Prefixes

 $z = 10^{-21}, \ a = 10^{-18}, \ f = 10^{-15}, \ p = 10^{-12}, \ n = 10^{-9}, \ \mu = 10^{-6}, \ m = 10^{-3}, \ c = 10^{-2}, \ k = 10^{3}, \ M = 10^{6}, \ G = 10^{9}, \ T = 10^{12}, \ P = 10^{15}, \ E = 10^{18}, \ Z = 10^{21}, \ E = 10^{10}, \ E$

Physical Constants

 $\begin{array}{ll} g=9.80~\text{m/s}^2~\text{(gravitational acceleration)} & G=6.67\times 10^{-11}~\text{N}\cdot\text{m}^2/\text{kg}^2~\text{(gravitational constant)} \\ M_E=5.98\times 10^{24}~\text{kg}~\text{(mass of Earth)} & R_E=6380~\text{km}~\text{(mean radius of Earth)} \\ m_e=9.11\times 10^{-31}~\text{kg}~\text{(electron mass)} & m_p=1.67\times 10^{-27}~\text{kg}~\text{(proton mass)} \\ c=299,792,458~\text{m/s}~\text{(speed of light)} & 1~\text{amu}=1~\text{u}=1.6605402\times 10^{-27}~\text{kg}~\text{(atomic mass unit)} \end{array}$

Units & Conversions

Algebra

Quadratic equations: $ax^2 + bx + c = 0$, solved by $x = \left(-b \pm \sqrt{b^2 - 4ac}\right)/(2a)$.

Geometry

Triangles: $A = \frac{1}{2}bh$, Circles; $C = 2\pi r$, $A = \pi r^2$, arc $= s = r\theta$. Spheres: $A = 4\pi r^2$, $V = \frac{4\pi}{3}r^3$

Trigonometry

 $\sin \theta = (\text{opp})/(\text{hyp}),$ $\cos \theta = (\text{adj})/(\text{hyp}),$ $\tan \theta = (\text{opp})/(\text{adj}),$ $(\text{opp})^2 + (\text{adj})^2 = (\text{hyp})^2.$ $\sin^2 \theta + \cos^2 \theta = 1,$ $a^2 + b^2 - 2ab\cos \gamma = c^2,$ $\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c},$ $\alpha + \beta + \gamma = 180^\circ = \pi \text{ rad.}$

Chapter 1 - Units, measurements, errors or uncertainties

(old units) $\times \left(\frac{\text{new units}}{\text{old units}}\right) = (\text{new units}).$ Unit conversions: value = # (old units), Significant figures: \div or \times , use the least no. of sig. figs., + or -, drop the insignificant digits. Sig. figs. "1" rule: if 1st digit=1, keep 1 extra digit, \leftarrow for division or multiplication only. Measurements: measurement = $x \pm \delta x$, x = observed value, $\delta x =$ error or uncertainty. Percent error: measurement = value \pm error, percent error = $(error / value) \times 100\%$. + or -, $\delta x = \sqrt{(\delta x_1)^2 + (\delta x_2)^2 + \dots}$. Combining errors: \div or \times , add the % errors,

Chapter 2 - Vectors - Magnitude & Direction

magnitude = $a = \sqrt{a_x^2 + a_y^2}$ direction $\rightarrow \tan \theta = a_y/a_x$ $\vec{\mathbf{a}} = a_x \hat{\mathbf{i}} + a_y \hat{\mathbf{j}}$ 2D Vectors: $a_x = a\cos\theta$ $a_y = a \sin \theta$ θ =angle to +x-axis. Components: Subtraction: $\vec{\mathbf{a}} - \vec{\mathbf{b}}$ is $\vec{\mathbf{a}} + (-\vec{\mathbf{b}})$ $-\vec{\mathbf{b}}$ is $\vec{\mathbf{b}}$ reversed. $\vec{\mathbf{a}} + \vec{\mathbf{b}}$, head to tail. Addition: $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = a_x b_x + a_y b_y + a_z b_z$ $\hat{\mathbf{i}} \cdot \hat{\mathbf{i}} = 1$, $\hat{\mathbf{i}} \cdot \hat{\mathbf{j}} = 0$, etc. $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = ab\cos\phi$ Scalar product: $\hat{\mathbf{i}} \times \hat{\mathbf{i}} = \hat{\mathbf{i}} \times \hat{\mathbf{i}} = \hat{\mathbf{k}} \times \hat{\mathbf{k}} = 0$ $\hat{\mathbf{i}} \times \hat{\mathbf{i}} = \hat{\mathbf{k}}$, etc. $|\vec{\mathbf{a}} \times \vec{\mathbf{b}}| = ab\sin\phi$ Cross product:

