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Abstract
We investigate the quantum dynamics of target excitation and positronium formation in the
positron-hydrogen atom scattering without and with an external assisting laser field within a
reduced-dimensional quantum model. Strong interference fringes between the incident and
reflected positron wave packets are observed in the reaction region. We further investigate the
critical behavior of transition probabilities near the channel-opening thresholds for hydrogen
excitation and positronium formation and find a strong competition between channels with
similar threshold energies, but different parities. The transmission ratios of the incident positron
in different reaction channels are calculated, and it is shown that only positronium formation in
the ground state prefers forward scattering. Our simulation of the positron-hydrogen scattering
with an assisting laser field indicates that the three-particle bound states can be formed during
the collisions due to the photon emission induced by the external laser field.
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1. Introduction

Positron scattering from atoms has been continuously attract-
ing considerable interest in both theoretical and experimental
investigations of matter-antimatter interactions since the dis-
covery of positrons [1–4]. Compared to electron-atom scat-
tering, positronium (Ps) formation and positron-electron anni-
hilation complicates the positron scattering problem tremend-
ously and causes a formidable challenge to theoretical mod-
eling of the collision dynamics [4]. In the past decades, great
progress has been made on both experimental measurement
and theoretical prediction of the cross sections for positron-
atom scattering [3–6]. For simple atomic targets, such as
hydrogen and helium, the cross sections in various reac-
tion channels have been benchmarked in the literature [7, 8].
Recent interest in positron physics has been focused on, for
example, positron scattering with atoms and molecules [6, 9],
resonances in positron-atom systems [10, 11], positron attach-
ment and annihilation in molecules and condensed matter [12,
13], and positron scattering in plasma environments [14, 15]
and in static electromagnetic fields or ultrashort intense laser
fields [16–18].

Theoretical approaches to positron–atom scattering can
be generally divided into two categories, time-independent
and time-dependent methods. The former group employs
formal scattering theory and focuses primarily on the scat-
tering amplitudes from initial to final states, in most cases
without explicitly calculating the total scattering wave func-
tion. Methods devoted to low-energy scattering are, e.g. the
Kohn and Schwinger variational methods [19]. Intermediate-
energy scattering (from the opening of the first inelastic chan-
nel to dozens of eV above the ionization threshold) involves
the complicated couplings between different reaction chan-
nels. The close-coupling with pseudostates [20], coupled-
channel optical potential [21], hyperspherical close-coupling
[22], and the convergent close-coupling [23] methods have
been established to tackle the complexities of the collision
dynamics in this energy region. For high-energy scattering
(far above the ionization threshold), perturbative approaches,
e.g. the second-order Born [24], distorted-wave Born [25],
continuum distorted-wave [26], and polarized orbital [27]
methods can be applied reasonably well to capture the asymp-
totic behavior of the scattering wave function. So far these
time-independent methods have produced accurate scattering
amplitudes, phase shifts, and cross sections in the elastic,
excitation, ionization, and Ps formation channels, for a vari-
ety of atoms and in a wide range of impact energies [3, 4].

Time-dependent methods, in addition to scattering amp-
litudes and cross sections, provide dynamic information about
the reaction process and spatio-temporal evolution of the sys-
tem wave function in more detail. Similar to the standard
close-coupling methods, the time-dependent close-coupling
(TDCC) method has been developed to follow the dynamic
time-evolution of the system and extract scattering amplitudes
from the final system wave function [28]. To our know-
ledge, the first successful application of the TDCC method
to positron–hydrogen collisions was performed by Plante and

Pindzola [29], where good agreement with experimentalmeas-
urements and time-independent theoretical calculations was
obtained. The later TDCC works of Yamanaka and Kino [30,
31] have explicitly extracted Ps formation and direct positron
annihilation cross sections in positron–hydrogen collisions.
Time-dependent classical trajectory Monte Carlo (CTMC)
calculations with suitably chosen initial conditions for the
incident positron and target atom, allow investigations of the
dynamics of the scattering system by tracing the trajectories
of both electron and positron. To name a few, this method has
been successfully employed byNaginey et al [14, 32] to estim-
ate the positronium formation cross sections for positron scat-
tering from hydrogen-like ions, and by Pandey et al [15] to
investigate the positronium formation of positron-alkali-metal
atoms scattering in Debye plasmas. Recently, Liu et al [18]
have developed a CTMC approach with Heisenberg (CTMC-
H) potentials [33], which enabled the extension of classical-
trajectory simulations to the low-energy regime. Their results
are in good agreement with quantum-mechanical calculations,
even at energies near the ionization threshold [34].

In this work, we investigate positron-hydrogen atom scat-
tering by directly solving the time-dependent Schrödinger
equation (TDSE) on a spatio-temporal numerical grid [35]. In
full dimensionality, even for the simplest positron-hydrogen
system, one generally needs to discretize one time dimen-
sion and six space dimensions (three for the positron and the
other three for the electron). Performing the time evolution of
the system wave function in complete six-dimensional space
is still a formidable task, even on today’s supercomputers
[36–38]. In the present work, we adopt a one-dimensional
scattering model that has been extensively applied to laser-
assisted scattering [39–43]. Although the motion of the
positron and electron is restricted along a straight line, our
reduced-dimensionality numerical modeling provides a good
balance between computational ease and retention of charac-
teristic features of the quantum-mechanical three-body sys-
tem, such as correlation and channel-opening and -closing
effects.

Another aspect that motivates the present work stems from
the currently growing interest in laser-assisted ion-, electron-,
and positron-atom scattering [44–50]. With the fast develop-
ment of laser technologies, intense laser fields have become
a powerful tool to control and manipulate scattering pro-
cesses. It is worth noting that laser-assisted electron scatter-
ing has been experimentally investigated by several groups
[51–53]. Laser-assisted positron scattering might be feasible
in the near future. From a theoretical point of view, when
the scattering system is exposed to an intense laser pulse,
the traditional perturbation treatment of the laser interaction
in the framework of time-independent scattering theory fails
[54–56]. In this case, one generally needs to solve the TDSE
non-perturbatively and trace the modulation effect of the laser
field on the time-resolved scattering amplitudes. Recently, Liu
et al. [18, 33] employed the CTMC-Hmethod and showed that
intense laser fields can significantly modulate the ionization
cross sections in electron-hydrogen scattering [33] and the Ps
formation in positron-hydrogen scattering [18]. To this end, it
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is of great interest to perform a non-perturbative full quantum-
mechanical investigation on these scattering processes and
take a detailed survey on the spatio-temporal resolution of
the scattering dynamics. Keeping in mind that the numerical
TDSEmethod has achieved great success in modeling the non-
linear dynamics of atomic and molecular systems in intense
laser fields [35, 57], as well as the fact that a strong laser
field directs the motion of charged particles in the polarization
direction [58], the reduced-dimensionality TDSE investigation
of the scattering system provides an alternative and powerful
tool for interpreting the novel phenomena observed in numer-
ically expensive full-dimensionality quantum-mechanical cal-
culations. More interestingly, our simulation shows that the
formation of stable positron-hydrogen-bound states is possible
during and after the collision, assisted by a laser field. This
finding may open up a novel approach for controlling and
manipulating the formation of positronic-bound states.

