Instructor, Office: Uwe Thumm, Cardwell Hall, Room 212
Class: Tuesday, Thursday 2:30-3:45, Cardwell Hall, room 146
Office hours: by appointment
e-mail, Web page: thumm@phys.ksu.edu, www.phys.ksu.edu/personal/thumm

Prerequisites: Working knowledge of
- Classical Mechanics (PHYS 522 or equivalent)
- Classical Electrodynamics (PHYS 532 or e.)
- Mathematical Methods of Physics (PHYS 801 or e.)

Supplementary books (not required):

Undergraduate level
- Introduction to Quantum Mechanics, D. J. Griffiths

Graduate level
- Quantum Mechanics, C. Cohen-Tannoudji, B. Diu, and F. Laloe
- Principles of Quantum Mechanics, R. Shanker
- Quantum Mechanics: Nonrelativistic Theory, L. D. Landau and E. M. Lifshitz
- Feynman Lectures in Physics - Vol. III, R. Feynman
- Quantum Mechanics: Fundamentals, K. Gottfried and T.-M. Yan
- Foundations of Quantum Mech.: From Photons to Quantum Computers, R. Blümel

Mathematical and computational
- Mathematical Methods for Physicists, G. B. Arfken and H. J. Weber
- Mathematical Methods of Physics, J. Mathews and R. L. Walker
- Tables of Integrals, Series, and Products, L. S. Gradsheyn and I. M. Ryzhik
- Handbook of Mathematical Functions, A. Abramowitz and I. A. Stegun
- NIST Digital Library of Mathematical Functions: https://dlmf.nist.gov
- Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics, R. N. Zare
- A first course in computational physics, 2. Ed., P. L. DeVries and J. E. Hasbun

More advanced and specialized
- Physics of Atoms and Molecules, B. H. Bransden and C. J. Joachain
- The Theory of Atomic Structure and Spectra, R. D. Cowan
- Theoretical Atomic Physics, H. Friedrich
- Solid State Physics, N. W. Ashcroft and N. D. Mermin
- Introductory Quantum Optics, C. C. Gerry and P. Knight
- Quantum Optics, D. F. Walls and G. J. Milburn
- Elements of Advanced Quantum Theory, J. M. Ziman
- Advanced Quantum Mechanics: The Classical–Quantum Connection, R. Blümel
- Chaos in Classical and Quantum Mechanics, M. C. Gutzwiller
Homework: You are encouraged to discuss strategies for solving homework assignments in small groups. However, I require that you write and return to me at the assigned due dates your own detailed solutions. You will receive no credit for solutions that you have copied. In order to obtain full credit, I also request that you present correct answers in a professional, well organized, and readable manner. In addition to the “for credit” homework assignments, I will frequently ask you to complete simple calculations that we don’t have time for in class. It is important that you carefully “fill in” these gaps when reviewing your lecture notes. This is done most efficiently before the subsequent lecture.

<table>
<thead>
<tr>
<th>Credit</th>
<th>Points</th>
<th>Grades:</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam 1</td>
<td>200</td>
<td>A</td>
<td>more than 849</td>
</tr>
<tr>
<td>Exam 2</td>
<td>200</td>
<td>B</td>
<td>700-849</td>
</tr>
<tr>
<td>Final Exam</td>
<td>300</td>
<td>C</td>
<td>550-699</td>
</tr>
<tr>
<td>Homework</td>
<td>300</td>
<td>D</td>
<td>450-549</td>
</tr>
<tr>
<td>Total</td>
<td>1000</td>
<td>F</td>
<td>less than 450</td>
</tr>
</tbody>
</table>

University policy requires the following statements on this syllabus:

Disabilities: If you have any condition such as a physical or learning disability, which will make it difficult for you to carry out the work as I have outlined it or which will require academic accommodations, please notify me and contact the Disabled Students Office (Holton 202), in the first two weeks of the course.

Plagiarism and cheating are serious offenses and may be punished by failure on the exam, paper or project; failure in the course; and/or expulsion from the University. For more information refer to the "Academic Dishonesty" policy in K-State Undergraduate Catalog and the Undergraduate Honor System Policy on the Provost's web page at www.ksu.edu/honor.

Copyright: Students are prohibited from selling (or being paid from taking) notes during this course to or by any person or commercial firm without the express written permission of the professor teaching this course.
Quantum Mechanics 1 — Topics covered in class

1. **Introduction**
 a. Experiments that reveal the particle character of light (Photo-, Compton-effect, black-body radiation)
 b. Experiments that reveal the non-classical character of (quasi) particles (Franck-Hertz, H spectrum, Josephson effect).
 c. Diffraction of particle beams (single-, double-slit, coherence).

