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I. INTRODUCTION

Recently there has been interest in various optical phenomena
associated with a nonlinear dielectric medium whose permittivity is
dependent on the electric field intensity; especially with the effects
it can have on the reflection and refraction of 1light at a boundary
between a linear medium and a nonlinear medium.(l'z) One of the major
effects referred to here is the existence of intensity dependent
optical bistability at such a boundary; it is possible to have two
stable solutions for the electric fields for a given applied light
beam, under certain special conditions. The boundary can be made to
switch abruptly from one state (a solution for the fields) to the
other by a small change in incident light wave intensity; the observed
effect of this switching of states is a discontinuous jump in the
reflection coefficient of the boundary. Hysteresis effects have also
been shown to be relatedgl) and in fact are a result of this bistability.

It is intended here to investigate some of these facts, making use
of Snell's law and the Fresnel reflection and transmission coefficients
for the boundary. A method will be given for finding the reflectivity
of the boundary as a function of intensity, and it will be general
enough so that it is applicable for any values of the linear and non-
linear permittivities of the two media, and therefore for critical angles
which are not necessarily grazing angles, which was the case previously

discussed by Kaplan.(l) The advantage of this generality comes in the

later half of the paper, which discusses the behavior of these nonlinear
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effects when a third medium, a metal, is "sandwiched" between the linear
and nonlinear media, in the confisuration necessary for the excitation
of surface plasmons (Kretschmann configuration). Surface plasmon waves
have been widely investigated(j'u) , and have been shown to induce
decreases in reflectivity related to the enhanced absorption of energy
by the metal under the conditions necessary for surface plasmons(B).
Surface plasmons do not require nonlinearities in the system in order

to be excited, but it is the intention here to see how nonlinearities
affect their production.

The purpose here is to discuss the possibility of bistable effects
related to the excitation of these surface plasmon waves. It will be
shown that these effects are expected to occur both for the case of
positive (nonlinear permittivity increases as intensity increases)
nonlinearity and for negative (nonlinear permittivity decreases as
intensity increases) nonlinearity. Discontinuous changes in reflectivity
can be expected for this case, in a manner similar to that obtained
without the metal present, but for incident angles which are close to the
plasmon angle, the angle at which the surface plasmon made would be most
strongly excited, Because of the variable permittivity in the nonlinear
medium, this plasmon angle is not fixed, but véries with intensity. It
is usually, however, an angle which is not near grazing incidence, and
this may afford the experimentalist some easing of any problems associated
with working at incident angles near 96). The generality of the
calculational method used here allows the computations to be performed
for any incident angle; this is its advantage over previous methods
referred to above.

The paper will be divided into three major sections; the first is a
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short discussion of nonlinear polarization, and the related effects this
has on the permittivity and index of refraction of a nonlinear medium,

the second is a derivation and explanation of the method used to find the
reflectivity as a function of the intensity of an incident 1light beam, for
a linear-nonlinear boundary, and the third treats the case of optical
bistability near the plasmon angle, with the combined effects of the non-
linearity and the surface plasmon excitation. The major theme of this
paper is to discuss the surface plasmon bistability; the linear-nonlinear
boundary case is used only as an example to demonstrate how the calculation

can be performed, and because the algebra involved is simpler.



II. SIMPLE NON-LINEAR POLARIZATICN

Usually the dielectric constant ¢ in any material is taken to be a
constant, independent of the strength of the electromagnetic field within
the material. This is derived from the fact that the displacement vector O
can usually be taken to be linearly related to the electric field E, and

through the definition of €

D= et (1)

+
it then results that € must be a constant. The displacement D, however,
1s actually defined in terms of the polarization of the material, denoted
?, defined as the net dipole moment per unit volume of the material.

-
D then depends on both g and P through the relation
- -
6=€+41TP=EE (2)

Now any microscopic model of the material would necessarily produce
a relation between the "averaged" polarization B and the "averaged" total
electric field ﬁﬂ and in general the relation obtained could allow ; to be
expanded as a power series in E. Writing out the components of ;. using

the summation convention on repeated indices

] 2 3 3
Pi = X45E5 + XTE5E * Xijk1EjEkE1 ¥ wure (3)

where 1 =1, 2, 3, and the X's are coefficients in the series
expansion which are independent of'ﬁ. The above is the general expression
for any anisotropic medium, if we specialize to the case of an isotropic

medium, then the polarization can be written in the form

< > 2> 4
P—x1E+x3|E|E (4)
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And using the definition of €, through D
> -+ =
D= (1+ 4ny + 4ﬂx3|E|2)E = ek (5)
1
It then results that the dielectric "constant" can be written

e =1+ duy + dnx [E|? = 0 + alE|? (6)

Also, since the index of refraction of the material n is related toce,
it follows that n also depends on the strength of the electric field.
From the definition of the index of refraction of a non-magnetic material,

put in terms of the wave speed in the medium:

e (7)
Yeu Ve
then v=ve o /8 F alE (8)

and since in general any nonlinearity in the medium will be small in

some sense, the index N can be written approximately from this expression as

n = Va4 oty [E2 (9)

Another common way to writen is as the sum of a linear term and a non-

linear term in the form

n=n0+ g [E]? (10)

In general both n and € would have both a real and an imaginary part, and
therefore so would the coefficients o and ny . The real part is related
to nonlinear dispersion of the medium, while the imaginary part relates to

the damping of the field due to nonlinear absorption.

=t



III. OPTICAL BISTABILITY AT A LINEAR TO NONLINEAR BOUNDARY

First the behavior of a boundary between a linear glass medium and
a nonlinear (Kerr effect) medium will be investigated with respect to
dependence of the optical reflectivity on the intensity of a wave incident
from the linear medium. The geometrical set up is shown in figure 1. A
plane boundary is assumed, with the z-axis perpendicular to the boundary
and the x-axis along the boundary, consequently the y-axis is perpendicular
to the page, pointing out of the paper. The dielectric constant € in the

nonlinear medium has the previously shown dependence on the electric field
€n = Eg + a|E|2 (11)

The angle of incidence for the incoming wave is 67 , with the wave assumed
to be polarized in the plane of incidence, the case of P-polarization,

The amplitude of the incident wave 1is E] , while those of the reflected and
transmitted waves are Ej, and E, respectively, Note that 81 is always

a real angle, while the transmission angle 92 can be imaginary in the case
of total internal reflection. We treat here the case of no absorption.

