PHYS 953 – Adv. Topics/Non-linear and Quantum Optics - Fall 2010

Lecture: T/U, 1:05-2:20 p.m. CW 145

<u>**Textbooks**</u>: Nonlinear Optics, Boyd; Introductory Quantum Optics, Gerry and Knight;

Suggested References: Introduction to Quantum Optics, From Light Quanta to Quantum Teleportation, Paul; The Quantum Challenge, Greenstein and Zajonc; Quantum Optics, Walls and Milburn; Coherence and Quantum Optics, Mandel and Wolf; Nonlinear Optics, Shen; Nonlinear Fiber Optics, Agrawal; Handbook of Nonlinear Optics, Sutherland; Handbook of Nonlinear Optical Crystals, Dmitriev, Gurzadyan, and Nikogosyan; Electromagnetic Noise and Quantum Optical Measurements, Haus;

Instructor: Dr. Brian R. Washburn, CW 36B, (785) 532-2263, <u>washburn@phys.ksu.edu</u>. Office hours: M/W/F 9:30-10:30 PM or by appt.

<u>Prerequisites:</u> A solid foundation in undergraduatelevel quantum mechanics, electromagnetism, and optics.

Course Objective: The purpose of this course is to provide an introduction to the field of nonlinear optics, exploring the physical mechanisms, applications. and experimental techniques. Furthermore the fundamentals of quantum optics will be taught in the second half in this course. Connections between quantum and nonlinear optics will be highlighted throughout the semester. My goal is for students to end up with a working knowledge of nonlinear optics and a conceptual understanding of the foundations of quantum optics.

Exam 1	150 pts	300 pts
Exam 2	150 pts	
Mini-Projects		500 pts
Final Project		200 pts
Total possible		1000 pts

Exams: There will be two exams during the semester. The format will be a take-home exam to be completed over 24 hours.

<u>Mini-Projects</u>: Problems in nonlinear and quantum optics are quite involved, so traditional homework assignments will not properly teach the material. So, the homework for this course will be in the form

of mini-projects. The mini-projects will be a detailed solution of interconnected problems related to lecture topics. The problems will need to be solved using resources beyond the textbook and class notes. The purpose of the mini-projects is to mimic problem-solving scenarios found in a research environment.

There will be between 5-7 mini-projects, each given with two or more weeks for completion. Working on the mini-projects in groups is strongly encouraged, but you will need to write up the assignment on your own.

Final Project: There will be a final project for the class but no final exam. The final project will be an investigation of a topic or problem in the areas of nonlinear and quantum optics, that will involve a literature search and some original work. The final project will consist of three parts:

Part 1: Abstract and bibliography Part 2: 6 page paper plus references Part 3: 15 minute presentation

Late Projects: No project will be accepted after its due date unless prior arrangements have been made. Please inform me with possible conflicts before the due date, and other arrangements will be made.

<u>Class Material:</u> Extra class materials are posted on K-state Online, including papers and tutorials.

Disabilities: If you have any condition such as a physical or learning disability, which will make it difficult for you to carry out the work as I have outlined it or which will require academic accommodations, please notify me and contact the Disabled Students Office (Holton 202), in the first two weeks of the course.

Plagiarism: Plagiarism and cheating are serious offenses and may be punished by failure on the exam, paper or project; failure in the course; and/or expulsion from the University. For more information refer to the "Academic Dishonesty" policy in K-State Undergraduate Catalog and the Undergraduate Honor System Policy on the Provost's web page: http://www.ksu.edu/honor/.

Copyright: This syllabus and all lectures copyright September 2010 by Brian R. Washburn.

Tentative Course Schedule, Nonlinear and Quantum Optics, PHYS 953, Fall 2010

	Tentative Course Schedule, Nonlinear and Quantum Optics, PHYS 953, Fall 20		1
Date	Торіс	Chapters	Projects
Aug. 24 (T)	Class overview: review of linear optics and the semi-classical treatment of light		
	Review of material dispersion and absorption		
	Introduction to nonlinear optics: the nonlinear susceptibility	B1	
	—Formal definitions		
	-Nonlinear optics and mechanics: analogy to anharmonic motion		
Aug. 31 (T)	The Maxwell's wave equation in a nonlinear medium	B1	
	Symmetry and nonlinear optical properties		
Sept. 1 (U)	Second order nonlinear effects	B2	MP1 Due
	-Coupled equations: Sum frequency and second harmonic generation		
	-Phase matching in second harmonic crystals		
Sept. 7 (T)	Second harmonic generation with ultrashort pulses	B2	
	-Phasematching and bandwidth issues		
Sept. 9 (U)	Difference and sum frequency generation	B2	
	-Parametric amplification in crystals, optical parametric oscillators		
Sept. 14 (T)	No Class (need to make this day up)		
Sept. 16 (U)	No Class (need to make this day up)		
Sept. 21 (T)	Applications for second harmonic generation	B2	
5 - pt. - 1 (1)	-Ultrashort pulse measurements		
Sept. 23 (U)	Applications for second harmonic generation		MP2 Due
	—Carrier-envelope phase measurement: the f -to- $2f$ interferometer		
Sept. 28 (T)	Catch up day!		
Sept. 30 (U)	Third order nonlinear effects: Intensity dependent refractive index; four-wave mixing	B4, B13	
5 0 pt. 50 (0)	Nonlinear fiber optics: fiber parametric oscillators	21,210	
Oct. 5 (T)	More nonlinear fiber optics	B4, B13	
000.0(1)	-Pulse propagation in a third order nonlinear medium, soliton generation	Exam 1	
Oct 6 (W)	Exam 1 Due		
Oct. 7 (U)	Spontaneous and stimulated Raman scattering	B4	
000.7(0)	-Spontaneous Raman scattering	DI	
	-Stimulated Raman scattering in third order media		
Oct. 12 (T)	More on stimulated Raman scattering: CARS spectroscopy	B9	
Oct. 14 (U)	Third order effects in gases: applications for short pulse generation	B9	MP3 Due
Oct. 19 (T)	High field processes: higher harmonic generation	B13	
Oct. 21 (U)	Introduction to quantum optics: What is a photon?	G1	
001.21(0)	-The photoelectric effect	UI	
	-The Hanbury-Brown and Twiss experiment		
Oct. 26 (T)	No Class (need to make this day up)		
Oct. 28 (U)	What is a photon?	G1	
001.28(0)	-The photoelectric effect revisited: Lamb and Scully	UI	
	-The Aspect experiments		
Nov. 2 (T)	What is a photon?	G2	
	-Wheeler's delayed choice experiment	02	
	- Wheeler's delayed choice experiment - Ouantum beat experiments		
	Field quantization and coherent states	G2	
Nov. 4 (U)	More on coherent states	G2,G3	MD4 Dec
Nov. 9 (T)			MP4 Due
Nov. 11 (U)	Interferometry with a single photon	G2,G3	
Nov. 16 (T)	Bell's theorem and quantum entanglement	G 9	
	-EPR Paradox and Bell's Theorem	Exam 2	
Nov. 17 (W)	Exam 2 Due		ect part 1 due
Nov. 18 (U)	Optical tests of EPR: violations of the Bell's inequality	G9	<u> </u>
Nov. 23 (T)	Thanksgiving Break		
Nov. 25 (U)	Thanksgiving Break		1
	Nonclassical light: squeezed states	G9	
		<u> </u>	MP5 Due
Dec. 2 (U)	Optical tests of quantum mechanics	G9	
Nov. 30 (T) Dec. 2 (U) Dec. 7 (T)	Catch up day!	Final proje	ect part 2 due
Dec. 2 (U)		Final proje	