This paper is organized as follows. In section 2, we
introduce our one-dimensional model for positron–hydrogen
atom scattering and numerical method for solving the TDSE.
Detailed discussion of the scattering dynamics is provided
in section 3, including interference fringes in positron dens-
ity distributions, the critical behavior of transition probab-
ilities near the channel-opening thresholds, the variation of
populations and transmission ratios with respect to the incid-
ent energy, and the formation of positron–hydrogen bound
states in the laser-assisted collision. We summarize our work
in section 4. Atomic units are used throughout this work unless
otherwise specified.

2. Theoretical method

Since the hydrogen atom is much heavier than the electron
and positron, we assume that the nucleus remains fixed at the
origin of our coordinate system (x-axis) during the scatter-
ing. The Hamiltonian of the system in one dimension is given
by [39–43]

H=
1
2
p21 +

1
2
p22 +V(x1)−V(x2)−V(x1 − x2) , (1)

where p1 (p2) and x1 (x2) are, respectively, the momentum
and coordinate of the positron (electron). We use the soft-core
Coulomb potential [59]

V(x) =
1√

x2 + a2
, (2)

to represent the effective interaction between charged particles
in the one-dimensional model. The merit of the soft-core
Coulomb potential has been well established in a variety of
investigations on laser-atom interactions and laser-assisted
ion-atom scattering [35, 45, 48, 58]. In the present work, we
follow the choice of Larkin et al. [39] by setting a= 1, so that
a quantitative comparison to the previous work can be made.

The eigenenergies of the H and Ps atoms are obtained by
directly solving the time-independent two-body Schrödinger
equation with the finite-difference technique. Our numerical

calculations of the bound-state energies are in good agree-
ment with the prediction of Larkin et al [39] in all repor-
ted digits. The energy differences between the initial ground
state of the H atom and bound states of H and Ps atoms
determine the channel-opening threshold energies Eth. In this
work, we are interested in the lowest several inelastic channels,
for which

Eth =



0.08164. . . p+Ps(1)

0.39488. . . e+ +H(2)

0.49121. . . p+Ps(2)

0.51833. . . e+ +H(3)

0.57680. . . p+Ps(3)

0.57712. . . e+ +H(4)

. . . . . .

0.66982. . . ionization

. (3)

Here, the integer n in H(n) and Ps(n) represents the quantum
number of the one-dimensional H and Ps atoms. The energy
difference between the Ps(1) formation and the H(2) target
excitation thresholds is generally named as the Ore gap [3],
where only the elastic and Ps(1) formation processes com-
pete. Both the direct annihilation (during scattering) and indir-
ect annihilation (through Ps formation) between positron and
electron are omitted considering the fact that the lifetime of
Ps atoms (0.125 and 140 nanoseconds for para- and ortho-
Ps, respectively [3]) is much longer than the scattering time
(femtoseconds).

The evolution of the system is determined by solving the
TDSE in two spatial degrees of freedom with respect to x1 and
x2.

i
∂

∂t
Ψ(x1,x2, t) = HΨ(x1,x2, t) . (4)

The initial system wave function is expressed as a product of
the electron and positron wave functions at t= 0,

Ψ(x1,x2, t= 0) =
1

(2πσ2)
1/4

e−
(x1−x0)

2

4σ2 eik0x1ψ1 (x2) , (5)

where ψ1(x2) is the ground state wave function of the H atom
with an eigenenergy of−0.66982, and the positron wave func-
tion is represented by a Gaussian wave packet with an initial
momentum k0. The positron is initially placed at, x0 =−400
which is far away from the H atom before the collision. For the
Gaussian wave packet, σ= 30 is used throughout the calcula-
tions, which gives an energy width of [31] and a momentum
width of ∆k= 1/(

√
2σ)≈ 0.024.

The system wave function is propagated by applying the
split-operator fast Fourier transform technique. A detailed
account of this method is available elsewhere [35, 60]. The
wave function evolves on a square grid defined by |x1,2|⩽
800 with space and time steps equal to 0.4. This spatio-
temporal discretization yield converged results for all scatter-
ing processes investigated in this work. To prevent nonphysical
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reflection of the wave function at the grid boundaries, we
employ an absorbing masking function [61] at xmax = 800,

M(x) =


1 |x|⩽ xa

cos1/8
(

π
2

|x|−xa
xmax−xa

)
xa < |x|⩽ xmax

0 |x|> xmax,

(6)

for both, the positron and electron wave functions. This
ensures that the final scattered positron and electron as well as
the formed Ps atom are far away from the nucleus and therefore
can be treated as free particles. The absorber width (xmax − xa)
is generally set to 20. The probability density distributions of
the positron and electron at time t are obtained, respectively,
by

ρ(x1, t) =
ˆ +∞

−∞
|Ψ(x1,x2, t)|2 dx2 (7)

and

ρ(x2, t) =
ˆ +∞

−∞
|Ψ(x1,x2, t)|2 dx1. (8)

In order to get the final populations of the system in differ-
ent reaction channels, we expand the system wave function on
basis sets centered on both the H and Ps atoms [39].

Ψ(x1,x2) =
∞∑
n=1

ˆ +∞

−∞
bn (k)ψn (x2)

1√
2π

eikx1dk

+
∞∑
n=1

ˆ +∞

−∞
cn (k)ϕn (x2 − x1)

1√
2π

eik
x1+x2

2 dk,

(9)

where ψn(x) and ϕn(x2 − x1) are the eigenstates of the H
and Ps atoms, respectively, and the two summations run over
all bound and continuum states. Generally speaking, the H
and Ps eigenstates are not orthogonal with each other at
finite times, and therefore the above two-center expansion is
overcomplete on account of the completeness of each basis
set. However, after a sufficiently long propagation time, the
scattered positron and Ps atom are far away from the target,
and these two basis sets can be approximately orthogonal. The
expansion coefficients in the target excitation and Ps formation
channels are calculated by the projections

bn (k) =
¨

ψn (x2)
1√
2π

e−ikx1Ψ(x1,x2)dx1dx2 (10)

and

cn (k) =
¨

ϕn (x2 − x1)
1√
2π

e−ik
x1+x2

2 Ψ(x1,x2)dx1dx2.