A. Assumed Forms For Waves In The Two Media

A plane wave solution is assumed for both the incident and reflected

waves, with e'uut time dependence assumed for all field amplitudes, and

the boundary taken to be at z = 0., The wave in the nonlinear medium may

not be an ordinary plane wave, a solution is assumed of the form

5> > - 3 s rZ ' !

Ey(x,t) = [-:2(.7.)e‘kzx"e”o“zz(Z Jdz (12)
The associated magnetic field can be found using Faraday's Law

A< I [ (13)
v X E2 = H2
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From which it follows that the y-component of Ho is given by

ic (aE oF (14)

Hoy = - 32 3X

y e
Finally, all of the E and H fields in the two media can be written out in

terms of their respective x, y, z components for P-polarization, as follows:

Incident Wave

i(k]xx + k]zz)

E]x = E]cose]e H]x =0
E;, =0 o B i(ky x + ky.2) (15)
ly Hly = = kqEje U x 1z
_ ; i(k & + k z) -
E]z = —E151na]e H1z 0
Reflected Wave
_ i(ky x - ky_2) =
Elrx = -E]rcosele Tx 1z H]rx 0
_ _cC i(ky. - ky.2)
E. = -E. .sino el (KX = kp,2) Hy _ =0
Trz 1r 1 Irz
Transmitted Fields
- ik, x_ i/Zk,_dz' -
sz = Ez(z)cose2 2xe "072z H2x 0
X 1f k dz
E2y =0 sz (k2E2( z) - 1C0582852)e KoyXe (17)
k f k,_d <
E,, = -Ep(2)sino,e e1koyXg1/ok,d2° Hy, = 0

In the above fleld expressions, the wave vectors k, and k, are

determined through use of the wave equation, with the relations

= YT k, = &, (18)

ki ® 8 2 T ¢'f2



In a more exact treatment, the form assumed for the wave in the nonlinear
medium may not be correct, and corsequently the expression for ko may also

be invalid, in which case the nonlinear wave equation should be solved,

2 0
2+ -+ +- -+ W 2. F -

-v°E, +7 (V" E,) - g (e, + a|E,|°) E, = 0 (19)
giving a more valid form for the fields in the nonlinear medium. Here,
however, the nonlinear wave equation will not be solved, but the approximate

expressions for the fields will be used.

The components of the wave-vectors are given by

i

K1 = K] s1'n8.I K

% K1 cose]

1z
(20)

sz = K2 sin92 K22 = K2 cose2

B. Application of Boundary Conditlons

For the situation under consideration, application of the continulty
-
of tangential E and tangential H across the boundary leads to the usual
Fresnel reflection and transmission coefficients, but with one additional

-
assumption along the way. Writing the equation for tangential E gives

Eq cose, e MIx% . Eqp COSB; e K1xX= E»(0) cose, e KaxX (22)

&>

Writing the equation for tangential H gives

1Ky xX iKixx  _ . ng_ 1Koy x
KiEq e + KBy € = [K2E2(0) - 1 cosop o7 ] e "eX (22)
Now it must be assumed that the derivative in this equation is small compared
to the other terms in order to obtain the usual Fresnel factors. This is
probably not a bad assumption in the case of transmission of the wave into

the medium for here it would be expected that the amplitude of the field

B



changes slowly with respect to pesition in the material. 1In the case of
total internal reflection (TIR), however, it is not evident that this is
a reasonable approximation, and arain a more exact treatment would involve
first solving the nonlinear wave equation for the fields in the nonlinear
medium, and then calculating the required derivative and inserting it into
the above equation, and thereby solving the resul.ing equations for the
reflection and transmission coefficients. The simpler (approximate)
method will be used here, and the derivative %;% will be taken to be
zero, evaluated at the boundary Z =0 .,

With the above assunmption, E} , Ep,. , and k(o) are related by the

Fresnel factors(S) r12, tj2 according to

E. =

( K2 cose] - K1 cosaz)
1 1

E]r = r12 KZ cose1 + K1 c0562

2Ky cose, (23)
E2(0) = t5E, _(Ea—cose1 + Ky coss, ) By
These can also be written in an alternative but equivalent form

£ = (52K1z - e Ky, ) -
1r €9 K]Z t g K22 1

(24)
£,(0) =/ 212 Kz vk 2
2 Ky.+ g7 K ] 'Elrl
BMz™ ®1 T =
C. Calculation of Reflectivity R = IEII

Now it is useful to write these expressions in terms of only the angle
of incidence 81 and the dielectric constants in the two media. This can

be effected by writing Ko, in terms of 81, via the relation

(pV]

2 = Kol = W_
Ky, 2 + Ky 2 = Kp 2 €y (25)

2 2

Also making use of Snell's Law, which is valid here by the boundary



condition equations, in the form

= = w 1}' L
Then in the case of transmission of the wave, where Kog is real,

there results

Ko, = 2y = & sinle. (27)

This is real provided €y > € sinzal . But since €3 depends on the

intensity of the wave, 1t is evident that the critical angle for total

internal reflection, which is determined through

- i
€2 = €1 51N ®critical (28)

will depend on the intensity of the incident light wave, and consequently
it appears possible to optically switch from TIR to transmission, or in
reverse, simply by changing the incident power. A further consequence is
that the situation exhibits hysteresis effects, in that the power level
necessary to switch from TIR to transmission is not the same as that
necessary to go from transmission to TIR, This second effect will be
made evident in what follows.,

For the case of TIR, the z-component of I 1is pure imaginary, and can

be written

. G . 2
In this case € Sinzﬁ.I > €5 and the wave amplitude decreases

exponentially with distance measured from the boundary.

