Prefixes

$$\overline{a=10^{-18}}$$
, $f=10^{-15}$, $p=10^{-12}$, $n=10^{-9}$, $\mu=10^{-6}$, $m=10^{-3}$, $c=10^{-2}$, $k=10^3$, $M=10^6$, $G=10^9$, $T=10^{12}$, $P=10^{15}$

Physical Constants

 $g=9.80~\mathrm{m/s^2}$ (gravitational acceleration) $G=6.67\times10^{-11}~\mathrm{N\cdot m^2/kg^2}$ (Gravitational constant) $M_E=5.98\times10^{24}~\mathrm{kg}$ (mass of Earth) $R_E=6380~\mathrm{km}$ (mean radius of Earth) $m_e=9.11\times10^{-31}~\mathrm{kg}$ (electron mass) $m_p=1.67\times10^{-27}~\mathrm{kg}$ (proton mass) $c=299792458~\mathrm{m/s}$ (speed of light)

Units and Conversions

 $\begin{array}{lll} 1 \text{ inch} = 1 \text{ in} = 2.54 \text{ cm (exactly)} & 1 \text{ foot} = 1 \text{ ft} = 12 \text{ in} = 30.48 \text{ cm (exactly)} \\ 1 \text{ mile} = 5280 \text{ ft} & 1 \text{ mile} = 1609.344 \text{ m} = 1.609344 \text{ km} \\ 1 \text{ m/s} = 3.6 \text{ km/hour} & 1 \text{ ft/s} = 0.6818 \text{ mile/hour} \\ 1 \text{ acre} = 43560 \text{ ft}^2 = (1 \text{ mile})^2/640 & 1 \text{ hectare} = 10^4 \text{ m}^2 \end{array}$

Chapter 1 Equations

Percent error:

If a measurement = value \pm error, the percent error = $\frac{\text{error}}{\text{value}} \times 100 \%$.

Chapter 2 Equations

Motion:

For constant acceleration in one-dimension:

$$\bar{v} = \frac{1}{2}(v_0 + v), \quad v = v_0 + at, \quad x = x_0 + v_0 t + \frac{1}{2}at^2, \quad v^2 = v_0^2 + 2a(x - x_0).$$

For free fall on Earth, using an upward y-axis, with $g = 9.80 \text{ m/s}^2$ downward:

$$\bar{v}_y = \frac{1}{2}(v_{y0} + v_y), \quad v_y = v_{y0} - gt, \quad y = y_0 + v_{y0}t - \frac{1}{2}gt^2, \quad v_y^2 = v_{y0}^2 - 2g\Delta y.$$

Chapter 3 Equations

Vectors

Written \vec{V} or \mathbf{V} , described by magnitude=V, direction= θ or by components (V_x, V_y) . $V_x = V \cos \theta$, $V_y = V \sin \theta$, $V = \sqrt{V_x^2 + V_y^2}$, $\tan \theta = \frac{V_y}{V_x}$. θ is the angle from \vec{V} to x-axis. Addition: $\mathbf{A} + \mathbf{B}$, head to tail. Subtraction: $\mathbf{A} - \mathbf{B}$ is $\mathbf{A} + (-\mathbf{B})$, $-\mathbf{B}$ is \mathbf{B} reversed.

Projectiles

$$a_x=0, \quad v_x=v_{x0}, \quad x=x_0+v_{x0}t.$$
 For a horizontal x -axis. $a_y=-g, \quad v_y=v_{y0}-gt, \quad y=y_0+v_{y0}t-\frac{1}{2}gt^2.$ For an upward y -axis. $R=\frac{v_0^2}{g}\sin 2\theta_0,$ (For level ground only.)

Relative Motion

 $\vec{V}_{\rm BS} = \vec{V}_{\rm BW} + \vec{V}_{\rm WS},$ B=Boat, S=Shore, W=Water. BS means "boat relative to shore", etc. Must be applied as a vector equation!

Trig summary

$$\begin{split} \sin\theta &= \tfrac{(\mathrm{opp})}{(\mathrm{hyp})}, & \cos\theta &= \tfrac{(\mathrm{adj})}{(\mathrm{hyp})}, & \tan\theta &= \tfrac{(\mathrm{opp})}{(\mathrm{adj})}, & (\mathrm{opp})^2 + (\mathrm{adj})^2 &= (\mathrm{hyp})^2. \\ \sin\theta &= \sin(180^\circ - \theta), & \cos\theta &= \cos(-\theta), & \tan\theta &= \tan(180^\circ + \theta), & \sin^2\theta + \cos^2\theta &= 1. \end{split}$$