(11)

The probability of target excitation (Ps formation) in the nth
state with the final positron momentum k is given by |bn(k)|2
(|cn(k)|2). We note that k runs from negative infinity to positive
infinity, where the negative values represent the reflection of

the scattered positron or the formed Ps atom. By integrating
over k, we obtain the final probabilities for the elastic or target
excitation channels

IH(n) =
ˆ +∞

−∞
|bn (k) |2dk, (12)

and probabilities for the Ps(n) formation channels

IPs(n) =
ˆ +∞

−∞
|cn (k) |2dk. (13)

The probabilities in the direct ionization channel (i.e. three-
body breakup, which is different from the electron-loss chan-
nel by omitting Ps formation) is estimated by subtracting the
populations in all bound states of the H and Ps atoms from
one.

Iion = 1−
nmax∑
n=1

(
IH(n) + IPs(n)

)
. (14)

In numerical computations, we reach converged ionization
probabilities by gradually increasing nmax to large enough
values.

Besides the transition probabilities, we are also interested
in the total transmission ratio of the positron in the scattering
process

Tt =

∑nmax

n=1

(´ +∞
0 |bn (k) |2dk+

´ +∞
0 |cn (k) |2dk

)
∑nmax

n=1

(´ +∞
−∞ |bn (k) |2dk+

´ +∞
−∞ |cn (k) |2dk

) , (15)

which, to the best of our knowledge, has not been investig-
ated until now. The total reflection ratio can be obtained by
subtracting T t from one. The transmission ratio in the chan-
nel leaving the target atom in the nth state after the collision is
given by

TH(n) =

´ +∞
0 |bn (k) |2dk´ +∞
−∞ |bn (k) |2dk

. (16)

Likewise, the transmission ratio for the Ps formation in the nth
state is

TPs(n) =

´ +∞
0 |cn (k) |2dk´ +∞
−∞ |cn (k) |2dk

. (17)

3. Results and discussion

3.1. Interference between incident and reflected positrons

The time evolutions of the probability density distributions
for the electron and positron during the positron-H scattering
are shown in figures 1(a) and (b), respectively, for an incid-
ent energy of E0 = 0.40, i.e. k0 = 0.894. For this intermedi-
ate impact energy, the elastic and Ps(1) formation channels
are fully open, while the H(2) excitation channel is just open.
From figure 1(a), it is clearly seen that although most of the
electron density remains localized near the nucleus, i.e., in the
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Figure 1. Probability density distributions of (a) electron and (b)
positron as a function of time during the collision. The positron
incident energy is 0.40, and the initial center of the incident positron
wave packet is placed at x1 =−400. The forward and backward
scattered trajectories in (a) and the inner two trajectories in (b)
represent the Ps formation.

elastic channel, there exist two scattered electron wave pack-
ets that move outward with the same speed in opposite direc-
tions. The upper and lower parts represent, respectively, the
forward and backward scattering of electrons induced by the
energetic positron. Due to energy conservation, forward and
backward scattering occur at the same speed. A similar picture
of the time evolution of the positron probability density distri-
bution is displayed in figure 1(b). The positron moves along
a straight line towards the H atom with momentum k0 before
the collision, and after scattering, it splits into four compon-
ents, with the outer two wave packets representing elastic for-
ward and backward scatterings and the inner two wave pack-
ets indicating the forward and backward Ps formations. From
the comparison between figures 1(a) and (b), it can also be
found that the inner scattered positrons have the same speed
as the scattered electrons. Calculating the time evolution of
the system wave function by solving the TDSE thus allows the
spatio-temporal resolution of different reaction channels. Due

Figure 2. Positron probability density distributions for (a) 0.10 and
(c) 0.40 incident energies. (b) and (d) are the snapshots of density
distributions at the time indicated by the white dashed lines on the
left panels. (b) Snapshot time at t= 900 and (d) snapshot time at
t= 450. Interference fringes between the incident and reflected
positron wave packets are clearly displayed near the collision center
at x1 = 0.

to energy conservation, there is no positron probability density
left near the H atom, although in the present one-dimensional
model the system does support the formation of a stable three-
body bound state (we will revisit this topic in Section 3.4).

Besides the asymptotic motion of the positron before and
after scattering, we observe in figure 1(b) strong interference
fringes in the reaction region. For a better view of the interfer-
ence pattern, we draw in figures 2(a) and (c) the time evol-
ution of the positron density distribution for incident ener-
gies of 0.10 and 0.40, respectively. At E0 = 0.10 only elastic
positron scattering happens, while at E0 = 0.40 an additional
Ps(1) formation channel opens. It is clearly observed from the
comparison that the spatial oscillation of the positron dens-
ity distribution is significantly enhanced with increasing the
incident energy. This standing-wave pattern can be attributed
to the interference effect between the incident and reflected
positron wave packets, i.e. the positron wave packet first col-
lides with and then reflects off the nucleus, meanwhile inter-
fering with the non-collisional part of the wave packet.

The interference structure can be analyzed within a plane-
wave approximation for both the incident and reflected
positrons. We account for a phase shift of π of the reflec-
ted positron wave, since waves accumulate a phase shift of π
upon reflection off a denser material [62]. When the energy of
the incident positron is relatively high, considering the short-
range character of the soft-core Coulomb potential and the
fast scattering process, we can ignore the long-range char-
acter of all Coulomb interactions and treat the nucleus as
a potential well of finite height and vanishing width. The
incident positron wave function can then be approximated
by a plane wave with amplitude f and constant momentum
k0 =

√
2E0, i.e. χi(x1, t) = f eik0x1e−iE0t. Upon reflection, the

positron reverses its direction with an additional phase π and
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Figure 3. The transition probability density distributions in different reaction channels as a function of the final momentum of the scattered
positron for an incident positron energy of E0 = 0.40. In panel (a), |b1(k)|2, |b2(k)|2, and |c1(k)|2 represents the H(1), H(2), and Ps(1)
channels, respectively. Panels (b) and (c) are similar to (a), but for the Ps(2), H(3) and Ps(2), Ps(3), H(4) scattering channels, respectively.

changes its amplitude to g, i.e. χr(x1, t) = ge−ik0x1−iπe−iE0t.
Therefore, the superposition of the positron wave packet in the
scattering region is given by

χ(x1, t) =
[
f eik0x1 + ge−ik0x1−iπ

]
e−iE0t. (18)

The corresponding probability density reads

ρ(x1, t) = |χ(x1)|2 = f 2 + g2 − 2fgcos(2k0x1) , (19)

which reveals a time-independent oscillatory structure with
period π/k0 = π/

√
2E0. The profiles of the interference

fringes in figures 2(b) and (d) agree perfectly with the peri-
odic structure obtained from the above formula. If Coulomb
interactions between the positron and target atom are taken
into account, the incident and reflected positron wave packets
cannot be treated as plane waves, and the energy of the reflec-
ted positron also changes. In this case, the interference pattern
is distorted as time evolves [63]. Nevertheless, we find that the
phase-jump approximationworks verywell for a wide range of
incident energies, even as low as E0 = 0.10. As a consequence
of the interference effect and strong repulsion of the soft-core
Coulomb potential, a minimum appears in the positron prob-
ability density at x = 0. This is consistent with our finding in
figure 1(b) that the scattered positron cannot be bound by the
one-dimensional H atom.