The ratio of the reflected to the incident wave intensity is found by

calculating the quantity R, equal to the reflectivity,
B la—es (30)

w) 0



In the usual linear case, R is given simply as the absolute square of
the Fresnel reflection, coefficient rip ¢ This does not work in this
nonlinear case, however, since 2 depends on € » which depends on
|E2|2 » which is in turn dependent on the incident amplitude E; . Thus
it is evident that R will be a function of the incident wave amplitude.
It is then required to find the reflectivity R as a function of Eq .
This could be accomplished by eliminating E, from the equations (24)
by first solving the second for E> as a function of E; , and then
substituting the resulting function into the first equation (for Ej,.).
Thus E1y would be obtained as a function of only E] ; from this R could
then be determined. An equivalent and perhaps more tractable way to
determine R will be explained in what follows, it is more useful especially
since the equation EZ(O) = t, cannot be very easily solved for
E, = f(E]) in closed algebraic form.

The two Fresnel equations under consideration can be solved for

E1r and E31 as functions of Ej : ) \\// fjﬁ el
Ey = E,(0) (fg K1z + & Kzz) '= €, (0) Vepcosoy + ey V1 - g, sine,
¢ {E;E; K12 - 2 VE;'cosel__ ]
Ey,. = E,(0) (52 K1z = & KZZ‘) _ E2(0)-¢§?COSGT - AVARE ;%'Sinze]' (31)
EveTRE B - 2 ¥&7" cosoy i

0
Now the explicit form for € T & + u|E2|2 can be inserted, and writing

E» for Ep(0),
intensity equations,

can be defined as follows,

i, = 2 )
Dimensionless incident intensity Y7 = -0 I ]l

Dimensionless reflected intensity U1r

Dimensionless transmitted intensity U2 z

-11-

'|E1r lz

Ez|2

the equations can be absolute squared to change them to

Finally a set of dimensionless intensity variables

(32)



0 0\ 2
e
Also define ¢ = EZ‘ = (?g_) = s1n 92 (33)
£ n
1 1
Where eg i1s the linear critical angle, the critical angle if no

nonlinearity were present (o = 0) |,

In terms of these dimensionless variables, there results

U =g U, Vel + 00+ seco, V- sin“e; / e(1+Uy) [ °

(34)
- L
Yip = }1— Up| Ve(l +U,) - sece, \/] - sinze] / (1 +Uy) €
Now R is determined simply from
U
1

However, using equations (34) by dividing the second by the first will
give R as a function of U, , but it is much more useful to have R as a
function of the incident intensity Uy, since experimentally Uh can be
varied as is necessary, while U, (and also Uilr) will only adjust itself
to satisfy the boundary conditions, and cannot be thought of as an
independent parameter which can be changed to any desired value.

Equations (34) give Uj and U, as functions of U, , assuming that
for any given experimental set up, e] and ¢ are fixed. As they stand,
all quantities are real for the case of transmission of the wave, whereas
in the case of TIR, the second radical in each expression is' pure imaginary.
Here the two cases (TIR and transmission) will be discussed separately. In

fact the two cases correspond to the two stable states of the system.

D. Total Internal Reflection Mode

The equations (34) for Uy, lh, can be written in the form

——— . 2 N2
U =% U2 \/s:(l + Uz) + seco, 51Ny =1
E]1+l%9
1 l/ sin?, | 2 (36)
U-I,r,:EUZ VE(I +U2) LS | SQCB-I m -1

=] 2w



In this case the quantities *o be absolute squared are complex
conjugates of each other in the two expressions, and therefore R = 1,

since Uy = Uppe

1 2 sinza] .
U] = U]r = a’ U2 E(] + UZ) + sec 9-1 (E_(]_‘I‘U_z_j— = ) ]
U
i [
. 1 (37)

This is certainly the expected result for TIR, in the case of no
absorption. The conditions on U; necessary to produce TIR can be found
indirectly through restrictions on Up e The reflectivity will be unity
provided B] is greater than the critical angle; stated in terms of U2 "
the requirement is

sinze1

e(1+Up) ~ I = 8 for TIR Mode
sine (38)
< 1
or U, < — - 9

€
The limiting value of Up at which TIR can occur, called U §, is

found using the equal sign, and substituting back into the expression for
Ut , (36), gives U ¢, the limiting incident intensity at which TIR can

occur:

.2
SIn 8
uf = % ( L . 1) sin281 (39)

€

For incident dimensionless intensities less than this value U E. TIR
is possible, while any Uj greater than U f will necessarily produce a
transmitted wave, This does not rule out the possibility of transmission

for Uy values less than UY$, this can in fact occur in the case of

bistability.

_13-



E. Transmission Mode

In this case the expressions in the equations (34) for Uy , Ujp

are pure real, there is no need for the complex absolute square.

UI = %—Uz [\/e(] + U2) + seco L/l - sinzel/e(l + U2) } .

=3 _ i
Ui = 3 V2 [\JE(] + U,) - sece L/1 - Sin281/6(1 +Uy) } é

P. Bistability

In the case where the dielectric constant €, 1s not a function
of the electric field intensity E,, the reflectivity of the boundary is
a constant, independent of the power in the light wave (or laser beam).
In contrast, when depends on E, , the reflectivity will obviously
depend on the incident intensity U, so that R is not constant, for a
given angle of incidence, But a more striking result in this case is that
optical bistability is possible, that is, two different reflected wave
amplitudes (or two different values of R) can exist for a given incident
wave amplitude, under certain conditions. These two values are determined
as a result of the fact that for a limited range of Uy , the boundary
can be either transmitting or totally reflecting, giving the two values
for R corresponding to a single value of Uy . fhe state of the boundary,
that is, whether it is transmitting or totally reflecting, for a given U, ,
is determined by the previous values of U; , its past history.
Statement of conditions necessary for bistability:

The equations (40) can be used to make graphs of Uy and Uy, versus
Up , which in the case of no bistability, will be monotically increasing
(or decreasing) functions of Up « For this case one value for U; will

determine only one possible value of Uj, which satisfies the boundary

3l



conditions. If bistability is to occur, it is necessary that a given

value of Uy correspond to multiple values of Uy , and then each of these

U, values will determine a different value of Ujp , thus producing multiple
values for the reflectivity R which relate to a single value of Uj .