2. **Schrödinger Equation for Free Particles**
 a. Wave function (time independent) and Fourier transforms.
 b. Time-dependent wave functions, (Gaussian) wave packets.

3. **Schrödinger Equation for a Particle in a Conservative Force Field**
 a. Consistency with 2a) for \(V(x, t) = \text{const.} \)
 b. Relation to classical mechanics and geometrical optics (Maxwell, Hamilton-Jakobi, eikonal equations).
 c. Continuity equation.
 d. Schrödinger equation in momentum space.

4. **Linear Operators and Expectation Values**
 a. Definitions (linear, Hermitian operators, scalar product, algebra, Hilbert space, square integrability).
 b. Momentum operator in coordinate representation.
 c. Classical and quantum observables, their (not unique) correspondence and time evolution. Ehrenfest theorem, uncertainty relation. Virial theorem. Time inversion
 d. Stationary states. Degeneracy.
 f. Normalization of continuum wave functions.
 g. Unitary operators (examples: displacement, time-evolution,...)
 h. Charged particles in electro-magnetic fields.
 i. (active and passive) Galilei transformations.

5. **Linear Harmonic Oscillator**
 a. Stationary states and energies.
 b. Time-dependent solutions. Expectation values and comparison with classical solution (in phase space).

6. **Simple Model Potentials (1 D)**
 a. Quantum phenomena at step potentials (transmission, reflection, penetration).
 b. Quantitative solutions (step, well, barrier).

7. **Spherically Symmetric Potentials**
 b. Eigenvalues and vectors of \(\hat{\mathbf{L}}^2 \) and \(\hat{L}_z \). Properties of (associated) Legendre polynomials and spherical harmonics.
 c. Radial Schrödinger equation for a free particle. (Spherical) Bessel and Neumann functions.

8. **Perturbation Theory with Applications**
 a. Time-independent (degenerate) perturbation theory.
 b. Valence spectra of alkali atoms.
 c. He atom.
 d. Stark effect (linear and quadratic) and polarizability for H. Metastable quenching in weak el. field.
 f. Absorption and induced emission of electro-magnetic radiation. Detailed balancing. Application to hydrogen atoms:
 - Photoelectric effect.
 g. Scattering amplitude and (angle-differential) cross section. Classical versus quantum interpretation.

9. **Scattering at a Central Potential**
 b. Green’s functions (inclusion of boundary conditions, contour integration technique).
 d. Partial wave expansion of scattering wavefunction, amplitude, and cross section.
 e. Scattering phase shifts and resonances. Example: scattering off radial square-well potential.

(over)
Quantum Mechanics 2 – Topics covered in class

1. **Formal Foundation of QM**

b. Linear operators and their representation. Normal, Hermitian, unitary, adjoint operators.
d. Solving eigenvalue problems by i) matrix diagonalization and ii) variation. Example: He atom.
e. Observables and measurement. Single & simultaneous measurements, complete sets of commuting observables.

2. **Application of Algebraic Operator Techniques**

b. Coherent and squeezed states.
c. Angular momentum algebra.

3. **Quantum Dynamics**

a. Time-evolution operator.
b. Schrödinger-, Heisenberg-, and Interaction Picture
c. Correspondence principle, quantization.
d. Canonical quantization.
e. Forced harmonic oscillator: advanced & retarded Green’s functions, time ordering, relation to scattering theory.

4. **Spin**

b. Mathematical description: Two component spinors. Remarks on Dirac equation.
e. Spin-dependent scattering: angle-differential cross section, spin-polarization of scattered particles.
g. Measurement and reduction of quantum states. Multiple Stern-Gerlach experiments.

5. **Addition of Angular Momenta**

a. Two spin-1/2 particles: product and total spin basis; hyperfine interaction in H (21cm line).
c. (Irreducible) representations of rotations and tensor operators. Wigner-Eckart theorem.
e. Other symmetry operations: parity, time reversal, translation, iso-spin (example: nuclear spectra).

6. **Many-Particle Systems**

a. Identical particles, Fock space, symmetrization postulate, bosons, fermions, spin-statistics theorem.
b. System of N independent indistinguishable particles (bosons or fermions).
c. System of N interacting indistinguishable particles (bosons or fermions), “second quantization”.
d. Direct and exchange interactions. Examples: He atom, scattering.
e. Hartree-Fock method, Brillouin and Koopman theorem.
f. Molecules (mainly H₂⁺).

7. **Relativistic Quantum Mechanics**

a. Klein-Gordon equation for spinless particles.
b. Dirac equation for spin-½ particles.
d. Approximate solution of Dirac equation for H atom.
e. Outline of exact solution of Dirac equation for H atom and QED corrections.