3.2. Critical behavior near the channel-opening thresholds

The transition probability density distributions of the
positron–H scattering system at E0 = 0.40 are shown in
figure 3 for those reaction channels listed in equation (3).
The probabilities for the target excitation and Ps formation
are calculated using equations (10) and (11), respectively. The
horizontal axes of these figures represent the momentum of
the scattered positron, which is to say, for the Ps formation
channels we scale the final momentum of the Ps atom by 1/2
to facilitate a direct comparison between the H(n) and Ps(n)
channels. Figure 3(a) displays the probabilities of the H(1),
Ps(1), and H(2) open channels for both positive and negat-
ive positron momenta. The peak positions of the H(1) elastic
and the Ps(1) formation channels follow the energy conser-
vation law, and these four peaks in the momentum space

correspond exactly to the four scattered wave packets in the
spatial probability density distributions shown in figure 1(b).
Both of these two processes slightly prefer forward scattering
over backward scattering at this incident energy. The H(2)
excitation probabilities, however, are much smaller than those
of H(1) and Ps(1), and exhibit drastic oscillations at small
momenta. This is due to the fact that the central energy of the
incident positron wave packet lies above, but very close to,
the channel opening threshold (EH(2)

th = 0.395). It is interest-
ing to observe that for such a just-opened excitation channel,
the positron prefers backward scattering. This is consistent
with the intuitive expectation that, within a one-dimensional
scattering model, the positron cannot easily transfer across the
proton.

Due to the finite energy width of the positron Gaussian
wave packet, higher-lying reaction channels can also be
opened, even though the central incident energy lies below
corresponding thresholds. The transition probabilities in the
Ps(2), H(3), Ps(3), and H(4) channels atE= 0.40 are displayed
in figures 3(b) and (c). The probabilities of these weak scatter-
ing processes are generally several orders of magnitude smal-
ler than those of fully-opened channels, since only a small
(high-energy) portion of the positron wave packet participates
in these reactions. More interestingly, the comparison between
different channels reveals drastic but complementary oscilla-
tions in, e.g., the Ps(2) and H(3) and the Ps(2) and Ps(3) chan-
nels. Such an oscillation structure was first observed by Larkin
et al [39], however, as far as we know its underlying phys-
ics has not been clearly tracked. In what follows, a qualitative
explanation of this phenomenon is provided tentatively.

Let us first focus on the probabilities at zero momentum,
which correspond to the ideal situation that the positron
remains near the nucleus in both target excitation and Ps form-
ation channels, i.e., the positron incident energy strictly equals
the channel opening threshold. In this case, the centers of the
target H atom and the formed Ps atom coalesce, and the elec-
tron transfers directly from the initial H(1) ground state to
either H(n) or Ps(n) states (i.e. the center of the electronic
wave function does not move). Since in the one-dimensional
model, both H(n) and Ps(n) states have a one-to-one corres-
pondence between the quantum number n and spatial parity
P= (−1)n+1 [59], transitions from the initial even ground
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state to even final states are allowed, whereas transitions to
all odd-parity states tend to be suppressed [64]. As one can
see from figure 3, the probabilities in H(2), Ps(2), and H(4)
channels at zero momentum are minimal, while the probab-
ilities for H(3) and Ps(3) peak. When the final momentum
of the scattered positron is increased, the initial electronic
wave function dynamically transits into either Ps(n) channels,
by changing its center position, or the H(n) channels, due to
energy transfer from the incident positron. In both cases, the
system parity is not preserved. Nevertheless, a strong parity
propensity rule at specific values of positron momentum can
still be observed: peaks and valleys appear alternatively in
channels with different parities. The competitive oscillation
also exists in higher-lying H(n) and Ps(n) channels, which are
not shown here due to their extremely small magnitudes. We
therefore conclude that the oscillatory structures in the probab-
ilities of target excitation and Ps formation channels are due to
the strong competition between channels with near threshold
energies but different parities.

3.3. Populations and positron transmission ratios

In figures 4(a) and (b), we show the final populations of the
scattering system in different reaction channels for positron
incident energies increasing up to 4. Our results for E0 < 1
are indistinguishable from the previous calculations of Larkin
et al [39] in the present figure scale. We further calculated
the population in the direct ionization channel by employing
equation (14), where the largest quantum number of the bound
states nmax is gradually increased to 15 to ensure that the dif-
ference between results using nmax and nmax − 1 is invisible
within the figure scale. The populations in inelastic reaction
channels at corresponding channel-opening thresholds are in
principle not zero because of the finite energy width of the
incident positron. Nevertheless, they are omitted in the figures
due to their negligible magnitudes.

Figure 4(a) shows that, in the Ore gap, where only the
elastic and Ps(1) formation channels are open, the Ps(1) popu-
lation increases rapidly as the incident energy increases. This
leads to fast dissipation of the electron population in the ini-
tial ground state. When higher-lying inelastic channels are
open, the increase of the Ps(1) channel population slows down
and reaches a maximum at an energy of about 0.690, where
its population is almost two times larger than in all other
inelastic channels. This maximum position is nearly identical
to the target ionization threshold (0.670) and, somewhat sur-
prisingly, consistent with full three-dimensional positron–
hydrogen scattering, where the Ps(1) formation cross section
has a maximum exactly at the H(1) ionization threshold [7].
When the positron incident energy increases to 2, the popu-
lation in the Ps(1) channel becomes less than 0.050 and con-
tinuously diminishes with further increasing incident energy.
In this high-energy region, the positron moves fast across
the target atom, and the brief interaction with the electron
leads to a small probability for the positron to capture an
electron from the target. In fact, most of the electron prob-
ability density remains bound in the ground state of the H
atom.

Figure 4. Final populations of the scattering system as a function of
the positron incident energy. Populations in the (a) H(1), Ps(1), H(2),
and Ps(2) and (b) Ps(2), H(3), Ps(3), H(4), and ionization channels.