Another way to state this requirement is to say that the graph of U, versus
U, must have an extremum point, in order that one value of Uy be determined
by more than one value of Up » Graphs of Uy versus Us make this obvious,

as in Figure 2.

In Figure 2, the three values of U2 which corresnond toa single value of
Uy are inserted into the equation (40) for Uyp » producing three values for
R corresponding to the one value chosen for U, , thus bistability results,
Thus U, should be checked to see under what conditions bistability can occur
by looking for extremum points. Alternatively it is only necessary to see
if U, as a function of U2 first increases and then decreases, or vice versa,
this would imply bistability.

By simple inspection, if U, 1is positive, U; will always be an
increasing function of Up , and no maximum occurs, therefore no bistability
results, For the case of negative values of Up both terms within the square
are decreasing functions. of Up , and so therefore is the square. When
this is multiplied by Up , the resulting functiSn can evidently start at
zero, decrease to some minimum negative value, and then begin to increase
again, so that for negative U values bistability is indeed possible. Since
U2 1is defined as U, = a'Ezlzfeg » this means that this form of

bistability is possible only for the case of negative nonlinearity (a <0)e

~15-



G. Generated Curves

Graphs of Ulr vs Ul can be obtained by inserting values for U,
into the equations (34) to obtain = set of points (Uj, Uj,), With each
point determined by a different value of Uy, This is in fact just obtaining
a parameterization of the curve in the Uy - Uy, plane, with U, as the
independent parameter. A simple case to consider is that in which
3 = eg , where the linear dielectric constants on each side of the
boundary are matched. In this case it is expected that the boundary is
transparent to low intensity waves, but as the intensity incteases R
should increase from zero towards one,

Figure 3a shows graphs of Uqp vs U4 for 0y = 89.0o , an incident
angle close to grazing incidence. The solid line represents operating points
in the transmission mode, while the dashed line with slope equal to one
represents the TIR mode. The dotted 1line is an unallowed region of the
transmission regime, The graph is for negative Uy Ugp values because
the case of o < 0 1s being considered here.

For very small incident intensities, 52 will be unaffected, and

therefore the critical angle, given by Sinzac = ;g , will be greater
than the incident angle 0y and the wave will be]almost totally transmitted,
with very Httle reflected, R will be close to zero. As the intensity is
slowly increased in absolute value, the critical angle, which for small
intensities was close to 900, decreases towards 89° and eventually will
match the incident angle. At this point the reflectivity will suddenly
switch to one, as the boundary flips state to the TIR mode.

This occurs at the value of Uj denoted U , the point where the

transmission mode curve has a vertical tangent. This switching has caused

R to change discontinuously from some value around .1 up to unity. Now if

=16~



the intensity is further increased, R will remain at one; the operating
point will simply move out along the dashed TIR curve. If the intensity
is slowly decreased, after TIR has been established, the boundary will
remain in the TIR mode even after U; has been reduced below U f. It is
only when Uy reaches the value U % previously discussed that the mode will
switch to transmission, Thus this simple model predicts that the boundary
will exhibit hysteresis effects as a result of the optical bistability present.
It is to be noted that in order for bistability to result, an incident
intensity at least as large as U ﬁ must be available to initiate the
switching from transmission to TIR. Thus it would be convenient to find
the approximate value of U f .

H., Approximation for 1J ?

The switching point U ? is found from the condition
dU]

=0 (41)
dUZ

T
U]_U}

Actually this condition determines the value of Up at which the slope
of Uy vs Up 1s zero, and then U ? is found using this value of Us .

For very small values of Uy , U] can be approximated by

2
sin 6 '
2
U %7 U, [e('l +U,) + sec’e; (1 - ——L (1 - U,) + 2sece, Ve +U,)-sin e]]

(42)

"L

for the transmission mode eguation. The value of Uy , denoted Ug , wWhere

the slcpe is zero is found to be approximately
Ve - sinze] 2
el | o
S ( € COS )
Us & ___ 1
TanZe
2(1 + a_]_) ¥ _:J'_?_e_cil

Ve- Sin281

£

- e



For the special case€ = 1 , this reduces to

U5 % -é cosze] (for e = 1 only) (44)

The corresponding switching value U? in this special case is found to be

U? v o-.42 cosze1 (for e = 1 only) (45)

In the more general case it is not evident that a simple expression for
s
U7 will result,
s
For 6y = 89° with e =1 , the approximate value of U] obtained

by this formula is -1.28 X TO-4

» Which agrees almost exactly with the
data obtained by a PDP - 11/70 time sharing computer. This would be
expected since the approximations made here are most accurate for very

small Up, Up values,

I. Conversion of U-Values To Power Per Unit Area

To convert Uy values to power levels per unit area, it is only
necessary to apply the definitions of Uy and NL (for which experimental
numbers are given for different materials), and calculate the magnitude of

the Poynting vector, given as (6)
S| =& [ExHl= & v& |el* (in s units) (46)

( = time averaged power/unit area)

We also have

0 V.0

IE]IZ = U, fé_ 5 2 (47)

Then the incident power is given in terms of U as

0
o E]Ez
Sl = &= == v (48)
I = %5 W]

=] 8



In figures 3b a graph of R verses U, is shown for the case where eg = 88°.
The incident angle 8, = 88.5°, and the curve is drawn for the case of a
positive nonlinearity. Under these conditions the reflectance undergoes
no discontinuous changes, and therefore the boundary does not exhibit any
bistability.

