Prefixes

$$a=10^{-18}, \ f=10^{-15}, \ p=10^{-12}, \ n=10^{-9}, \ \mu=10^{-6}, \ m=10^{-3}, \ c=10^{-2}, \ k=10^3, \ M=10^6, \ G=10^9, \ T=10^{12}, \ P=10^{15}, \ P=10^{15}$$

Physical Constants

$k = 1/4\pi\epsilon_0 = 8.988 \text{ GNm}^2/\text{C}^2 \text{ (Coulomb's Law)}$	$\epsilon_0 = 1/4\pi k = 8.854 \text{ pF/m (permittivity of space)}$
$e = 1.602 \times 10^{-19} \text{ C (proton charge)}$	$\mu_0 = 4\pi \times 10^{-7} \text{ T} \cdot \text{m/A} \text{ (permeability of space)}$
$m_e = 9.11 \times 10^{-31} \text{ kg (electron mass)}$	$m_p = 1.67 \times 10^{-27} \text{ kg (proton mass)}$
$c = 3.00 \times 10^8 \text{ m/s (speed of light)}$	$c = 2.99792458 \times 10^8 \text{ m/s}$ (exact value in vacuum)
$h = 6.62607 \times 10^{-34} \text{ J} \cdot \text{s} \text{ (Planck's constant)}$	$\hbar = 1.05457 \times 10^{-34} \text{ J} \cdot \text{s (Planck's constant/} 2\pi)$
$\sigma = 5.67 \times 10^{-8} \text{ W/(m}^2 \cdot \text{K}^4)$ (Stefan-Boltzmann const.)	$hc = 1239.84 \text{ eV} \cdot \text{nm}$ (photon energy constant)

Units

$N_A = 6.02 \times 10^{23} / \text{mole (Avogadro's } \#)$	$1 \text{ u} = 1 \text{ g/}N_A = 1.6605 \times 10^{-27} \text{ kg (mass unit)}$
$1.0 \text{ eV} = 1.602 \times 10^{-19} \text{ J (electron-volt)}$	1 V = 1 J/C = 1 volt = 1 joule/coulomb
$1 \text{ F} = 1 \text{ C/V} = 1 \text{ farad} = 1 \text{ C}^2/\text{J}$	$1 \text{ H} = 1 \text{ V} \cdot \text{s/A} = 1 \text{ henry} = 1 \text{ J/A}^2$
1 A = 1 C/s = 1 ampere $= 1 $ coulomb/second	$1 \Omega = 1 \text{ V/A} = 1 \text{ ohm} = 1 \text{ J} \cdot \text{s/C}^2$
$1 \text{ T} = 1 \text{ N/A} \cdot \text{m} = 1 \text{ tesla} = 1 \text{ newton/ampere} \cdot \text{meter}$	$1 \text{ G} = 10^{-4} \text{ T} = 1 \text{ gauss} = 10^{-4} \text{ tesla}$

OpenStax Chapter 24 Equations - Electromagnetic Waves

Electromagnetic waves:

$$|\vec{E}|/|\vec{B}| = c = 1/\sqrt{\epsilon_0 \mu_0}$$
, (fields and speed) $f\lambda = c$ (wave equation)

Energy density, intensity, power:

$$u = \epsilon_0 E^2 = \frac{B^2}{\mu_0}$$
 (instantaneous energy density) $\overline{u} = \frac{1}{2} \epsilon_0 E_0^2 = \frac{B_0^2}{2\mu_0}$ (average energy density) $I = \overline{u}c = \frac{1}{2} \epsilon_0 E_0^2 c$ (EM waves intensity) $I = P/A = P/(4\pi r^2)$ (intensity definition)

Approximate wavelengths λ for types of EM waves:

0 (
$$\gamma$$
-rays) 30 pm (x -rays) 3 nm (uv) 400 nm (visible) 700 nm (ir) 300 μ m (μ -waves) 3 cm (radio) ∞ \longrightarrow \longrightarrow increasing wavelength \longrightarrow \longrightarrow \longrightarrow