In figure 4(b) an interesting observation is the similar beha-
vior and comparable magnitude of the populations in neigh-
boring channels with similar threshold energies. For example,
the Ps(2) and H(3) channel populations generally have the
same maximum position and variation trend, except that the
peak magnitude in the latter is two times larger than that
in the former. The Ps(3) and H(4) channel populations are
comparable in the maximum magnitude, but peak at differ-
ent positions. Another common behavior between the Ps(n)
formation and H(n+ 1) excitation channels is that at high
incident energies the Ps formation population decreases much
faster than the target excitation population. The same is
true between the Ps(1) and H(2) reaction channels displayed
in figure 4(a). This is qualitatively consistent with three-
dimensional positron–atom scattering at high impact ener-
gies, where the target excitation cross sections are much lar-
ger than the Ps formation cross sections [7, 20]. Due to the
limitations of the one-dimensional model employed here, we
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Figure 5. Transmission ratios of the positron in the lowest several
reaction channels as a function of the incident energy. Transmission
ratios in the (a) H(1), H(2), H(3), and H(4) and (b) Ps(1), Ps(2),
Ps(3), and Ps(4) channels. The total transmission ratio T t is included
in both graphs for comparison.

are not in a position to make direct comparisons with the three-
dimensional positron–H scattering cross sections. These qual-
itative similarities between the one-dimensional model and the
real three-dimensional system is encouraging for our future
laser-assisted positron–atom investigations in reduced dimen-
sionality.

The transmission ratios of the positron in various reac-
tion channels and the total transmission ratio are shown
in figure 5. The total ratio T t increases monotonically as
the incident energy increases and saturates at about E0 =
1.50. This can be understood from the fact that the positron
has a larger probability to penetrate through the target
atom with higher initial kinetic energy. The transmission
ratio in the elastic scattering channel TH(1) generally fol-
lows the same behavior as T t due to its dominant role over
other channels in almost the entire energy region, as one
can derive from the populations shown in figure 4(a). The

Figure 6. Transition probability density distribution |c1(k)|2 in the
Ps(1) formation channel as a function of the final positronium
momentum k and the positron incident energy E0. The vertical axis
indicates the momentum of the formed Ps(1) atom, where positive
and negative values represent forward and backward scattering,
respectively.

ratios in various target excitation channels show quite sim-
ilar trends and gradually increase from 0.250 to one as
the incident energy increases from corresponding channel-
opening thresholds to about 2. The comparison between TH(1)

and TH(n⩾2) shown in figure 5(a) demonstrates that in the
entire energy region the incident positron is more likely to
be reflected in the excitation channels than in the elastic
channel.

The transmission ratios in the Ps formation channels are
displayed in figure 5(b), where the total ratio is also included
for comparison. The transmission ratio for Ps formation in the
ground state TPs(1) shows a distinct behavior from the total
ratio T t and those of Ps formation in excited states TPs(n⩾2).
In the Ps(1) channel, the formed Ps atoms always prefer for-
ward scattering, even for incident energies that just exceed
the channel-opening threshold, although at such low incid-
ent energies most of the positron wave packet will be reflec-
ted by the target atom (Tt ≈ 0.3). The large positron transmis-
sion ratio in the Ps(1) channel is probably related to the low
channel-opening threshold energy, which still warrants further
consideration. We note that a similar phenomenon was pre-
dicted in the three-dimensional positron–H scattering based on
the distorted-wave theory, where the Ps(1) differential cross
section strongly peaks at forward scattering [25]. For a bet-
ter view of the forward and backward scattering dynamics,
we show in figure 6 the transition probability density distri-
butions in the Ps(1) formation channel. We find that for all
incident energies Ps atoms are more likely formed with posit-
ive momenta. The forward scattering probability, which peaks
at about E0 = 0.750 and kPs =

√
4(E− 0.082) = 1.635 with a

magnitude of about 6, is generally three times larger than the
backward scattering probability, which peaks at about E0 =
0.450 and kPs =−1.213 with a magnitude smaller than 2. For
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incident energies above 1, the Ps formation in the backward
direction can hardly be observed.

In both figures 5(a) and (b), we only show the transmis-
sion ratios for incident energies exceeding the correspond-
ing thresholds. Results for energies smaller than the threshold
energies do not appear to follow a general trend. The results for
TPs(n⩾2) shown in figure 5(b) share a commonmonotonic trend
that is similar to the collective behavior of TH(n) displayed in
figure 5(a), except that TPs(n) increases much faster than TH(n)

with increasing the incident energy. In other words, the prob-
abilities of Ps formation in backward scattering diminishmuch
faster than the probabilities of target excitation in the same dir-
ection. This is, at least partially, responsible for our finding in
figure 4 that the final populations in the Ps formation channels
decrease faster than those in the target excitation channels.

3.4. Positron–hydrogen bound states in reduced
dimensionality

The bound states of three-body systems in reduced-
dimensionality models have attracted considerable attention
in recent years [65–68]. In this subsection, we will discuss
the possible three-particle bound-state formation in the com-
posite positron–hydrogen system. It is well-known that in full
dimensionality a positron cannot be attached to the hydro-
gen atom and form a stable bound system [69–71]. However,
it is still unclear if such a bound state would exist in the
reduced-dimensionality model with soft-core Coulomb poten-
tials. To find the eigenenergies of the three-body system with
the Hamiltonian in equation (1), we solve the TDSE with an
imaginary-time propagation method [72]. The initial wave
functions for the positron and electron are Gaussian wave
packets, both centered at the origin. Different initial condi-
tions have been tried to remove possible spurious solutions.
Our simulations predict a converged ground state e+H(1)with
an energy of −0.702 and an excited state e+H(2) with energy
−0.682 for the positron–hydrogen system. These two states
are slightly lower than the ground state energies of the Ps atom
(−0.588) and H atom (−0.670), and therefore stable against
dissociation.

The wave functions of the ground and excited states of the
e+H system are shown in figures 7(a) and (b), respectively.
Compared to the H− ion in the same one-dimensional model
[73], a distinct feature of the e+H ground state wave func-
tion is the lack of antisymmetrization with respect to changing
coordinates of the electron and positron. As a result, the sys-
tem wave function has only spatial inversion symmetry, i.e.
Ψ(x1,x2) = Ψ(−x1,−x2). It can also be observed from both
figures 7(a) and (b) that the spatial extension of the positron
wave function is much larger than that of the electron. This
can be clearly seen in figure 7(c), where the probability dens-
ity distributions of the positron and electron in the e+H ground
and excited states are displayed separately. The electron dens-
ity distribution in the H(1) atom is also included for compar-
ison. It is found that in the positron–hydrogen bound states,
the positron probability densities are localized at the two sides
of the nucleus due to the repulsive interaction between them.
Compared to the electron in the H(1) state, the electron in the

Figure 7. Contour plots of wave functions for (a) the ground state
and (b) the excited state of the positron–H system in the
reduced-dimensionality model. (c) Comparison of the probability
density distributions for the electron and positron in the e+H(1)
ground and e+H(2) excited states of the e+H system, and the
electron in the ground state of the H atom.

e+H system is slightly displaced from the origin to balance
the attractive electron–nucleus and electron–positron interac-
tions and screen the positron-nucleus repulsive interaction. On
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average, the positron in the excited state of e+H is located fur-
ther away from the nucleus than in the ground state, while the
electron distribution does not change much.

