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Many physical systems of interest can be mapped into the planar rotator and XY magnetic
models with a magnetic field applied within the easy-plane. In this note we study how the
shape and energy of a vortex-antivortex pair depends on the applied field and on the pair
separation. Our results show a new feature: the energy related to the vortex- antivortex
pair has a coefficient which depends strongly on the applied field. For large separation of
the pair, the energy increases roughly with the square root of the field and linearly with the
pair separation.
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The two dimensional XY model has been the subject of
very intense experimental and theoretical research in the
last two decades. There are several reasons to explain
such a great interest. This model is known to support
topological excitations and, although no long range order
is established at any finite temperature, it shows a phase
transition related to the unbinding of vortex–antivortex
pairs. A great variety of phenomena, ranging from pe-
culiar magnetic phase transitions to superconductivity,
superfluidity and ordering in liquid crystals has been as-
sociated to the universality class of the XY model [1].
In particular, the XY model has been extensively used
in the study of high temperature superconductors [2–5]
since it is believed that the most important fluctuations
in the order parameter describing the superconducting
condensate are phase fluctuations.

When a magnetic field is applied along the easy plane
the properties and behavior of the system change con-
siderably: no phase transition is expected then. The
field modifies the vortex-vortex interaction; instead of
an interaction which grows logarithmically with distance,
the vortex interaction becomes linear for large distances
[2,5] due to the applied field. Although this system has
been treated in several previous works [6–9] a complete
understanding of the XY model with an in-plane field
(2DXY+H, from now on) is still missing and questions
about how vortex pairs and domain walls contribute to
the properties of the system have not yet been satisfac-
torily answered. Nevertheless, the investigation of the
properties of the 2DXY+H model is very appealing not
only for the model itself but also because this model is re-
lated to more realistic systems in which at least a small
three dimensional interaction exists and may influence
the overall behavior. It has been shown [8] that the
anisotropic 3D-XY model with weak coupling between
the planes can be be mapped into the 2DXY+H model
with the in-plane field accounting for, in a mean field
approach, the interplanar interaction.

Our aim in this note is to analyze the modifications due
to the applied magnetic field on the vortex pair shape and

energy. We start by writing the Hamiltonian for the
2D-XY model with in-plane magnetic field h = gµBH
applied along the x-axis and easy-plane anisotropy pa-
rameter δ > 0 :

H = −J

2

∑

m,n

[

Sm,n · gm,n − δSz
m,ngz

m,n

]

− h
∑

m,n

Sx
m,n

(1)

where the sums are performed over all the (m, n) sites of
a two dimensional square lattice, J is the ferromagnetic
exchange interaction, gα

m,n corresponds to the sum over
the four nearest neighbors of each spin,

gα
m,n = Sα

m,n+1 + Sα
m,n−1 + Sα

m+1,n + Sα
m−1,n , (2)

and α = {x, y, z}. Parameterizing the spin at site (m, n)
in terms of spherical coordinates

Sm,n = S{cosφm,n cos θm,n; sin φm,n cos θm,n; sin θm,n}
(3)

we obtain, in the continuum limit, equations of motion
corresponding to Hamiltonian (1)

− θ̇

JS
= − cos θ ∇2φ + 2 sin θ ∇θ · ∇φ + b sinφ , (4)

cos θ
φ̇

JS
= 2δ sin 2θ −∇2θ − 1

2
sin 2θ(∇φ)2 + b sin θ cosφ .

Above we defined the reduced field b = gµBH/JS. The
continuum version of Eq. (1) is given by

H = JS2

∫

d2r{1

2
cos2 θ(∇φ)2 +

1

2
[1 − δ cos2 θ](∇θ)2

+2δ sin2 θ + b(1 − cos θ cosφ)} (5)

where the ground state energy Egs = −JS2
∫

d2r (2 + b)
has been subtracted out.