In figure 8 the incident angle 8y = 87.5°, and the curve is drawn for
the case of a negative nonlinearity. Bistability is present, and a switching

4 is necessary for the boundary to

intensity U? equal to about -2.2 x 10°
switch from transmission to TIR. Using this number an estimate will be
made for the power necessary to initiate this transition, assuming the

12 cmzfvz, which is the magnitude of

nonlinear medium has ny = 9 x 107
the nonlinear index for C52(1). If we take E; = 2.25, then e = 2.247,

and the switching power is approximately 3.3 x 109 N/cmz. This numerical
value may be compared to the experimental value of 7.5 x 109 H/cm2 quoted
by Smith et al. in their experiment using CSQ, and their theoretical value
of 8.1 x 109 N/cm2 calculated from Kaplan's Theory. Again it is the result
of our calculation that a positive Kerr medium shows no bistable effects.

Clearly this discrepancy must be resolved!

J. Applications

The nonlinear boundary discussed here has essentially the same input-
output characteristics as that of a transistor Schmitt trigger, and therefore
could be used in any applications where optical Schmitt trigger operation
is necessary. This would include switching applications and digital signal
processing applications. Under proper biasing, it may also be useful as
an amplifier, and possibly a power stabilizer. But in order for any of
these to be more feasible, it would most probably be necessary to make
use of a nonlinear medium with a nonlinear index of refraction larger than

10']0 cmefvl, in order for the critical switching power to be within a

reasonable practical limit. -19-



IV, OPTICAL BISTABILITY NEAR THE PIASMON AMNGLE

With the existence of optica’ bistability near the critical angle
at a linear to nonlinear medium toundary, the question is asked: does a
similar phenomenon occur when the incident angle is near the plasmon
angle for excitation of surface plasmons when a thin metal film is
sandwiched between the two media? This question can be theoretically
investigated in a manner very similar to the first half of this paper.

The geometrical set up is shown in Figure 4, Medium 1 is a linear
glass, medium 2 is a thin metal film of thickness d, with a complex
dielectric constant, the imaginary part of which exhibits the absorption
of the material., Medium 3 is the nonlinear medium, with a field dependent
dielectric constant., A plane wave is assumed incident on the boundary
from the linear glass, with electric field amplitude Ei. The reflected
electric field amplitude is denoted Eir , while that transmitted to the
nonlinear medium is denoted ﬁj « The fields Ez and Egr produce standing
waves within the metal., Again the case of P-polarization is under con-
sideration, especially since this polarization is necessary to create the
conditions responsible for excitation of surface plasmonéB) . Also the
set up, referred to as the Kretschmann configuration, allows for the
excitation of surface plasmons through the method of frustrated total
reflection(?).

Again 8] is the incident angle, and is always real, while the angles

6, and 83 can be complex, especially in the case where evanescent waves

2
exist in media 2 and 3. The goal of this calculation is again to obtain
the ratio of the reflected optical power to the incident optical power,

i.e. the reflectivity R.
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A. Assumed Field Dependences

A coordinate system is chosen with z-axis perpendicular to the
boundary, directed into the nonlinear medium, while the x-axis is parallel
to the boundary. Monochromatic plane wave solutions to the wave equation
are assumed in both the linear glass and the metal; a slightly more
complicated form is assumed in the nonlinear medium, of the form
E3(;,t) - £,(2) o1K3xX gifGKaz(z')dz" -iut (49)

The magnetic field associated with this E - field is found from
Faraday's Law:

- >

_ e o

All fields are assumed to have e“1mt time dependence, and note that the

plane z = 0 1is at the boundary between the linear glass and the metal,

which has a thickness d. Below the fields in the three media are written

out, with e-1wt suppressed.

-
Incident Wave E;

Eqx ® E, cos®, el(Kh(x + Kyz2) Hix =0
m € i(K] x + K]ZZ) (51)
iy = 0 : Mg =@ ™5 e 2
_ : i(Kyyx +Ky,2 _
Reflected Wave Ejp
. 1(Kjgx - Kjp2)  Hyo =0
E]rx —E]r cose, e 1rx
i - K
Epy = 0 Mry = ﬁ K By et (Kpyx = K122) (52)
= . i(Kyex = Ky,2) ”
Eypy = -Eyp sinoy e 01x 1z Hy, = 0
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Wave in Metal EZ

Esi, = E2 cose, eT(KZXx 2 KZZZ) HZx =0
- 2 I Ky X = Kyi2)
EZry 0 H2ry w 2E2r 2x 2z
- ; i(K2 x-K,.2) _
E2rz E2r s1na2 e X 2z H2Z =0
Wave in Metal E2r
Eppnse 5 “Enis €085 eT(KZXx - KZZZ) Hopx = 0
Eppy ™ D Hyje = & K,E,, el (Koyx = Kp,2) (54)
Espy = -Epp sins2 e1(K2xx B KZZZ) 0

H2rz =

»

Transmitted Wave In Medium 3 E; (Nonlinear)

Es = E3(2) cos 4 e1K3xx ei£: K3z(z")dz'

: i 12 K,_(z2')dz'
E3, = E3(2) sin 4 elKaxx e % 32

H

€ |o

. rZ
, dEx(2) 1 if Ny
3y [K353(Z) - 1 cos 5 *gz_‘] oKak & Kaglz')ez

E3y = gy H3z =0

e ad

The comments made nreviously in Secton III-A about whether this is a
valid assumed form of field in the nonlinear medium should be recalled here,
the nonlinear wave equation should in fact be solved to obtain the exact form
of the fields. For simplicity the above fields will be used, and the wave-
vectors K in the three media are related to the dielectric constants through

the relations

K =€ Ve Kp =g Ve ¥ ey, R3= 5 ch+a|E3(z)]2 (560

Application of the boundary conditions here leads to Sneel's law, in the
form that the tangential component (x-component) of the wavevector must
be continuous across the boundaries, so that

