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Dissociation dynamics of diatomic molecules in intense laser fields: A scheme for the selection
of relevant adiabatic potential curves
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We investigated the nuclear dynamics of diatomic molecular ions in intense laser fields by analyzing their
fragment kinetic-energy release (KER) spectra as a function of the pump-probe delay τ . Within the Born-
Oppenheimer (BO) approximation, we calculated ab initio adiabatic potential-energy curves and their electric
dipole couplings, using the quantum chemistry code GAMESS. By comparing simulated KER spectra as a function
of either τ or the vibrational quantum-beat frequency for the nuclear dynamics on both individual and dipole-
coupled BO potential curves with measured spectra, we developed a scheme for identifying electronic states
that are relevant for the dissociation dynamics. We applied this scheme to investigate the nuclear dynamics in
O2

+ ions that are produced by ionization of neutral O2 molecules in an ultrashort infrared (IR) pump pulse and
dissociate due to the dipole coupling of molecular potential curves in a delayed IR probe laser field.
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I. INTRODUCTION

The control, time-resolved observation, and analysis of
the nuclear dynamics in small diatomic molecules have been
made possible by significant advances in femtosecond laser
technology [1,2]. In particular, using ultrashort IR pulses with
a carrier wavelength of 800 nm and pulse lengths between
7 and 20 fs, the nuclear dynamics in H2 and D2 molecular
ions have been studied by analyzing the kinetic-energy release
(KER) of the fragments produced by a second delayed
laser pulse [3,4]. In comparison with heavier molecules, the
vibrational nuclear motion in H2

+ (and its isotopes) is simple
as it primarily involves the two lowest adiabatic potential
curves of the molecular ion. For H2

+, the dissociative wave
packet emerges mainly on the repulsive |2pσu〉 state, while
a bound oscillating part of the wave packet may remain in
the electronic ground state |1sσg〉. The extension of these
investigations to heavier molecules is not straightforward,
and the interpretation of experimental data is intricate due
to the large number of molecular potential curves involved.
By analyzing KER spectra from dissociated oxygen ions as
a function of the time delay, we recently found that usually
several intermediate electronic states of the molecular ion
contribute to the same KER [5–7]. In Refs. [5,7] the dynamics
of N2, O2, and CO molecules in intense laser pulses was studied
using the Coulomb explosion (CE) imaging technique. In com-
parison with classical and quantum-mechanical simulations,
transiently populated intermediate states for molecular ions in
different charge states and associated dissociation pathways
were identified. The occurrence of vibrational revivals in
measured KER spectra was scrutinized in Ref. [6] and allowed
the identification of relevant molecular potential curves.

The purpose of this work is to systematically combine and
jointly evaluate the information contained in different char-
acteristic signatures of measured KER spectra. By revealing
different aspects of the oscillating and dissociating motion
in heavy diatomic molecular ions, we attempt to identify
a manageable number of relevant electronic states within a
large set of possible BO electronic states that exist for each

heavy diatomic molecule in each charge state. We start our
investigation in Sec. II by employing the General Atomic and
Molecular Electronic Structure System (GAMESS) quantum
chemistry code [8] to calculate potential curves and dipole
coupling strengths between adiabatic potential curves using the
multiconfiguration (MC) self-consistent field (SCF) method
with correlation consistent (cc) polarized triple-ζ (pVTZ) basis
sets (MCSCF cc-pVTZ) [9,10].

Next, in Sec. III A, we numerically solve the time-
dependent Schrödinger equation (TDSE) for the evolution of
a given initial vibrational wave packet in the molecular ion
on a given BO potential curve. In our quantum-mechanical
calculations, we neglect molecular rotation and model the
initial state of the molecular ion by assuming instantaneous
ionization of the neutral parent molecule in the pump pulse
based on the Franck-Condon approximation [11]. Our calcu-
lations provide KER spectra as a function of the pump-probe
delay that reveal the vibrational period and revival times of
binding molecular potential curves. The vibrational period and
revival times in a given electronic state serve as a first criterion
for selecting relevant potential curves. This selection process
starts by comparing simulated KER spectra that were obtained
in separate calculations under the assumption that the nuclear
motion in the molecular ion proceeds on a single electronic
potential curve with measured KER spectra. This comparison
involves the scrutiny of simulated and measured KER spectra
as a function of time and frequency. For this purpose we
derive internuclear-distance-dependent power spectra [12–14]
by Fourier transformation of the calculated time-dependent
nuclear probability density. The power spectra allow us to
identify vibrational quantum-beat (QB) frequencies associated
with the bound motion of the vibrationally excited molecular
ion. This enables us to further scrutinize the relevance of
any given binding electronic state of the molecular ion by
comparing revival times [15], oscillation periods, and QB
frequencies with measured values.

