Prefixes

$$a=10^{-18}, \ f=10^{-15}, \ p=10^{-12}, \ n=10^{-9}, \ \mu=10^{-6}, \ m=10^{-3}, \ c=10^{-2}, \ k=10^{3}, \ M=10^{6}, \ G=10^{9}, \ T=10^{12}, \ P=10^{15}, \ P=1$$

Physical Constants

$k = 1/4\pi\epsilon_0 = 8.988 \text{ GNm}^2/\text{C}^2 \text{ (Coulomb's Law)}$	$\epsilon_0 = 1/4\pi k = 8.854 \text{ pF/m} \text{ (permittivity of space)}$
$e = 1.602 \times 10^{-19} \text{ C (proton charge)}$	$\mu_0 = 4\pi \times 10^{-7} \text{ T·m/A (permeability of space)}$
$m_e = 9.11 \times 10^{-31} \text{ kg (electron mass)}$	$m_p = 1.67 \times 10^{-27} \text{ kg (proton mass)}$
$c = 3.00 \times 10^8 \text{ m/s (speed of light)}$	$c = 2.99792458 \times 10^8 \text{ m/s}$ (exact value in vacuum)

Units

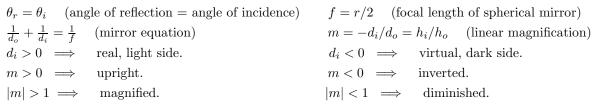
$N_A = 6.02 \times 10^{23} / \text{mole (Avogadro's } \#)$	$1 \text{ u} = 1 \text{ g/}N_A = 1.6605 \times 10^{-27} \text{ kg (mass unit)}$
$1.0 \text{ eV} = 1.602 \times 10^{-19} \text{ J (electron-volt)}$	1 V = 1 J/C = 1 volt = 1 joule/coulomb
$1 \text{ F} = 1 \text{ C/V} = 1 \text{ farad} = 1 \text{ C}^2/\text{J}$	$1 \text{ H} = 1 \text{ V} \cdot \text{s/A} = 1 \text{ henry} = 1 \text{ J/A}^2$
1 A = 1 C/s = 1 ampere $= 1 $ coulomb/second	$1 \Omega = 1 \text{ V/A} = 1 \text{ ohm} = 1 \text{ J·s/C}^2$
1 T = 1 N/A m = 1 tesla = 1 newton/ampere meter	$1 \text{ G} = 10^{-4} \text{ T} = 1 \text{ gauss} = 10^{-4} \text{ tesla}$

OpenStax Chapter 24 Equations - Electromagnetic Waves

Electromagnetic waves:

$$|\vec{E}|/|\vec{B}| = c = 1/\sqrt{\epsilon_0 \mu_0}$$
, (fields and speed) $f\lambda = c$, or $\lambda = cT$ (wave equation) $\omega = 2\pi f = \frac{1}{\sqrt{LC}}$ (LC oscillator frequency) $x = ct$ (propagation in space)

Energy density, intensity, power:


$$u = \epsilon_0 E^2 = \frac{B^2}{\mu_0}$$
 (instantaneous energy density) $\overline{u} = \frac{1}{2} \epsilon_0 E_0^2 = \frac{B_0^2}{2\mu_0}$ (average energy density) $I = \overline{u}c = \frac{1}{2}c\epsilon_0 E_0^2$ (EM waves intensity) $I = P/A = P/(4\pi r^2)$ (intensity definition)

Approximate wavelengths λ for types of EM waves:

0 (
$$\gamma$$
-rays) 30 pm (x -rays) 3 nm (uv) 400 nm (visible) 700 nm (ir) 300 μ m (μ -waves) 3 cm (radio) ∞ \longrightarrow \longrightarrow increasing wavelength \longrightarrow \longrightarrow \longrightarrow

OpenStax Chapter 25 Equations - Geometrical Optics

Reflection, Mirrors:

Refraction, Lenses:

$$\begin{array}{lll} n=c/v & \text{(index of refraction)} & n_1 \sin \theta_1 = n_2 \sin \theta_2 & \text{(Snell's Law)} \\ \frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f} & \text{(lens equation)} & m = -d_i/d_o = h_i/h_o & \text{(linear magnification)} \\ d_i > 0 & \Longrightarrow & \text{real image, light (opp.) side.} & d_i < 0 & \Longrightarrow & \text{virtual image, dark (same) side.} \\ m > 0 & \Longrightarrow & \text{upright.} & m < 0 & \Longrightarrow & \text{inverted.} \\ |m| > 1 & \Longrightarrow & \text{magnified.} & |m| < 1 & \Longrightarrow & \text{diminished.} \end{array}$$

OpenStax Chapter 26 Equations - Optical Instruments & Vision

Angles in radians

$$\theta = s/r$$
 angle = arc length / radius = separation / distance away.

Lens power

$$P = 1/f$$
 (power in diopters, when f is in meters).

Cameras

$$f/D = \text{f-number}$$
, or lens aperture film exposure = exposure time / (f-number)². $\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f}$ (lens equation) $m = -d_i/d_o = h_i/h_o$ (linear magnification)

Vision correction

Far point
$$FP = \infty$$
. (good vision) Near point $= NP \le 25$ cm. (good vision) Nearsighted. Use lens to get $FP = \infty$. Farsighted. Use lens to get $NP = 25$ cm.

Simple magnifier

$$\theta = \frac{h_o}{\text{NP}}$$
 (angular size at NP, via bare eye) $\theta' = \frac{h_o}{d_o}$ (angular size at d_o , thru magnifier) $M = \frac{\theta'}{\theta} = \frac{\text{NP}}{d_o}$ (ang. Mag. viewed at any d_o) $M = \frac{\theta'}{\theta} = \frac{\text{NP}}{f}$ (ang. Mag. viewed at $d_o = f$)

Microscopes

$$\begin{split} \theta &= \frac{h_o}{\text{NP}} \quad \text{(angular size of object at NP, via bare eye)} \\ m_o &= \frac{h_i}{h_o} = \frac{-d_i}{d_o} \quad \text{(1st image, linear magnification of objective lens)} \\ M_e &= \frac{\theta'}{\theta} = \frac{\text{NP}}{d_o'} \quad \text{(angular magnification due to eyepiece lens)} \\ M &= \frac{\theta_{\text{micro}}}{\theta} = m_o M_e \quad \text{(net angular magnification compared to bare eye)} \end{split}$$

Telescopes

$$M = \frac{\theta'}{\theta} = -\frac{f_{\text{obj}}}{f_{\text{eye}}}$$
 (angular magnification compared to bare eye)