtained
by three methods. For the pure planar rotator model

(p = 0) on a triangular lattice as a test case, the phase
transition temperatures we obtained from x’, T and Ur
are 1.486+0.002, 1.498 +0.003 and 1.503£0.002, respec-
tively. These data are comparable with the result of high-
temperature series studies [22, 23]. Consistent with MC
simulations on the square lattice [6], it is found that the
phase transition temperature decreases as nonmagnetic
impurity density p increases, and falls to zero only when
the magnetic occupancy falls to the site percolation limit.
This is completely reasonable, considering that the cor-
relation length could not diverge and hence there would
be no BKT phase transition if there were no percolat-
ing cluster spanning the system. On the other hand, as
long as any percolating cluster is present, the BKT phase
transition should appear, but at a reduced temperature
due to the diluted effective exchange couplings between
distant spins. Meanwhile, we find there is close to a lin-
ear relation between T and p. Stated simply, the BKT
phase transition is present only when py,q9 > pc, and the
phase transition temperature is approximately linearly
proportional to (pmag — Pe)/(1 — pe). The calculations
become more difficult when the magnetic density is close
to the percolation limit, due to the combined BKT and
percolation fluctuations there. Thus, we could not rule
out a weak deviation from this linear relationship when
Pmag 18 very close to pe.
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