When δ is greater than a critical value [10] (approxi-
mately 0.3 for the square lattice) the spins of the static
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vortex solutions are restricted to the XY plane, that is,
θ = 0. In this case, or, for the planar (two-component

spins) model, Eqs. (4) reduce to φ̇ = 0 and to the 2D
sine-Gordon equation:

∇2φ = b sinφ . (6)

The expression for the energy relative to the ground state
becomes

E = JS2

∫

d2r

{

1

2
(∇φ)2 + b (1 − cosφ)

}

. (7)

For zero magnetic field, b = 0, Eq. (6) leads to the well
known vortex pair solution given by

Φ(x, y) = tan−1 2ay

x2 + y2 − a2
(8)

for a pair formed by a vortex at (a, 0) and an antivor-
tex at (−a, 0), with separation 2a. For b 6= 0, Eq. (8)
does not correspond to an exact solution to the problem.
However, we will consider here that, for small applied
fields, the vortex-antivortex pair solution given by (8) is
still meaningful in the sense that the effect of the field
will be to deform it. In this reasoning, we will write the
solution to Eq. (6) as being given by

φ(x, y) = Φ(x, y) + ξ(x, y) (9)

where ξ(x, y) describes the deformation due to the field.
The function Φ(x, y) enforces the desired positions of the
vortex and antivortex.

Inserting ansatz (9) into Eq. (6), we obtain a nonlinear
Schrödinger-like equation for the deformation ξ

∇2ξ = b sin(Φ + ξ) = b sinΦ cos ξ + b cosΦ sin ξ. (10)

In the linearized limit (ξ � 1), b cosΦ is an effective
potential term and −b sinΦ is an effective driving field in
Eq. (10), when viewed as a Schrödinger equation. For
the energy, we have

E = E0 + JS2

∫

d2r { 1

2
(∇ξ)2 + ∇Φ · ∇ξ + b sinΦ sin ξ

+b cosΦ(1 − cos ξ) } (11)

where

E0 = JS2

∫

d2r

{

1

2
(∇Φ)2 + b(1 − cosΦ)

}

. (12)

The term E0 is due to the presence of a nondeformed
vortex–antivortex pair in the field, and the remaining
terms represent the energy associated with the field-
induced deformation of the pair.

We solved Eq. (10) numerically for ξ with b ranging
from 0.01 to 0.5 and 1.0 ≤ a ≤ 25.0 by using an itera-
tive nonlinear Gauss-Seidel method applied to a circular
square lattice system of radius R = 200. The idea is to

rewrite the Laplacian term in Eq. (10) in its simplest
finite difference form for the square lattice,

∇2ξ = −4 ξm,n +
∑

i=±1

∑

j=±1

ξm+i,n+j (13)

and then “solve” Eq. (10) for the new value of ξn,m at
the next iteration:

ξ′m,n =
1

4
[
∑

i=±1

∑

j=±1

ξ m+i,n+j − b sinΦm,n cos ξm,n

− b cosΦm,n sin ξm,n ]. (14)

Iterating this procedure leads to a minimum energy state.
We would like to stress that no linearization of the prob-
lem has been used, and a numerically exact solution of
the original Hamiltonian (1) was obtained. A free bound-
ary condition was applied by cutting off the system at
a chosen radius (R = 200), and then any sites on the
boundary of the system have less than four nearest neigh-
bors. For those boundary sites, the factor of 1

4
in Eq. (14)

is replaced by 1

zm,n

, where zm,n is the number of neigh-

bors of that site. Our results are shown in Figs. 1-6: we
will discuss these results after describing, briefly, some
previous results available in the literature.
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FIG. 1. Total vortex-antivortex pair energy [Eq. (11)] vs.
half-separation a, for the indicated applied field values b.

A problem similar to this one was considered by
Cataudella and Minnhagen [2] some years ago and, since
then, their results — which are summarized below —
have been used to account for the energy of a vortex pair
in the presence of a field [3,4]. It is important to notice
that, in fact, their work was directed to the XY layered

superconductor model and not to the 2DXY+H model.
However, for small interplanar coupling, the layered XY-
model can be represented by the 2DXY+H model. This
fact has been stated very clearly by Ito [8] who used the
following Hamiltonian to describe the XY-layered model
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H = −
∑

i

∑

m,n

[JSm,n,i · gm,n,i + J ′Sm,n,i · Sm,n,i+1]

(15)

where the summation in i runs over the layers, J ′ is the
interlayer coupling, and the spin S has only two com-
ponents (Sz = 0 or θ = 0). Obviously, the system de-
scribed by Eq. (15) shows conventional long-range order,
< S > 6= 0, and exhibits a second order phase transition.
Assuming J ′ � J , we can say that the system will have
a quasi-two dimensional behavior for T � J ′ and, then,
take account of the interlayer interaction by an effective
field. This corresponds to rewriting Eq. (15) as

H̄ =
∑

i

H̄i ,

H̄i = −
∑

m,n

[

JSm,n,i · gm,n,i + 2J ′mSx
m,n,i

]

, (16)

where m =< S > is the magnetization. Hamiltonian
(16) is identical to our Hamiltonian (1) (for Sz = 0) if
we define the effective field as heff = 2J ′m. The contin-
uum version for (16) will be identical to Eq. (6). In the
following, we will compare the equations and approxima-
tions done by Cataudella and Minnhagen [2] — keeping
in mind that they were treating a layered model — to
the equations we used and solved in this work.