OpenStax Chapter 27 Equations - Wave Optics

Wave properties, interference:

$$\lambda_n = \lambda_{\text{vacuum}}/n$$
 (wavelength in a medium) $\Delta x = d \sin \theta$ (path difference in double slits) $d \sin \theta = m\lambda$ (double slits bright fringes) $d \sin \theta = (m+1/2)\lambda$ (double slits dark fringes)

Diffraction:

$$D\sin\theta = m\lambda$$
 (single slit minima) $y = L\tan\theta$ (position on a screen) $d\sin\theta = m\lambda$ (diffraction grating maxima) $d = 1/(\text{lines per meter}).$

Rayleigh's Diffraction Limit:

$$\theta_{\min} = 1.22\lambda/D$$
 (resolution limit) $\theta = s/r$ (angular separation in radians)

Polarization:

$$I = I_0 \cos^2 \theta$$
 (transmission thru polarizer) $I = \frac{1}{2}I_0$ (transmission of unpolarized light)

OpenStax Chapter 28 Equations - Special Relativity

Time dilation and length contraction:

$$\Delta t = \gamma \Delta t_0 = \Delta t_0 / \sqrt{1 - v^2/c^2}$$

$$L = L_0 / \gamma = L_0 \sqrt{1 - v^2/c^2}$$

$$\gamma = 1 / \sqrt{1 - v^2/c^2}$$
 (relativistic factor)
$$v/c = \sqrt{1 - 1/\gamma^2}$$
 (velocity)

Dyanmics, mass, energy:

$$p = \gamma m_0 v$$
 (relativistic momentum) $m_{\rm rel} = \gamma m_0$ (relativistic mass) $E_0 = m_0 c^2$ (rest energy) $E = \gamma m_0 c^2 = m_{\rm rel} c^2$ (relativistic energy) $E = E_0 + KE = \sqrt{p^2 c^2 + m^2 c^4}$ (relativistic energy)

OpenStax Chapter 29 Equations - Quanta and Quantum Waves

Blackbody radiation, photons, photo-electric effect:

$$\begin{split} \lambda_p T &= 2.90 \text{ mm·K} \text{ (Wien's Law)} & I = \sigma T^4 \text{ (intensity or power/area)} \\ E &= nhf, \ n = 1, 2, 3... \text{ (quantized radiation energy)} & E = hc/\lambda = (1240 \text{ eV} \cdot \text{nm})/\lambda \text{ (photons)} \\ E &= hf = W_0 + \text{KE}_{\text{max}} \text{ (photo-electrons)} & hc/\lambda_{\text{max}} = W_0 \text{ (work function)} \\ \text{KE}_{\text{max}} &= eV_0 \text{ (stopping potential)} & v_{\text{max}} = \sqrt{2\text{KE}_{\text{max}}/m} \text{ (max. speed)} \end{split}$$

Momentum, matter waves:

$$p = h/\lambda \ \, \text{(quantum momentum)} \qquad \qquad \lambda' = \lambda + \frac{h}{mc}(1-\cos\phi) \ \, \text{(Compton effect)} \\ \lambda = h/p \ \, \text{(de Broglie wavelength)} \qquad \qquad \text{KE} = p^2/2m \ \, \text{(kinetic energy, } v \ll c \text{)} \\ \Delta \text{KE} + q\Delta V = 0 \ \, \text{(acceleration thru potential)} \qquad \qquad v = \sqrt{2q\Delta V/m} \ \, \text{(acceleration thru potential, } v \ll c \text{)}$$

Heisenberg Uncertainty Principle:

$$\Delta x \ \Delta p_x \approx h \ \ \text{(approximate relation)} \qquad \qquad h = 6.626 \times 10^{-34} \ \text{J} \cdot \text{s}$$

$$\Delta E \ \Delta t \approx h \ \ \text{(approximate relation)}$$

$$\Delta x \ \Delta p_x \geq \hbar/2 \ \ \text{(has the minimum uncertainty)} \qquad \qquad \hbar = \frac{h}{2\pi} = 1.05459 \times 10^{-34} \ \text{J} \cdot \text{s}$$

$$\Delta E \ \Delta t \geq \hbar/2 \ \ \text{(energy-time form)}$$

$$\Delta E = \Delta m \cdot c^2 \ \ \text{(Einstein's mass-energy equivalence)} \qquad \qquad \leftarrow \text{This has exact equality.}$$