After comparing separate calculations performed for in-
dividual BO molecular potential curves with measured KER
spectra, we select a small set (in this work two) of curves
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that agree best with the measured data. In a final separate
calculation, we then investigate the dissociative dynamics of
the molecule, including dipole couplings between the selected
electronic states of the molecular ion in the electric field of
the probe-laser pulse (Sec. III B). As an example we present
numerical results for the dissociation of O2

+ molecules. In
Sec. III C we compare two alternative methods for deriving
KER spectra in a nuclear wave-function-propagation calcula-
tion. The effect of an added long probe pedestal is investigated
in Sec. III D. Section IV compares measured KER spectra for
O2

+ ions with simulated spectra for dipole-coupled potential
curves. A brief summary and our conclusions follow in Sec. V.
We use atomic units unless indicated otherwise and relate
potential energies to the vibrational ground state of the neutral
electronic ground state (X 3�−

g ).

II. CALCULATION OF ADIABATIC POTENTIAL CURVES

To describe molecules in an intense laser field accurately
one needs to consider both the electronic and nuclear degrees of
freedom. The Hamilton operator for the unperturbed diatomic
molecular system includes the kinetic energies of the nuclei
and electrons TR and Te, the interaction between the nuclei
VRR = Z1Z2/R and the electrons Vee = ∑

(i<j ) r
−1
ij , and the

electron-nuclear interaction VeR = ∑
i

∑
k Zkr

−1
ik ,

H = TR + VRR + Te + VeR + Vee. (1)

Z1 and Z2 are the nuclear charges, R is internuclear distance,
rij is the distance between two electrons with labels i and j ,
and rik is the distance between the nuclei and electrons labeled
k and i, respectively.

No exact solutions of the Schrödinger equation with
Hamiltonian (1) are known. However, a simplified solution
can be obtained within the BO approximation where the total
wave function (WF) is expanded in products of nuclear and
electronic WFs. The BO approximation is based on the fact
that electrons are several thousand times lighter than nuclei and
thus can be assumed to follow the nuclear motion adiabatically.
This means that the nuclear kinetic energy term TR in
Eq. (1) can be dropped and that VRR becomes a constant
and thus is irrelevant for the electronic motion considered
in this work. In BO approximation accurately evaluating
the correlation between electrons Vee remains a challenge
for numerical calculations. To overcome this difficulty, the
so-called Hartree-Fock (HF) SCF method is used [16,17] in
order to include the effect of Vee approximately by considering
each electron subject to an effective potential that is derived
from the averaged charge distribution of all other electrons.

We used the MCSCF method, where a linear combination
of configuration state functions (CSF), i.e., Slater determinants
of molecular orbitals (MO), is employed to approximate the
exact electronic WF of the system. This is an improvement
over the HF method, where only one determinant is used. By
variation of the set of coefficients in the MCSCF expansion in
addition to the simultaneous variation of MO coefficients in
the basis-set expansion, the total electronic WF for a given BO
channel is obtained with the lowest possible energy for a given
set of occupied and active orbitals [16,17]. We calculated po-
tential curves and dipole-coupling strengths between adiabatic

FIG. 1. (Color online) Potential energies for the O2
+ molecular

ion calculated using the MCSCF–cc-pVTZ method. The zero of the
energy axis is taken as the ν = 0 level of the X 3�−

g ground state
of O2.

potential curves using the MCSCF–cc-pVTZ method (details
are given in the Appendix).

A. Results

Figure 1 shows some of the calculated electronic states
for the O2

+ molecular ion. For selected states we compared
data from the literature [18] with our MCSCF–cc-pVTZ
results and found good agreement for both adiabatic potential
curves and electric dipole transition matrix elements Dij

between adiabatic electronic states that correspond to potential
curves Vi(R) and Vj (R). As an example, our calculated
potential curves and dipole-coupling matrix elements for the
a 4�u and f 4�g states of O2

+ are compared to results in
Ref. [18] in Figs. 2(a) and 2(b), respectively. In Marian
et al. [18], multireference double-excitation configuration
interaction (MRD-CI) treatment [19] and a double-ζ basis
set were used in the calculation (MRD-CI DZP). MRD-CI
includes electron correlation from excited determinants in
addition to correlation within the active space.