K — K = K (5?)
1 2 3 :
X X X S



From this relation and relations »f the form

2 2

K, 2+ K 2 =K

i 1 1 similar for Kz, K3, the z-components

of the wavevectors can be written in terms of the incident angle 91 and
the dielectric constants S T8, Ej , as follows,

= A

w - tnPn. = -
e \/52 €] sin e] K S | K221‘ (58)

K 2zr

w /o
gz = ¢ &) €050,y

Kq, = 5; JE1 N

w .
3z c \/53 - € sinZ,

The real and imaginary parts of Kp, can be written as

. J
K, —;]; “or sine, + I/ (-—21 - sin 6 ¥ i 21 eq) ] en
Zr o | e 1 ] M
1 (59)
1 cor l/ By ol 12, 2]? 2n
KZZi _/E [‘ E;_ + S1ﬂ 9] ( - S‘n 81) + ( /EI) A]

where A] is the wavelength of the light in medium 1, 1In the case where

|521[ << Iger , these are given to first order in €2i/c as
i 1 521/81 By ) o € 2
Z2r® 2 v X 2zi & TSI Ep T €TE T (60)
S1n 8]- Ezr/€ ] p I
1

The real part of ¢€j (metal dielectric) is given approximately in terms
of the plasma frequency(s) Wy =4nne2/me through the relation

" 2
€2r = 1- -i% (61)
For optical frequencies for most metals, the plasma frequency is greater
than w, and €ope 1s a negatlve number. This is then responsible for the

heavy damping of the waves in the metal,
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B. Boundary Condition Fguations

Again the pertinent boundary conditions, to be applied at both
boundaries, are the continuity of tangential E and tangential E. Also

-
the normal component of D must be continuous, but this condition is not

necessary.

-
Tangential E (continuity of Ex)

atz =0 E1 cose, - E]r cosé, = E2 cos6, - E,. cosé, x
at z =0 E, cose eiKZZd - E,_ cos8 e_iK2zd = E,(d) cose (
2 2 2r 2 3 3
Tangential ﬁ (continuity of Hy)
at z = 0 K]E] ¥ Klslr = KZEZ + K2E2r
at 2=0 KE, e Rezd+ K E, e K2z = K (d)EL(d) - i gl ey .
272 2 2r 3 3 K3(d5 dz el
dE3
If the assumption is made that the derivative term dz 7= is in

some sense small compared to the other term on the right hand side of the

last equation, then equations (62) and (63) can be put into the matrix form

1 cosez/cosel -cosezfcose1 0 Elr E1
-] 1(2/|<-l K2/KI 0 52 _ E1
0 eiKZZd -e-iKZZd —C0583/C0582 E2r 0 (64)
[ 0 e1Kp,d e~ 1Ky, d -K./K e.(d)| |o
32 i __3 1 U

In the case where c0582 & cose3 may be complex, they can be replaced

by their equivalents

K K
. ez _ '3z
cose, = T C0SBy = F= (65)

rd 3
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The set of four equations can be solved simultaneously, to obtain

¢ o p 702 Teg eleRaM
Ir 1 1 + r12r23 eiZKZZd.
B B | ik ]
2 1 1 + ri2ro3 e12K22d_

i d 8 66

" [ t1,r09 eTZK?z (66)
2r =B L1 4 ryprpg 0 222t
| P eiKZZd a

_ 12723
E3(d)-E] 1+ ry,r eiZKZZd-
12° 23

The symbols r]2, r23, 1:12 & t23 are the Fresnel reflection and

transmission coefficients for the two boundaries, defined by

l/gz_ l/€1
_— Ko cosoy - K, coso, _ il o 7 Ky,
12 K2 cose] + K1 C0562 EE.K \ il .
€] Mz E2 "2z
ZKlz

ZK] cose1

byg® K, cosé; + K, coso, e ML
€] Mz €7 "2z

Expressions for a3 and t23 are found from the above by changing the
subscripts 1 > 2 and 2 +~ 3 + It i1s to be noted here that both o3
and t23 will depend on the field Ej3, so that all four fields determined

above are not simply directly proportional to Ej.
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C. Excitement of Surface Plasmons

1. Linear Case
In the case where medium 3 is considered a linear medium ( o > 0 ),

the reflectivity R is given simply by R = |E1r|2/|E1|2
i2k, d |°
rp ¥ rpy e 2z (68)
= 68

R = p
i2K,_d
1 + r12'o3 © 2z

For a special incident angle termed the plasmon angle, g the
denominator of the Fresnel Factor r23 vanishes(g) (in the case of 621 =0),
and this is the condition for excitement of the surface plasmon mode.

The plasmon angle is given by (3)

g2 _ 2
€y sin ep = Fprts = Kx (69)

This relation is also the dispersion relation for the component of the
surface plasmon wavevectér which is tangent to the boundary between the
metal and medium 3.

A simple interpretation of the behavior of the fields at the plasmon
mode is given by realizing that if o3 diverges as at the plasmon angle,

then this means that the field E; is very small compared to the field Epyp.

