Electrodynamics I

Name

Instructions: Use SI units. Where appropriate, define all variables or symbols you use, in words. Try to tell about the physics involved, more than the mathematics, if possible.

1. (8) A charge density $\rho(\mathbf{x})$ is invariant when the system is rotated through any angle around the z-axis. How can you write the general solution of Poisson's equation for the potential $\Phi(\mathbf{x})$ in spherical coordinates in this situation?

2. (8) Write out the orthogonality condition for the Legendre polynomials $P_l(\cos \theta)$, when defined so that $P_l(0) = 1$ for all l.

3. (8) An electric dipole \mathbf{p} at position \mathbf{x}_0 is exposed to an external electric field $\mathbf{E}(\mathbf{x})$. Write an expression for the interaction energy of the dipole with this field.

4. (12) The electric potential of an electric dipole **p** at the origin is $\Phi(\mathbf{x}) = k \frac{\mathbf{p} \cdot \mathbf{x}}{r^3}$. From this show how to write an expression for the electric field $\mathbf{E}(\mathbf{x})$ at point **x** due to an electric dipole at some position \mathbf{x}_0 .

5. (8) Give a definition of electric polarization \mathbf{P} of a medium.

6. (8) How is electric displacement \mathbf{D} of a medium defined?

7. (8) What is a formula that gives the bound charge density ρ_b inside a dielectric medium?

8. (8) A dielectric medium has an electric susceptibility tensor with Cartesian components χ_{ij} , where i, j correspond to x, y, z. How is χ_{ij} used or what does it mean?

9. (8) A current density all over space is given by $\mathbf{J}(\mathbf{x})$. Write an integral expression that gives the magnetic induction $\mathbf{B}(\mathbf{x})$ due to that current density.

10. (8) Write an integral expression for the vector potential $\mathbf{A}(\mathbf{x})$ due to a current density $\mathbf{J}(\mathbf{x})$.

- 11. (16) A localized current density $\mathbf{J}(\mathbf{x})$ produces a magnetic dipole moment \mathbf{m} .
- (a) (8) Write an integral expression for **m** in terms of **J**.

(b) (8) Write an expression for the vector potential produced by m.

12. (8) Give a definition of the magnetization $\mathbf{M}(\mathbf{x})$ of a magnetic material.

13. (8) How is an effective bound current density derived from some magnetization $\mathbf{M}(\mathbf{x})$?

14. (8) How is the magnetic field \mathbf{H} defined?

Name

Instructions: Use SI units. Please show the details of your derivations here. Explain your reasoning for full credit. Open-book only, no notes.

1. (36) Inside a sphere of radius a the electric permittivity is a uniform value ϵ_1 . Outside there is a another medium with uniform electric permittivity ϵ_2 . A point charge q is placed at the center of the sphere (the origin).

- (a) (12) How large is the electric field at r = 2a?
- (b) (12) How large is the free surface charge density at r = a?
- (c) (12) How large is the bound surface charge density at r = a?

2. (48) Consider the problem of finding an electrostatic potential $\Phi(\rho, \phi, z)$ in the region z > 0, above an infinite plane, on which the potential given in cylindrical coordinates is $V(\rho, \phi)$.

- (a) (16) Using cylindrical coordinates, write an integral expression for the potential $\Phi(\rho, \phi, z)$ above the plane in terms of Bessel functions $J_m(x)$. It may contain some unknown expansion coefficients that depend on m.
- (b) (16) Using appropriate orthogonality conditions, determine an integral expression for those expansion coefficients.
- (c) (16) Now consider that the potential given on the plane is circularly symmetric,

$$V(\rho,\phi) = \begin{cases} V_0, & \rho < a \\ 0, & \rho > a \end{cases}$$

If possible, evaluate the expansion coefficients.

Hint: The recursion relations for the Bessel functions will be helpful.

$$J_{n-1}(x) + J_{n+1}(x) = \frac{2n}{x} J_n(x).$$
$$J_{n-1}(x) - J_{n+1}(x) = 2\frac{d}{dx} J_n(x).$$

3. (48) A magnetic field is created by a localized distribution of permanent magnetization \mathbf{M} , without free currents, $\mathbf{J}=0$. Thus, assume \mathbf{M} can be derived from a magnetic scalar potential by $\mathbf{H} = -\vec{\nabla}\Phi_M$. The total magnetic energy to assemble such a system is to be found.

- (a) (16) Use the appropriate Maxwell's equations and get the differential equation that Φ_M obeys.
- (b) (16) Show that the field energy integral over all space is zero:

$$W_0 = \frac{1}{2} \int d^3 x \ \mathbf{B} \cdot \mathbf{H} = 0$$

Integration by parts or vector integral calculus identities might be helpful.

(c) (16) Combine the integral in (b) with the interaction of the dipoles in a field, W_{int} , as would be based on a single-dipole interaction energy,

$$u = -\mathbf{m} \cdot \mathbf{B}.$$

Hint: Turn this into an integral W_{int} over the magnetization **M**. Consider the process of starting with $\mathbf{M}=0$ everywhere and then bringing it to its final values, understanding that **H** and **B** are being generated by **M**.

Show that the total system energy is

$$W = W_0 + W_{\text{int}} = \frac{1}{2}\mu_0 \int d^3x \,\left(\mathbf{H}^2 - \mathbf{M}^2\right)$$