Chapter 3 - 1D Kinematics - Straight-line motion

Velocity: $v_{\text{avg}} = \Delta x/\Delta t$ $\Delta x = x - x_0$ $v(t) = \frac{dx}{dt} = \text{slope of } x(t)$ Acceleration: $a_{\text{avg}} = \Delta v/\Delta t$ $\Delta v = v - v_0$ $a(t) = \frac{dv}{dt} = \text{slope of } v(t)$

Integrals = areas: $x(t) = x_0 + \int_0^t v(t')dt',$ $v(t) = v_0 + \int_0^t a(t')dt'.$

Constant acceleration: $v = v_0 + at$, $v_{\text{avg}} = \frac{1}{2}(v_0 + v)$, $\Delta x = v_{\text{avg}} \Delta t$. $x = x_0 + v_0 t + \frac{1}{2}at^2$, $x = x_0 + v_{\text{avg}}t$, $v^2 = v_0^2 + 2a\Delta x$. (position from acceleration) (using average velocity) (timeless equation)

Free fall (+y-axis is up): $y = y_0 + v_{0y}t - \frac{1}{2}gt^2$, $v_y = v_{0y} - gt$, $v_y^2 = v_{0y}^2 - 2g\Delta y$.

Chapter 4 - 2D and 3D Motion - Vector displacement, velocity, acceleration

Position:	$\vec{\mathbf{r}} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$	$\vec{\mathbf{r}} = (x, y, z)$	$\Delta \vec{\mathbf{r}} = (\Delta x, \Delta y, \Delta z)$
Velocity:	$\vec{\mathbf{v}}_{\mathrm{avg}} = \Delta \vec{\mathbf{r}} / \Delta t$	$\vec{\mathbf{v}} = d\vec{\mathbf{r}}/dt$	$\Delta \vec{\mathbf{r}} = \vec{\mathbf{r}} - \vec{\mathbf{r}}_0$
Acceleration:	$\vec{\mathbf{a}}_{\mathrm{avg}} = \Delta \vec{\mathbf{v}} / \Delta t$	$\vec{\mathbf{a}} = d\vec{\mathbf{v}}/dt$	$\Delta \vec{\mathbf{v}} = \vec{\mathbf{v}} - \vec{\mathbf{v}}_0$

Projectiles:
$$a_x = 0$$
 $v_x = v_{0x}$ $x = x_0 + v_{0x}t$ $(+y\text{-axis is up})$ $a_y = -g$ $v_y = v_{0y} - gt$ $y = y_0 + v_{0y}t - \frac{1}{2}gt^2$ Range: $R = (v_0^2/g)\sin(2\theta_0)$ \leftarrow (range on level ground only)

Range:
$$R = (v_0^2/g)\sin(2\theta_0) \leftarrow \text{(range on level ground only)}$$

Relative Motion:
$$\vec{\mathbf{v}}_{\mathrm{BS}} = \vec{\mathbf{v}}_{\mathrm{BW}} + \vec{\mathbf{v}}_{\mathrm{WS}}$$
 B=Boat, S=Shore, W=Water. BS is "boat relative to shore", etc. $a_c = v^2/r = \omega^2 r$ $v = 2\pi r/T = \omega r$ $\omega = 2\pi/T$, $T = \mathrm{period}$ of 1 rev.