As we said before, in layered superconductors, it is ac-
cepted that the important fluctuations are described by
the fluctuations of the phase φi in the i-th plane. The
Hamiltonian used by Cataudella and Minnhagen to de-
scribe the layered superconductor is

H∗ =
1

2
J

∑

i

∫

d2r
[

(∇φi)
2 + b(φi − φi+1)

2
]

, (17)

where b is the parameter controling the coupling be-
tween planes. Note clearly that the interplane interaction
is taken as purely quadratic in the phase difference, in
strong contrast to the more physical trigonometric form
as seen in the 2DXY+H model, Eq. (7). A quadratic
coupling is reasonable for small interplane phase differ-
ences, however, we see below that relatively large phase
differences between planes are possible. In the case of
large phase differences, we would expect that a coupling
term of the form b[1 − cos(φi − φi+1)] is necessary [12].

In order to estimate the effect of adjacent planes on
a vortex-pair, Cataudella and Minnhagen looked for a
minimum energy configuration for a pair on a particular
plane i by solving the Euler equation with the constraint
φ = Φi + ζ for that plane. This treatment corresponds
to assuming that vortex pairs can be created in one layer
independently of pairs in adjacent layers [13]. In the ap-
proach used in [2], Φ is the vortex pair expression (8) and
ζ is the deformation (fluctuation) of that configuration
— as is ξ in our ansatz (9). We use ζ here to distinguish
this solution from the solution of the 2dXY+H problem,
Eq. (10). In order to simplify the calculation,
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FIG. 2. Comparison of the full nonlinear (solid lines) and
linearized (dashed lines) calculations of the vortex-antivortex
pair total energy vs. half-separation a, for indicated applied
fields.

those authors assumed that the phases in the planes ad-
jacent to the one supporting the vortex pair are zero,
that is, φi+1 = φi−1 = 0. With these approximations,
the equation to be solved for ζ is linear (in contrast to
the equation (10) for ξ):

∇2ζ = b(Φ + ζ) (18)

while the energy in terms of ζ becomes

E∗ =
1

2
J

∫

d2r[(∇Φ)2 + bΦ(Φ + 2ζ)

+ 2∇Φ · ∇ζ + (∇ζ)2 + bζ2] . (19)

They solved Eq. (18) numerically for zero temperature,
finding that the energy of a vortex-antivortex pair of size
2a can be parametrized as [2,5]

E∗(a) =
1

2
J

[

π2 + 2π ln

(

2a

a0

)

+ 2π2
√

b

(

2a

a0

− 1

)]

(20)

where the first term corresponds to the vortex pair cre-
ation energy, the second one gives the logarithmic de-
pendence expected for a pair even in the absence of a
field, and the term depending linearly on the pair size
corresponds to the energy of a domain wall [11]. In this
equation, a0 is the diameter of the vortex core.

Comparing equations (10) to (18) and (11) to (19) we
conclude that our equations reduce to the ones obtained
by Cataudella and Minnhagen if one considers both Φ
and ξ to be small and expand the sine and cosine func-
tions of them. However, it must be pointed out that this
assumption is not obvious and that, at least in the re-
gion surrounding the vortex and anti-vortex centers, the
Φ field, the ξ field, and their variations are not small.
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FIG. 3. Particular contributions to the vortex-antivortex pair
energy vs. half-separation a, for b = 0.05. Solid lines refer
to the full nonlinear calculation (this work), dashed lines are
the linearized calculation as in Ref. [2]. The various curves
correspond to: I) E∗

0 , II) E0, III) bζ2/2, IV) b cosΦ(1−cos ξ),
V) (∇ζ)2 and (∇ξ)2, VI) b sin Φ sin ξ, VII) bΦζ.

