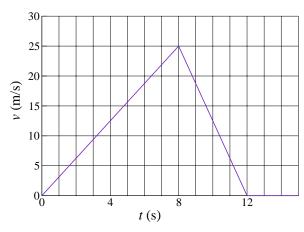
Eng. Phys. I


Exam 1 - Chs. 1 & 3 - Measurements, Units, 1D Kinematics

Jan. 28, 2022

Write neat & clear work. Show formulas used, essential steps, results with correct units and significant figures. Points shown in parenthesis. For TF and MC, choose the best answer. Use $g = 9.80 \text{ m/s}^2$.

- 1. (4) Show how to convert 2.4×10^{-5} kg into mg.
- 2. (4) Show how to convert 9.57×10^5 s into days.
- 3. (4) Which of the following is the largest mass?
 - a. 25 kg.
- b. 2.5×10^3 mg.
- c. $25,000 \mu g$.
- d. 0.0025 Gg.
- 4. (4) Which of the following is the longest length?
 - a. 16.0 inches.
- b. 1.25 feet.
- c. 45.0 cm.
- d. 0.3048 m.
- 5. (4) Respecting significant figures and units, what is the product $x = (42 \text{ m/s}) \times (21.256 \text{ s})$?
- 6. (4) Respecting significant figures and units, what is the sum m = 2.50 kg + 0.25 kg + 27.8 g?
- 7. (12) Ralph has measured a window to be of width = $0.450 \text{ m} \pm 2 \text{ mm}$, height = $0.880 \text{ m} \pm 3 \text{ mm}$.
 - a) (4) Calculate the percent uncertainty in the width of the window.
 - b) (8) Calculate the area A of the window, and its uncertainty δA .

- 8. (16) A particle starts at x=50.0 m at time t=0, moving along a straight line (the x-axis) for 12.0 s with the velocity v(t) shown here.
- a) (8) Calculate the particle's position x at t = 12.0 s.

b) (4) Calculate the particle's average velocity between t=0 and t=12.0 s.

c) (4) Calculate the particle's average acceleration between t=0 and t=12.0 s.

9. (16) Ralph claims that he can be running in one direction at 24 m/s and then reverse direction in 120 ms, ending at 18 m/s in the other direction. If that is true,
a) (8) Find the magnitude of Ralph's average acceleration in m/s ² when reversing direction.
b) (8) Assuming constant acceleration, over what distance does Ralph's velocity change from 24 m/s to 0 m/s (instantaneously), before reversing direction?
10. (16) Waiting at a stoplight, the police are passed by robbers in a car traveling a constant 48.0 m/s (or about 173 km/h) down a straight road. What acceleration in units of $g = 9.80$ m/s ² does the police car need to catch up to the robbers in 5.00 seconds?

It lands in the river below 6.80 seconds later.
a) (8) How high is the cliff?
b) (8) With what speed does the ball hit the river?

11. (16) A ball is thrown vertically straight up in the air with an initial speed of 12.0 m/s from a cliff above a river.

Prefixes

 $\begin{array}{c} z=10^{-21}, \\ z=pto, \end{array} \\ a=10^{-18}, \ f=10^{-15}, \ p=10^{-12}, \ n=10^{-9}, \ \mu=10^{-6}, \ m=10^{-3}, \ c=10^{-2}, \ k=10^3, \ M=10^6, \ G=10^9, \ T=10^{12}, \ P=10^{15}, \ E=10^{18}, \ Z=10^{21}, \\ z=10^{-12}, \ atto, \ femto, \ pico, \ nano, \ micro, \ milli, \ centi, \ kilo, \ mega, \ giga, \ tera, \ peta, \ exa, \ zeta. \end{array}$

Physical Constants

 $g=9.80 \text{ m/s}^2$ (gravitational acceleration) $G=6.67\times 10^{-11} \text{ N}\cdot\text{m}^2/\text{kg}^2$ (gravitational constant) $M_E=5.98\times 10^{24} \text{ kg}$ (mass of Earth) $R_E=6380 \text{ km}$ (mean radius of Earth) $m_e=9.11\times 10^{-31} \text{ kg}$ (electron mass) $m_p=1.67\times 10^{-27} \text{ kg}$ (proton mass) c=299,792,458 m/s (speed of light) $1 \text{ amu}=1 \text{ u}=1.6605402\times 10^{-27} \text{ kg}$ (atomic mass unit)