Both of these fields normally have exponential z-dependence, the first
decreasing as the metal - medium 3 boundary is approached, while the

second increases towards this boundary. It is easy to show that the plasmon
angle is greater than the critical angle between media 1 and 3, and therefore
the field in medium 3 is also evanescent, decaying in amplitude away from

the boundary. Thus, under conditions required for the surface plasmon mode,
the electric field amplitude decreases exponentially on both sides of the
metal - medium 3 boundary, the field Ep belng negligible. Also it is
possible that the field at this boundary can be larger than the incident

fileld Eq.
-26-



If the metal has no absorption, then R=1 at the plasmon mode.
In the case where EZi# 0 , however, excitation of the surface plasmon is
characterized by a large decrease in R below one, it can in fact approach
zero closely. This large drop ir R can be attributed to the fact that a
collective oscillation of the electron gas in the metal is associated
with the plasmon excitation, or resonance, and this allows for absorption
of energy by the metal, thereby decreasing the reflected optical power
at the plasmon angle.
2. lNonlinear Case

When a 1is nonzero, the reflectivity R will be a function of the

incident field amplitude Ej, since g, depends on E3 and E3 will depend

3
on Ej. In this case the relations (66) between Ej, Ey,, and E3 can be

rewritten in the form

i2Ko,d
) [[ryp + rp3 e T2
E = E,(d) - —
Tr 3 t t e1K22d
L. 12 %23
" i2kK,.d
_ 1 + riprog © 2z
E, = E,(d) :
1 3 o B e1K22d
! 12 =23

These two equations express Ejy and Ej as nonlinear functions of Es3
at the metal - nonlinear boundary, since both ros and t23 depend
on E3(d). Thus from these a graph of |E1r|2 versus |[-j]|2 can be
obtained by inserting different values for E3(d) on the right hand sides
of the equations; for each value of E3(d) used, a different point on the
curve will be obtained. By substituting an adequate number of values, a
smooth curve will be determined.

Substituting the definitions of the Fresnel Factors into these

expressions allows the field dependences of Ej, and Ej on Ej(d) to be
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shown more explicitl in the following forms.

5183 52
1r § E5(d) ’ == cos(K, d) +i sin(K,,d) sece, o - sin%e ]V]+U

E =
€5 o "1/2 €1 sin? (71)
~[cos(K, d) seco; + i =% sin(k d)(——- sine.) ] 1 - L (siny,
2z E 2z -l 1 O 1+U
€3 3

I/ 0
E
} 13 [——-cos K d) - i s1n(k d secH L/--— sin 24 ] V1+U

1
E] _'5 €)
€
T i =112 I/ 1 sin?
+ [cos(KZZd) secoy - i E; s1n(K22d)(tT- sin e]) ] 1 0 ( )f(?2)
]‘+U3
These relations can also be written in terms of the dimensionless

intensities 1, U1y, and U3.

Up = function of U3 = f(Uj3)
Uy, = function of Up = 83 (73)

This then gives an alternate view (a graphical description) of how the
functional dependence of R on U] and bistability can be determined, As

in the one boundary problem already discussed, when the graph of Uy

versus Uj has extremum points, then a single value of U; can be determined
by more than one value of U3. Then each of these U3 values will

determine a distinct value of Ujy, and all of this results in a single
value of Uy having multiple values of R related to it, each of which
characterizes electric field amplitudes which satisfy all of the boundary
conditions., (AsinFigure 2) Thus the mathematical conditions necessary

for bistability here are the same as before, as is the method for producing
the graph of R vs, Uj. The algebra is more involved, however, especially
due to the fact that since absorption in the metal is allowed for in terms
of a complex dielectric constant, most of the factors in equations (70)
involve complex numbers. As a result it is essential that the calculations

be performed by computer.
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D. Discussion of Switching Near the Plasmon Angle

Above is the method for mathematically determining the reflectivity
as a function of intensity. A phvsical interpretation of what happens
near 813 may be useful here. A case will be discussed in which the

angle of incidence 0,, is slightly greater than the linear plasmon

1
angle ep (plasmon angle at low intensity), defined through
[e]
2a°p _ SnEy (74)
€2 +€3

First, if the incident beam has very low intensity, no nonlinear

S-I sin

effects will be evident, and the reflectivity will be some value
greater than that which would result if the surface plasmon mode were
fully excited. (Changing 81, so that it matches 8; will fully exclte
the surface plasmon mode, and result in the lowest possible reflectivity).
Nlote here that since the plasmon angle ep depends on the varlable
dielectric constant €3 1 then the plasmon angle is not fixed, but
changes with the intensity of the incoming beam. Now if the intensity
of the beam is increased, then it is possible to promote excitation of
the plasmon resonance by making the variable plasmon angle change until
i1t matches the incident angle. For the case of a positive nonlinearity,
increasing the intensity U3 will cause Bp to iﬁcrease, so that for the
example case cited here, the plasmon aégle can be forced to approach the
angle of incidence; the plasmon mode can be excited even though 91 is
not equal to the linear plasmon angle B; .

Figure 5 shows a typical plot of R vs. Uy for values of the

parameters €1, €9, €4, etc. as indicated, and for the case of

positive nonlinearity. The values are appropriate for a 625 R silver film

on a glass prism of index ny = 1.9 , with an incident wavelength 1.06u
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An interesting thing happens as the intensity is increased. Instead
of the reflectivity simply decliring smoothly as the plasmon conditlon
is approached, it is found that a point is reached such that if the
intensity is increased only slightly further beyond this point, then the
reflectivity undergoes a discontinuous decrease; the operating point of
the system will now be on the lower portion of the curve. In fact, it
would now be necessary to decrease the intensity to obtain excitation
of the surface plasmon, since the operating point will now stay on the
lower portion of the curve, and will move along this curve as [ changes.,
If the intensity is decreased enough the plasmon mode is excited (the
point where R is a minimum). Decreasing Uy further only slightly will
now cause a discontinuous increase in R up to some value around 0.9; the
operating point is now back on the upper portion of the curve. The net
effect here is that R exhibits hysteresis behavior with respect to changes
in Uy. Also an important and curious detail to notice is that operating
points on the portion of the curve which connects the upper and lower
sectlons referred to above are never obtainable, even though the fields
they relate to satisfy the boundary conditions. The discontinuous Jumps
in R will always prevent the operating point from moving onto this inter-
mediate section of the curve, |

For this example, and for others, there exists a minimum intensity
Uy, called U§ , which must be applied to the boundary to initiate the
discont.inuous downward jump in R, Also this intensity is necessary if it
is required to excite the surface plasmon mode, since the surface plasmon
point is on the lower section of the curve. It is to be expected that thls
power level assoclated with Ug w1ll depend on the magnitude of the

nonlinearity o , the difference between the linear plasmon angle B; and
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the incident angle 91 , denoted 59::3] = 3; s and possibly the
strength of the surface plasmon r<sonance, which is related to the ratio

of the real part of €9 to the imizinary part of ¢ Therefore it

o *
would be advantageous to produce zraphs of Ug as a function of one of
these factors, with the other held fixed.