Chapter 5 - Newton's laws and forces

Newton's 1 st Law:	$\vec{a} = d\vec{v}/dt = 0$ unless $\vec{F}_{\rm net} \neq 0$	$\vec{F}_{\rm net} = \sum \vec{F}_i = \text{sum of all forces on a mass.}$
Newton's 2 nd Law:	$ec{F}_{ m net} = mec{a}$	$F_{\text{net},x} = ma_x, \ F_{\text{net},y} = ma_y, \ F_{\text{net},z} = ma_z$
Newton's 3rd Law	$ec{F}_{AB} = -ec{F}_{BA}$	Forces exist in action-reaction pairs

Gravitational force near Earth:	$F_q = mg$, downward.	Apparent weight is force measured by a scales.
Gravity components on inclines:	$F_{g,\parallel} = mg\sin\theta, \ F_{g,\perp} = mg\cos\theta$	\leftarrow for incline at angle θ to horizontal.
Spring force:	$F_{c} = -kx$	x is the displacement from equilibrium.

Chapter 6 - Friction, circular motion

Static friction (object is stuck):	$f_s \le \mu_s N$	Can balance other forces in any direction.
Kinetic friction (object sliding):	$f_k = \mu_k N$	Acts against the relative motion of surfaces.

Centripetal acceleration:	$a_c = v^2/r$	Points towards the center of the circle.
Centripetal force:	$F_{\text{net,inward}} = ma_c$	"Centripetal force" is the sum of forces inward.
Rates of circular motion:	$v = 2\pi r/T = 2\pi r f$	frequency $f = 1/T$, T =period of one revolution.

Chapter 7 - Work and kinetic energy

Work done by a force:	$dW = \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = F \ dr \ \cos \theta$	$W_{AB} = \int_A^B \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$ (along the path $A \to B$)
Work of a constant force:	$W = ec{\mathbf{F}} \cdot \Delta ec{\mathbf{r}}$	$\Delta \mathbf{r} = \vec{\mathbf{r}}_B - \vec{\mathbf{r}}_A = \text{displacement.}$
Work done by gravity:	$W_{\mathrm{g}} = -mg\Delta y$	$\Delta y = y_B - y_A$ (final minus initial height)
Work done by a spring:	$W_s = -\frac{1}{2}k(x_B^2 - x_A^2)$	B=final stretch, A =initial stretch.
Work done by friction:	Use formula for constant force.	Friction's work can be positive or negative!!

Work-KE theorem:	$\Delta KE = W_{\text{net}} = \text{all works on } m.$	$KE = \frac{1}{2}mv^2,$	$\Delta KE = \frac{1}{2}m(v_B^2 - v_A^2)$

Instantaneous power:	P = dW/dt	\leftarrow the rate of doing work by some force.
When $\vec{\mathbf{F}}$ acts on m :	$P = \vec{\mathbf{F}} \cdot \vec{\mathbf{v}}$	\leftarrow instantaneous power only due to $\vec{\mathbf{F}}$
Average power:	$P_{\rm ave} = \Delta W / \Delta t$	\leftarrow average over time interval Δt .

Chapter 8 - Potential energy and Conservation of energy

Potential energy: PE for gravity: PE for springs: Force from potential:	$\Delta U = U_B - U_A = -W_{A \to B},$ $\Delta U = mg\Delta y,$ $\Delta U = \frac{1}{2}k(x_B^2 - x_A^2),$ $F_x = -dU/dx,$	$W_{A\to B}=$ work done by a conservative force. U(y)=mgy+ constant. $U(x)=\frac{1}{2}kx^2+$ constant. \leftarrow the force component along x -axis.
Conservative system: Non-conservative system: Isolated system:	$\Delta E_{ m mec} = 0,$ $\Delta E_{ m mec} = W_{ m nc},$ $\Delta E_{ m total} = 0,$	$E_{\text{mec}} = K + U$ only. $W_{\text{nc}} = \text{work of nonconservative forces.}$ $E_{\text{total}} = E_{\text{mec}} + E_{\text{thermal}} + E_{\text{other}}.$ (nothing is left out of energy accounting).