In Fig. 1 we show the result we obtained for the total
energy of the pair Eq. (11) for some values of the applied
field, b = 0.01, 0.05, 0.1 and 0.5, by solving Eq. (10). We
also solved Eq. (18), which corresponds to the linearized
version of Eq. (10), by using the linear version of the
Gauss-Seidel iteration described in this paper, and eval-
uated the corresponding energy E∗ of Eq. (19). Figure
2 shows the energies E [solid lines—from Eqs. (10) and
(11)] and E∗ [dashed lines—from Eqs. (18) and (19)] for
b = 0.05, 0.10. For small pair separation (a < 5), the

FIG. 4. The total spin field φ = Φ + ξ for system radius
R = 20, half-separation a = 8, field b = 0.25.

agreement between the two results is surprisingly good,
considering the approximations leading to Eqs. (18–19).
For larger pair separations, we obtain E∗ > E, as could
be expected. In Figure 3 we show the separate contribu-
tions due to each term of Eqs. (11) and (19). In both
calculations, the ∇ξ ·∇Φ or ∇ζ ·∇Φ contribution is neg-
ligible and is not shown. It is interesting to notice that
the combinations of errors made in the various terms con-
tributing to E∗ nearly cancel, leaving a small net differ-
ence between E and E∗.

The total field φ = Φ+ξ for a = 8, b = 0.25, calculated
for a circular system with radius R = 20, is shown in Fig.
4. It is seen that the field confines the vortex-anti vortex
pair to a small region of the system composed basically by
a vortex and an antivortex — whose radii decrease with
the field b — linked to each other by a kind of domain
wall whose width also decreases with increasing b. For
comparison, the total field φ = Φ + ζ from the linearized
calculation with the same parameters is shown in Fig.
5. In the field far from the pair, it is difficult to distin-
guish any significant differences between the two results.
The largest differences are seen along the line connect-
ing the pair, where the spins tend to point more against
the applied field in the full nonlinear calculation, com-
pared to the linearized calculation. In this domain wall
region, this results in a lower exchange energy density at
the expense of a higher magnetic field energy density. In
an intermediate region a few lattice constants above and
below this domain wall, ξ (and also ζ, not shown here)
can approach the value π/2, where the linearization ap-
proximation starts to fail. This occurs also for smaller b,
although apparently a fortuitous cancellation of errors in
the lineared calculation (see Fig. 3) results in a relatively
small error in the total energy.

FIG. 5. The total spin field φ = Φ + ζ, for radius R = 20,
a = 8, b = 0.25, from the linearized calculation.
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FIG. 6. The indicated fitting constants of Eq. 21 vs. applied
field b, for system radius R = 200.

We fitted our results for the energy for 0.01 ≤ b ≤ 0.5
and amin = 1.0 ≤ a ≤ amax = 10.0 to the following
expression

E = c1 + c2ln(2a) + c3a . (21)

Notice that we chose amax � 200 in order to guarantee
that our results would not be strongly influenced by the
finite size of our lattice. This equation is formally equiv-
alent to Eq. (20) because both assume that the energy
must somehow depend logarithmically on the pair dis-
tance since the vortex and antivortex particles are kept
there and depend linearly on the pair distance because,
as can be seen in Fig. 4, the region connecting the vortex
to the antivortex resembles a 2π domain wall of length
2a and width decreasing as b increases. According to
Eq. (20), the c2 coefficient in (21) should be a con-

stant while c1 = A − 2Jπ2
√

b (A = Jπ2 + 2πJ ln(2/a0))

and c3 = 2Jπ2
√

b/a0 should both vary with
√

b . We
made a rough evaluation of the vortex core a0 by fit-
ting the vortex pair energy for b = 0 to the expres-
sion Ep = 2πJ ln(2a/a0) obtaining a0 = 0.20 which
agrees with previous estimatives [10] for a0. Figure 6
shows how the c1, c2, and c3 coefficients depend on the
applied field. The fitting obtained for each of them
gave: c1 = 15.5 − 10.1b0.36, c2 = 0.19 − 1.12 ln b, and
c3 = −0.69 + 16.5b0.49. In fact, the term linear in a is
the important one for large a and the dependence on

√
b

of its coefficient is the expected one for a 2π domain wall
in a 2DXY+H system. We do not have any theoretical
prediction to which we could compare the obtained de-
pendence of c2 with b. However, it seems reasonable that
this coefficient decreases with increasing b because the
effect of the field is to reduce the effective area affected
by the pair.

The linear dependence of the energy on the distance
a suggests that the pair may become unstable, and the

domain wall connecting them may break and form new
smaller pairs: a mechanism which resembles particle cre-
ation. This possibility will be investigated in a future
work.
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