The Figures 6 and 7 are graphs of U% as a function of Ap and as a
function of ©2j , with the real part of € held fixed. As pg 1s
increased (moving 8.I to either side of the plasmon angle 95 ), the
critical switching power also increases, although not in a linear fashion.
An important thing to notice about this curve is that there is a gap in it
near the origin. No points on the curve are plotted here in this region
because UE does not exist for displacement angles pg less than some
minimum value. If aAg 1is too small in magnitude, then the curve of R
vs. Up shows no bistability and consequently no hysteresis, This is
especially evident for the case where e] = e; or pAp =0 . Here
increasing U; will simply cause the boundary to move away from the
plasmon condition, and R will smoothly increase from its minimum at the
plasmon condition, A similar type of behavior is present for very small
angular displacements, until some minimum pg 1s reached at which
bistability is just barely possible.

In Figure 7 the critical switching intensity increases with
increasing i again not in a linear manner. It seems that where
the plasmon resonance is strong, that is, when the ratig EZrKEZi
is large (when Ep; is small), then a smaller critical intensity is required.
In the 1limit of €5 going to zero, the critical switching intensity is

not zero, but some finite value, however, no plasmon resonance is

observable in this case, since R will be unity for all values of 1.
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V. RESULTS AND CONCLUSIONS

A. Bistability Near the Critical Angle:

A New method for generating curves of reflectivity versus incident
intensity has been demonstrated here, its advantage over previous methods
being that the calculation is possible at any incident angle, not just
angles near grazing incidence. This is because the grazing angle approximations
do not have to be made here. There are, however, other approximations that
are made here, the most obvious being the assumption that the solutions of
the wave equation in the nonlinear medium can be expressed as something similar
to plane waves, characterized by wavevectors Kx and Kz. Certainly this is not
necessarily true, and may be accurate only in the 1imit of a very small nonlinear
effect.

The curves are such that in certain special regions, termed bistable, there
exist three possible values of reflectivity for a single given incident field
intensity. Two of the values correspond to the transmission mode, while the
third value relates to the TIR mode. Of the two transmission mode values, only
one can physically be made to occur, since-it is impossible to switch to the
other (the dotted curve in figure 3a is physically unattainable). Thus there
are actually only two reflectance values attainable in these bistable regions,
Since both of these are possible for any 1ntensity'for which the boundary is
bistable, there must be a method for determining which of the two states is
present under the given conditions. The method referred to here simply involves
having the operating point of the system move smoothly along the R vs. U; curve;
discontinuous jumps occur only at the special switching points referred to
in the discussion. At these switching points, switching occurs where
initially there are multiple values of R possible, and either increasing
or decreasing the intensitv moves the operating point to a region where

there is only a single R value possible for the given value of U - The
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switching can be made from TIR tc transmission or from transmission to
TIR, for both a negative and a pccitive nonlinearity o« . Typical

switching powers would be on the ~rder of 108 to 109 Watts per cm2,

depending on the difference betwe=sn the incident angle and the linear
critical angle, and also on the linear critical angle itself, This latter
fact is indicated in Figure 8, which shows curves of R vs, Uy for various
linear critical angles 92 , With associated incident angles each 0.50
less than eg « It is easily seen that the switching intensity Uf
generally increases as the linear critical angle is set farther from
grazing incidence, so that this experiment would be most easily done for
the case where €] and €2 are almost identical, so that BE is close

to 900. Also it is noticed that for the cases closer to grazing incidence,
the jump in reflectivity in going from transmission to TIR is larger.

B, Bistability Near The Plasmon Angle:

The method used above for the critical angle bistability was also
used in the case of a two boundary geometry, with a metal being between
a linear and a nonlinear medium. Similar type approximations were made.
The difference here is that incident angles near the linear plasmon
angle B; are of interest,

Again there can be a bistable region withlﬂ being a multivalued
function of Uy. Here, however, the two accessible regions of the curve
both correspond to the TIR case, since this 1s necessary for excitation
of surface plasmons; the difference between the two regions is that they
relate to being on opposite sides of the (variable) plasmon angle ep .
The discontinuous switching causes the following to happen. First, the
electric fields are such that the incident angle e] is either greater

than or less than the adjustable plasmon angle ep , defined by equation (69).
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Mow changing the strength of the incident electric field can cause
the plasmon angle to either increise or decrease, depending on the
particular parameters of the protlem, and at some point positive feedback
takes over which now forces ep to be on the opposite side of 8,
from which it started. The switching here is in effect "across" the
plasmon condition., The surface plasmon resonance can be exclited only
by first producing an intensity large enough to cause the operating point
to switch to the lower portion of the R vs., Uy curve (as previously noted
in the discussion section). Now that the operating point is on this
lower portion, the intensity must be decreased somewhat until the fields
ad just themselves so that 3] matches Bp (then naturally the surface
plasmon must be excited). Decreasing the intensity further will cause
BD to change enough so that now the operating point will jump back to
the upper portion of the curve, Thus the boundary set up has been shown
to exhibit optical hysteresis.

The optical power necessary to cause the initial optical switching
has been shown to depend on the displacement of the incident angle from

oy , on the ratio €2r/€21 , and on the magnitude of the

p
nonlinearity o . Typical powers are on the order of 108 to 109 Watts
per square centimeter. |
Finally, it is to be noted that the optical bistability exhibited
near the plasmon angle allows the experimentalist to work near angles

which are not grazing angles, and possibly would offer some relief from

problens assoclated with working near grazing incidence.
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