Since the energies of the positron–hydrogen bound states
are lower than the ground state energy of the H atom in
the present reduced-dimensionality model, the formation of
three-body bound states is energetically prohibited in the non-
radiative scattering process. However, when the system is
exposed to an assisting laser field, does radiative stabilization
into these bound states become possible? To address this ques-
tion it is worth noting that the use of an intense laser field
would tend to break up the H and Ps atoms as well as the
three-body bound states. On the other hand, application of
a linearly-polarized laser field with its polarization direction
parallel to the initial momentum of the positron would sig-
nificantly confine the motion of electron and positron to the
polarization direction [58]. It should thus be well represented
by a one-dimensional model that, upon radiative stabilization,
would support a three-body bound state.

Next, we investigate the modulation effect of an assist-
ing linearly-polarized laser field with the wavelength of λ =
800 nm (frequency ω = 0.057) on the formation of three-body
bound states during the positron–H atom scattering. The total
Hamiltonian of the laser-assisted scattering system is

HL = H+VL, (20)

where the laser-free atomic Hamiltonian H is given by
equation (1), and VL represents the laser–atom interaction. In
the dipole approximation, the interaction between the laser
field and the incident positron and target electron in the length
gauge is expressed as

VL (x1,x2, t) = E(t)(x2 − x1) , (21)

in which the electric field E(t) is obtained from the vector
potential A(t) through E(t) =−dA(t)/dt. The vector potential
employed in this work reads

A(t) = A0f(t)cos [ω (t− t0)+φ] , (22)

where φ is the carrier-envelope phase and f (t) is the envelope
function in the form

f(t) =


sin2

(
π
2

t
τR

)
0< t< τR

1 τR < t< τ − τR

cos2
(

π
2
t−3τR
τ−3τR

)
τ − τR < t< τ

0 else

. (23)

In the present work, the pulse duration time τ is chosen to be
5T, where T(= 2π/ω) is the laser optical cycle. The ramp on
and off time duration τR is a quarter of the total pulse duration,
i.e. τR = τ/4.

For a positron incident energy of 0.05 and peak laser intens-
ity of 2× 1013 Wcm−2, the variation of the positron prob-
ability density as a function of propagation time is shown in
figure 8(a). Despite the complicated modulation effect of the
laser field on the scattering process, it is clearly observed that

Figure 8. (a) The positron probability density as a function of time.
The positron incident energy is 0.05, and the laser intensity is
2× 1013 Wcm−2. (b) Instantaneous (t= 1400) probability density
distribution of the e+H bound state during the positron–hydrogen
collision. This state is a superposition of the ground and excited
states of the e+H system. (c) Population of the e+H bound state as a
function of time.

the positron wave packet splits into three parts after the col-
lision: a forward scattering part, a reflected wave packet, and
a trapped part. The trapped positron remains localized in the
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vicinity of the nucleus and forms a bound state with the tar-
get H atom, however, with its density distribution oscillat-
ing at a constant frequency. In the Supplementary Material,
we provide a video depicting the time evolution of the spatial
density distribution of the scattering system during the colli-
sion by fixing the view at the origin. The formation of e+H
bound state and the oscillation in density distribution can be
clearly observed. A snapshot of the spatial density distribu-
tion at t= 1400 (a long enough time after the collision) is
shown in figure 8(b). It can be seen that both the positron
and electron are generally restricted into the configuration
space of |x1,2|⩽ 10 and mainly distributed in the first and third
quadrants. This is consistent with our imaginary-time calcula-
tions of the ground and excited states of the e+H system (see
figure 7 for the corresponding density distributions). Our fur-
ther analysis shows that the probability density of the three-
body bound states oscillates with a period of tb = 315, which
corresponds to a frequency of ωb = 0.02. This is identical to
the energy difference between the ground and excited states
of the e+H system. We therefore conclude that the three-body
bound state formed in the laser-assisted positron–H scatter-
ing is a superposition of the ground and excited states of the
composite e+H system, and the oscillation in the density dis-
tribution originates from the coherence between these two
eigenstates.

Figure 8(c) displays the variation of population for the
e+H bound-state formation as a function of evolution time,
with the same incident energy and laser parameters as used in
figure 8(a). Within the time frame of 500< t< 1000, where
the Coulomb interaction between the incident positron and
the target H atom as well as the positron- and electron-
laser interactions are strongest and compatible in strength,
three-body bound-state formation is significantly enhanced
and modulated by the assisting laser field. In the present
case, up to a quarter of the positron probability density can
be transiently accommodated into the bound state during
the collision. When the laser field is turned off and after
the system propagates freely for a sufficiently long time,
the final population of the three-body states stabilizes at
about 0.09.

It is obvious that the three-body bound-state formation in
the laser-assisted positron–H scattering depends closely upon
both the positron incident energy and the laser parameters. In
figure 9(a), we present the formation probability of the e+H
bound state as a function of the laser intensity with the positron
incident energy fixed at 0.05. By projecting the final bound
state wave function onto the stationary wave functions of the
ground and excited states of the e+H system, we can further
analyze the contribution from each eigenstate. It is surprisingly
found that in such low-energy scattering, the formation of the
three-body excited state is always preferred over the ground
state. When the laser intensity is decreased to 1010 Wcm−2,
themodulation effect of the laser field on the scattering process
is negligible. Then the e+H bound state can hardly be formed,
as in the laser-free scattering process. If the laser intensity is
high enough, e.g., 1014 Wcm−2, the intense laser field would
directly ionize the H atom (and the formed Ps), with a small

Figure 9. (a) The e+H bound-state formation probability in the
laser-assisted positron–H scattering as a function of the laser
intensity. The positron incident energy is fixed at 0.05 and other
laser parameters are the same as before. (b) Same as (a) for a
fixed laser intensity of 1012 Wcm−2 and variable positron incident
energy.

probability for the electron and positron to form a three-body
bound state. The largest probability under the present laser
parameters is achieved at about 1.4× 1012 Wcm−2, while the
dip at about 1.3× 1013 Wcm−2 is caused by the strong com-
petition with other inelastic channels (A detailed discussion of
the modulation effect of laser field on different reaction chan-
nels will be reported elsewhere).