Units & Conversions (all exact)

 $\begin{array}{lll} 1 \text{ inch} = 1 \text{ in} = 2.54 \text{ cm} & 1 \text{ foot} = 1 \text{ ft} = 12 \text{ in} = 0.3048 \text{ m} \\ 1 \text{ mile} = 5280 \text{ ft} = 1760 \text{ yards} & 1 \text{ mile} = 1609.344 \text{ m} = 1.609344 \text{ km} \\ 1 \text{ m/s} = 3.6 \text{ km/hour} & 88 \text{ ft/s} = 60 \text{ mile/hour} \\ 1 \text{ acre} = (1 \text{ mile})^2/640 = 43,560 \text{ ft}^2 & 1 \text{ hectare} = (100 \text{ m})^2 = 10^4 \text{ m}^2 \end{array}$

Geometry

Triangles: $A = \frac{1}{2}bh$, Circles; $C = 2\pi r$, $A = \pi r^2$, arc $= s = r\theta$. Spheres: $A = 4\pi r^2$, $V = \frac{4\pi}{3}r^3$

Trigonometry

 $\sin \theta = \frac{\text{(opp)}}{\text{(hyp)}}, \qquad \cos \theta = \frac{\text{(adj)}}{\text{(hyp)}}, \qquad \tan \theta = \frac{\text{(opp)}}{\text{(adj)}}, \qquad \text{(opp)}^2 + (\text{adj})^2 = (\text{hyp})^2.$ $\sin^2 \theta + \cos^2 \theta = 1, \qquad a^2 + b^2 - 2ab\cos \gamma = c^2, \qquad \frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c}, \qquad \alpha + \beta + \gamma = 180^\circ = \pi \text{ rad.}$

Chapter 1 - Units, measurements, errors or uncertainties

(old units) $\times \left(\frac{\text{new units}}{\text{old units}}\right) = (\text{new units}).$ + or -, drop the insignificant digits. value = # (old units), Unit conversions: Significant figures: \div or \times , use the least no. of sig. figs., Sig. figs. "1" rule: if 1st digit=1, keep 1 extra digit, \leftarrow for division or multiplication only. Measurements: measurement = $x \pm \delta x$, x = observed value, $\delta x =$ error or uncertainty. Percent error: measurement = value \pm error, percent error = $(\text{error / value}) \times 100\%$. + or -, $\delta x = \sqrt{(\delta x_1)^2 + (\delta x_2)^2 + \dots}$. Combining errors: \div or \times , add the % errors,

Chapter 3 - 1D Kinematics - Straight-line motion

Velocity: $v_{\text{avg}} = \frac{\Delta x}{\Delta t}$, $\Delta x = x - x_0$, $v(t) = \frac{dx}{dt} = \text{slope of } x(t)$. Acceleration: $a_{\text{avg}} = \frac{\Delta v}{\Delta t}$, $\Delta v = v - v_0$, $a(t) = \frac{dv}{dt} = \text{slope of } v(t)$.

Integrals = areas: $x(t) = x_0 + \int_0^t v(t')dt', \qquad v(t) = v_0 + \int_0^t a(t')dt'.$

 $\begin{array}{lll} \text{Constant acceleration:} & v = v_0 + at, & v_{\text{avg}} = \frac{1}{2}(v_0 + v), & \Delta x = v_{\text{avg}} \Delta t. \\ x = x_0 + v_0 t + \frac{1}{2} a t^2, & x = x_0 + v_{\text{avg}} t, & v^2 = v_0^2 + 2 a \Delta x. \\ \text{(position from acceleration)} & \text{(using average velocity)} & \text{(timeless equation)} \\ \end{array}$

Free fall (+y-axis is up): $y = y_0 + v_{0y}t - \frac{1}{2}gt^2$, $v_y = v_{0y} - gt$, $v_y^2 = v_{0y}^2 - 2g\Delta y$.