Prefixes

$$a=10^{-18}, \, f=10^{-15}, \, p=10^{-12}, \, n=10^{-9}, \, \mu=10^{-6}, \, m=10^{-3}, \, c=10^{-2}, \, k=10^{3}, \, M=10^{6}, \, G=10^{9}, \, T=10^{12}, \, P=10^{15}, \, P=1$$

Physical Constants

$g = 9.80 \text{ m/s}^2 \text{ (gravitational acceleration)}$	$G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2 \text{ (Gravitational constant)}$
$M_E = 5.98 \times 10^{24} \text{ kg (mass of Earth)}$	$R_E = 6380 \text{ km} \text{ (mean radius of Earth)}$
$m_e = 9.11 \times 10^{-31} \text{ kg (electron mass)}$	$m_p = 1.67 \times 10^{-27} \text{ kg (proton mass)}$
c = 299792458 m/s (exact speed of light)	

Units and Conversions

```
\begin{array}{lll} 1 \text{ inch} = 1 \text{ in} = 2.54 \text{ cm (exact)} & 1 \text{ foot} = 1 \text{ ft} = 12 \text{ in} = 30.48 \text{ cm (exact)} \\ 1 \text{ mile} = 5280 \text{ ft (exact)} & 1 \text{ mile} = 1609.344 \text{ m} = 1.609344 \text{ km (exact)} \\ 1 \text{ m/s} = 3.6 \text{ km/hour (exact)} & 1 \text{ ft/s} = 0.6818 \text{ mile/hour} \\ 1 \text{ acre} = 43560 \text{ ft}^2 = (1 \text{ mile})^2/640 \text{ (exact)} & 1 \text{ hectare} = 10^4 \text{ m}^2 \text{ (exact)} \end{array}
```

Trig summary

$$\sin \theta = (\text{opp})/(\text{hyp}),$$
 $\cos \theta = (\text{adj})/(\text{hyp}),$ $\tan \theta = (\text{opp})/(\text{adj}),$ $(\text{opp})^2 + (\text{adj})^2 = (\text{hyp})^2.$
 $\sin \theta = \sin(180^\circ - \theta),$ $\cos \theta = \cos(-\theta),$ $\tan \theta = \tan(180^\circ + \theta),$ $\sin^2 \theta + \cos^2 \theta = 1.$

OpenStax Ch. 1 Equations

Percent uncertainty:

If a measurement = value \pm uncertainty, percent uncertainty = (uncertainty/value) \times 100 %.

OpenStax Ch. 2 Equations

Motion:

$$\bar{v} = \Delta x/\Delta t$$
, $\Delta x = x - x_0$, slope of $x(t)$ curve $= v(t)$. Quadratic eqn.: $ax^2 + bx + c = 0$. Solution: $x = \left[-b \pm \sqrt{b^2 - 4ac}\right]/(2a)$.

For constant acceleration in one-dimension:

$$\bar{v} = \frac{1}{2}(v_0 + v), \quad v = v_0 + at, \quad x = x_0 + v_0 t + \frac{1}{2}at^2, \quad v^2 = v_0^2 + 2a(x - x_0).$$

For free fall on Earth, using an upward y-axis, with $g = 9.80 \text{ m/s}^2$ downward:

$$\bar{v}_y = \frac{1}{2}(v_{0y} + v_y), \quad v_y = v_{0y} - gt, \quad y = y_0 + v_{0y}t - \frac{1}{2}gt^2, \quad v_y^2 = v_{0y}^2 - 2g\Delta y$$

OpenStax Ch. 3 Equations

Vectors

Written \vec{V} or \mathbf{V} , described by magnitude=V, direction= θ or by components (V_x, V_y) . $V_x = V \cos \theta$, $V_y = V \sin \theta$, $V = \sqrt{V_x^2 + V_y^2}$, $\tan \theta = V_y/V_x$. θ is the angle from \vec{V} to x-axis. Addition: $\mathbf{A} + \mathbf{B}$, head to tail. Subtraction: $\mathbf{A} - \mathbf{B}$ is $\mathbf{A} + (-\mathbf{B})$, $-\mathbf{B}$ is \mathbf{B} reversed.

Projectiles

$$a_x = 0$$
, $v_x = v_{0x}$, $x = x_0 + v_{0x}t$. For a horizontal x-axis. $a_y = -g$, $v_y = v_{0y} - gt$, $y = y_0 + v_{0y}t - \frac{1}{2}gt^2$. For an upward y-axis. $R = (v_0^2/g)\sin 2\theta_0$, (Range for level ground only.)

Relative Motion

 $\vec{V}_{\rm BS} = \vec{V}_{\rm BW} + \vec{V}_{\rm WS}$, B=Boat, S=Shore, W=Water. BS means "boat relative to shore", etc.

OpenStax Ch. 4 Equations

Newton's First Law:

$$\vec{a} = 0$$
 unless $\vec{F}_{\rm net} \neq 0$.

Newton's Second Law:

$$\vec{F}_{\rm net} = m\vec{a}$$
, means $\Sigma F_x = ma_x$ and $\Sigma F_y = ma_y$. $\vec{F}_{\rm net} = \sum \vec{F}_i$, sum over all forces on a mass.

Newton's Third Law:

$$\vec{F}_{\text{A on B}} = -\vec{F}_{\text{B on A}}.$$

Gravitational force (weight) near Earth:

$$F_g = mg$$
, downward.

Gravitational force components on inclines:

OpenStax Ch. 5 Equations

Normal force N

N is the force acting perpendicular to a surface, on the object acted on by friction.

Friction magnitude (opposes the relative motion of two surfaces) depends on N:

$$f_s \le \mu_s N$$
 (static friction). $f_k = \mu_k N$ (kinetic or sliding friction).

Chapter 6 Equations

Centripetal Acceleration:

$$a_c = v^2/r = \omega^2 r$$
, towards the center of the circle. Use ω in rad/sec!

Circular motion:

speed
$$v = 2\pi r/T = 2\pi rf$$
, frequency $f = 1/T$, where T is the period of one revolution.
speed $v = \omega r$, angular speed $\omega = 2\pi f = 2\pi/T$, ω is in rad/sec.

Gravitation:

$$F = Gm_1m_2/r^2;$$
 $g = GM/r^2,$ where $G = 6.67 \times 10^{-11} \text{ Nm}^2/\text{kg}^2;$

Orbits:

$$v^2/r = g = GM/r^2;$$
 $v = \sqrt{GM/r}.$ centripetal acceleration = free fall acceleration.

Chapter 7 Equations

Work & Kinetic & Potential Energies:
$$F_{\text{gravity},y} = -mg$$
, $F_{\text{spring}} = -kx$. $W = Fd\cos\theta$, $KE = \frac{1}{2}mv^2$, $PE_{\text{gravity}} = mgy$, $PE_{\text{spring}} = \frac{1}{2}kx^2$. $\theta = \text{angle btwn } \vec{F} \text{ and } \vec{d}$.

Conservation or Transformation of Energy:

Work-KE theorem: General energy-transformation law:

$$\Delta KE = W_{\text{net}} = \text{work of all forces.}$$
 $\Delta KE + \Delta PE = W_{\text{NC}} = \text{work of non-conservative forces.}$

Power:

$$P_{\text{ave}} = W/t$$
, or use $P_{\text{ave}} = \text{energy/time}$.