In figure 9(b), we illustrate the formation probability of
the e+H bound state and the separate contributions from the
e+H(1) and e+H(2) eigenstates, as a function of the positron
incident energy. The laser intensity is fixed at 1012 Wcm−2. A
total number of four peaks, with two for each eigenstate, are
observed in the bound-state formation probabilities. The peak
locations are in full agreement with energy conservation.
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Ee+
0 +EH − nω = Ee+H

b , (24)

where Ee+
0 and EH are the positron incident energy and the

ground state energy of the H atom, respectively. Ee+H
b is the

scattering final state (ground or excited eigenstate) energy of
the e+H system. The integer value n represents the number
of emitted photons with the frequency ω. It is easily veri-
fied that the first and second peaks in the formation of each
eigenstate correspond to the one- and two-photon emissions
in the laser-assisted scattering. For each eigenstate, the prob-
ability of the second peak is generally one order of magnitude
smaller than that of the first peak. The excess energy of the
positron–H atom collisional system can be emitted radiatively
in the harmonic-order frequencies of the assisting laser field,
which enables the production of three-body bound states in the
collision.

4. Conclusion

In this work we investigated the quantum dynamics of
positron–H atom scattering in a reduced-dimensionality
quantum model, where the effective interactions between
charged particles are represented by soft-core Coulomb poten-
tials. The time evolution of the system wave function is per-
formed by numerically solving the TDSE. The final popula-
tions in different reaction channels are obtained by projecting
the system wave function onto channel states. Strong interfer-
ence fringes between the incident and reflected positron wave
packets are observed near the target nucleus. Due to the finite
energy width of the incident positron Gaussian wave packet,
higher-lying reaction channels are accessible to low-energy
incident positron wave packets, even if their central energy lies
below the thresholds.We find that in these ideally closed chan-
nels, strong competition exists between neighboring chan-
nels with similar threshold energies but different spatial
parities.

The final populations of the scattering system in various
target excitation, Ps formation, and direct ionization channels
are calculated in a wide range of incident energies. Our res-
ults show good agreement with previous calculations at low
energies. The observed faster decrease of the final populations
in the Ps formation channels than in target excitation chan-
nels with increasing the positron energy is consistent with our
intuitive expectation for the three-dimensional physical sys-
tem. We also investigated the transmission ratios of positron
in individual and total scattering channels. An interesting phe-
nomenon is found that only the Ps formation in its ground state
prefers forward scattering, while in all other inelastic channels
the transmission ratios increase gradually from a small propor-
tion to one.

We identified two stable three-body bound states of
the positron–H atom system in the present reduced-
dimensionality quantum model. While the formation of three-
body bound states is energetically forbidden in non-radiative
scattering, our calculation provides evidence that it can be
enabled by a moderate-intensity assisting laser field, due to
stimulated multi-photon emission. The introduction of an

assisting laser field may thus allow us to control and manipu-
late the formation of positronic bound states in the positron–
atom scattering in the laboratory.
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[55] Li S-M, Zhou Z-F, Zhou J-G and Liu Y-Y 1993 Phys. Rev. A

47 4960
[56] Zheng M-Y, Qin G and Li S-M 2010 Phys. Rev. A 82 033425
[57] Joachain C J, Kylstra N J and Potvliege R M 2012 Atoms in

Intense Laser Fields (Cambridge University Press)
[58] He F, Becker A and Thumm U 2008 Phys. Rev. Lett.

101 213002
[59] Su Q and Eberly J H 1991 Phys. Rev. A 44 5997
[60] Feit M D, Fleck J A and Steiger A 1982 J. Comput. Phys.

47 412
[61] Krause J L, Schafer K J and Kulander K C 1992 Phys. Rev. A

45 4998
[62] Meschede D 2004 Optics, Light and Lasers (WILEY-VCH

Verlag)
[63] We observe sloping interference fringes at extremely low

incident energies, e.g., E0 = 0.01
[64] At k= 0, the scattering amplitudes in post form in the target

excitation and Ps formation channels are roughly
proportional to ⟨ψn|V(x2)|ψ1⟩ and ⟨ϕn|V(x2)|ψ1⟩,
respectively. Considering both, the soft-Coulomb potential
and the initial state have even parity, the final states must
also have even parity. In practical simulations, however, the
odd-parity states are not strictly forbidden, due to the
dynamical scattering process.

[65] Lucas H, Zimmermann M, Betelu. S I, Schleich W P and
Efremov M A 2019 Phys. Rev. A 100 012709

[66] Liu Y, Yu Y-C and Chen S 2021 Phys. Rev. A 104 033303
[67] Nishida Y 2018 Phys. Rev. A 97 061603
[68] Guijarro G, Pricoupenko A, Astrakharchik G E, Boronat J and

Petrov D S 2018 Phys. Rev. A 97 061605
[69] Aronson I, Kleinman C J and Spruch L 1971 Phys. Rev. A

4 841
[70] Mitroy J, Bromley M W J and Ryzhikh G G 2002 J. Phys. B:

At. Mol. Opt. Phys. 35 R81
[71] Armour E A G 1978 J. Phys. B: At. Mol. Opt. Phys. 11 2803
[72] Lehtovaara L, Toivanen J and Eloranta J 2007 J. Comput.

Phys. 221 148
[73] Grobe R and Eberly J H 1993 Phys. Rev. A 48 4664

13

https://doi.org/10.1103/RevModPhys.82.2557
https://doi.org/10.1103/RevModPhys.82.2557
https://doi.org/10.1103/PhysRevA.70.032716
https://doi.org/10.1103/PhysRevA.70.032716
https://doi.org/10.1103/PhysRevA.93.052707
https://doi.org/10.1103/PhysRevA.93.052707
https://doi.org/10.1088/1361-6455/ac3e78
https://doi.org/10.1088/1361-6455/ac3e78
https://doi.org/10.1039/D1CP00755F
https://doi.org/10.1039/D1CP00755F
https://doi.org/10.1103/PhysRevA.89.012708
https://doi.org/10.1103/PhysRevA.89.012708
https://doi.org/10.1088/0953-4075/49/3/034007
https://doi.org/10.1088/0953-4075/49/3/034007
https://doi.org/10.1088/1367-2630/14/3/035018
https://doi.org/10.1088/1367-2630/14/3/035018
https://doi.org/10.1103/PhysRevA.100.013410
https://doi.org/10.1103/PhysRevA.100.013410
https://doi.org/10.1103/PhysRevA.101.052704
https://doi.org/10.1103/PhysRevA.101.052704
https://doi.org/10.1088/0953-4075/49/11/114001
https://doi.org/10.1088/0953-4075/49/11/114001
https://doi.org/10.1088/0953-4075/29/10/017
https://doi.org/10.1088/0953-4075/29/10/017
https://doi.org/10.1103/PhysRevA.71.042703
https://doi.org/10.1103/PhysRevA.71.042703
https://doi.org/10.1103/PhysRevA.54.5004
https://doi.org/10.1103/PhysRevA.54.5004
https://doi.org/10.1088/0953-4075/49/22/222002
https://doi.org/10.1088/0953-4075/49/22/222002
https://doi.org/10.1103/PhysRevA.47.2386
https://doi.org/10.1103/PhysRevA.47.2386
https://doi.org/10.1103/PhysRevA.72.032714
https://doi.org/10.1103/PhysRevA.72.032714
https://doi.org/10.1103/PhysRevA.84.052711
https://doi.org/10.1103/PhysRevA.84.052711
https://doi.org/10.3390/atoms6020027
https://doi.org/10.3390/atoms6020027
https://doi.org/10.1140/epjd/e2012-30517-2
https://doi.org/10.1140/epjd/e2012-30517-2
https://doi.org/10.1103/PhysRevA.57.1038
https://doi.org/10.1103/PhysRevA.57.1038
https://doi.org/10.1103/PhysRevA.64.042715
https://doi.org/10.1103/PhysRevA.64.042715
https://doi.org/10.1103/PhysRevA.67.052712
https://doi.org/10.1103/PhysRevA.67.052712
https://doi.org/10.1103/PhysRevA.89.062704
https://doi.org/10.1103/PhysRevA.89.062704
https://doi.org/10.1088/1361-6455/ab8efe
https://doi.org/10.1088/1361-6455/ab8efe
https://doi.org/10.1103/PhysRevLett.121.203401
https://doi.org/10.1103/PhysRevLett.121.203401
https://doi.org/10.1016/j.cpc.2019.05.019
https://doi.org/10.1016/j.cpc.2019.05.019
https://doi.org/10.1103/PhysRevLett.111.123003
https://doi.org/10.1103/PhysRevLett.111.123003
https://doi.org/10.1103/PhysRevA.89.063423
https://doi.org/10.1103/PhysRevA.89.063423
https://doi.org/10.1088/1674-1056/abe1a4
https://doi.org/10.1088/1674-1056/abe1a4
https://doi.org/10.1103/PhysRevA.57.2572
https://doi.org/10.1103/PhysRevA.57.2572
https://doi.org/10.1103/PhysRevA.54.3042
https://doi.org/10.1103/PhysRevA.54.3042
https://doi.org/10.1063/1.1924457
https://doi.org/10.1063/1.1924457
https://doi.org/10.1002/ctpp.200910056
https://doi.org/10.1002/ctpp.200910056
https://doi.org/10.1088/1367-2630/14/5/055013
https://doi.org/10.1088/1367-2630/14/5/055013
https://doi.org/10.1088/1361-6455/ab08b9
https://doi.org/10.1088/1361-6455/ab08b9
https://doi.org/10.1103/PhysRevA.73.041404
https://doi.org/10.1103/PhysRevA.73.041404
https://doi.org/10.1088/1674-1056/ab343e
https://doi.org/10.1088/1674-1056/ab343e
https://doi.org/10.1088/1361-6455/aba718
https://doi.org/10.1088/1361-6455/aba718
https://doi.org/10.1103/PhysRevA.70.023408
https://doi.org/10.1103/PhysRevA.70.023408
https://doi.org/10.1088/0953-4075/49/19/195201
https://doi.org/10.1088/0953-4075/49/19/195201
https://doi.org/10.1103/PhysRevA.100.052710
https://doi.org/10.1103/PhysRevA.100.052710
https://doi.org/10.1103/PhysRevLett.94.153201
https://doi.org/10.1103/PhysRevLett.94.153201
https://doi.org/10.1103/PhysRevA.90.032709
https://doi.org/10.1103/PhysRevA.90.032709
https://doi.org/10.3390/atoms9030067
https://doi.org/10.3390/atoms9030067
https://doi.org/10.1016/S0370-1573(97)00075-6
https://doi.org/10.1016/S0370-1573(97)00075-6
https://doi.org/10.1103/PhysRevA.47.4960
https://doi.org/10.1103/PhysRevA.47.4960
https://doi.org/10.1103/PhysRevA.82.033425
https://doi.org/10.1103/PhysRevA.82.033425
https://doi.org/10.1103/PhysRevLett.101.213002
https://doi.org/10.1103/PhysRevLett.101.213002
https://doi.org/10.1103/PhysRevA.44.5997
https://doi.org/10.1103/PhysRevA.44.5997
https://doi.org/10.1016/0021-9991(82)90091-2
https://doi.org/10.1016/0021-9991(82)90091-2
https://doi.org/10.1103/PhysRevA.45.4998
https://doi.org/10.1103/PhysRevA.45.4998
https://doi.org/10.1103/PhysRevA.100.012709
https://doi.org/10.1103/PhysRevA.100.012709
https://doi.org/10.1103/PhysRevA.104.033303
https://doi.org/10.1103/PhysRevA.104.033303
https://doi.org/10.1103/PhysRevA.97.061603
https://doi.org/10.1103/PhysRevA.97.061603
https://doi.org/10.1103/PhysRevA.97.061605
https://doi.org/10.1103/PhysRevA.97.061605
https://doi.org/10.1103/PhysRevA.4.841
https://doi.org/10.1103/PhysRevA.4.841
https://doi.org/10.1088/0953-4075/35/13/201
https://doi.org/10.1088/0953-4075/35/13/201
https://doi.org/10.1088/0022-3700/11/16/007
https://doi.org/10.1088/0022-3700/11/16/007
https://doi.org/10.1016/j.jcp.2006.06.006
https://doi.org/10.1016/j.jcp.2006.06.006
https://doi.org/10.1103/PhysRevA.48.4664
https://doi.org/10.1103/PhysRevA.48.4664

	Quantum dynamics of positron-hydrogen scattering and three-body bound state formation with an assisting laser field: predictions of a reduced-dimensionality model
	1. Introduction
	2. Theoretical method
	3. Results and discussion
	3.1. Interference between incident and reflected positrons
	3.2. Critical behavior near the channel-opening thresholds
	3.3. Populations and positron transmission ratios
	3.4. Positron–hydrogen bound states in reduced dimensionality

	4. Conclusion
	References