To make sure that our MCSCF–cc-pVTZ method was suf-
ficient compared to calculations that better represent electron
correlation, we performed full second-order CI calculations
(FSOCI) for the a 4�u state at four different internuclear dis-
tances. FSOCI calculations are similar to MRD-CI but include
single and double excitations, while MRD-CI includes only
double excitations. Blue dots in Fig. 2(a) indicate results from
FSOCI–cc-pVTZ calculations, which are in good agreement
(within 0.7%) with our MCSCF calculations [red (gray) line in
Fig. 2(a)]. The computational time for FSOCI calculations is
three orders of magnitude larger than for MCSCF calculations.
Since the calculated values from both methods are similar,
we used the numerically less expensive method (MCSCF) to
obtain electronic states and dipole-coupling matrix elements.
Using a larger cc-pVTZ basis set than the basis used in
Ref. [18], we can be confident that our calculated results
are at least as accurate with regard to the complete basis set
limit.
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FIG. 2. (Color online) (a) Calculated potential energies and
(b) dipole-coupling matrix elements from [18] using the MRD-CI–
DZD method in comparison with our MCSCF–cc-pVTZ calculation.
Blue dots in (a) correspond to the FSOCI–cc-pVTZ method.

III. NUCLEAR DYNAMICS

A. Free nuclear motion in a single electronic state

The dynamics of the nuclear vibrational wave packet can be
reconstructed from the KER spectra obtained for a sequence
of pump-probe delays τ . This is shown schematically in
Fig. 3 for the a 4�u and f 4�g states where a pump pulse
singly ionizes an oxygen molecule. In general, the pump
pulse can ionize oxygen molecules to any state of O2

+, for
example, X 2�u and b 4�−

g states, but as our calculations show,
several characteristic parameters, such as oscillation period,
revival time, and QB frequency for the a 4�u state, match
the experimental data best. The probe pulse is assumed to be
linearly polarized along the molecular axis throughout this
work. The excited oxygen molecule can dissociate through a
one-photon or net two-photon process.

In order to reveal relevant intermediate electronic states
of the molecular ion, we compared oscillation period and
revival times of the bound motion of the wave packet in a
given electronic state with measured values. We also checked
whether transitions between these states are dipole allowed and
calculated the strength of their dipole coupling in the electric
field.

To identify which of the states are main contributors
in the dynamics, we allowed the wave packet to freely
propagate on individual adiabatic potential curves Vi(R) of
the molecular ion. Neglecting molecular rotation, we solved

FIG. 3. (Color online) The nuclear dynamics in oxygen molecular
ions. The pump-laser pulse launches a nuclear vibrational wave packet
onto O2

+ potential curves (shown for a 4�u and f 4�g states) by
ionizing O2. After a variable time delay, an intense short probe pulse
can cause the dissociation of the molecular ion through one-photon
or net two-photon processes.

the one-dimensional TDSE,

i
∂

∂t
	i = [TR + Vi(R)]	i, (2)

where the Vi are adiabatic potential curves.
Starting with neutral O2 molecules in the ground state, we

modeled the creation of the O2
+ vibrational wave packet by

the pump pulse in Frank-Condon approximation [11,12]. We
solved (2) for the initial wave packet,

	i(R,t = 0) =
∑

ν

ai,νφi,ν(R), (3)

which is expressed in terms of the Franck-Condon amplitudes
aiν . The indices ν correspond to vibrational states φi,ν in the
ith bonding adiabatic electronic state of the molecular ion with
vibrational energy ωi,ν .

By either calculating the spectrum ωi,ν by diagonalization
of the single-curve Hamiltonian TR + Vi(R) or by numerical
wave-packet propagation of (2) subject to the initial condition
(3), we obtained the evolution of (3) without external laser
fields,

	i(R,t) =
∑

ν

ai,νφi,ν(R) e−iωi,ν t . (4)

Repeating single-curve calculations for several potential-
energy curves, we aimed at identifying relevant electronic
states by comparing the characteristics of the bound wave-
packet motion in Vi(R), such as vibrational periods Ti and full
and partial revival times Trev,i [15], that we obtained from prob-
ability density spectra [Figs. 4(a) and 4(c)], with pump-probe-
delay-dependent measured KER data [5–7,12–14,20,21].

We obtained additional information for selecting electronic
states that participate in the bound and dissociative nuclear
motion of the molecular ion by comparing probability densities
obtained from single-curve calculations with measured KER
spectra as a function of the pump-probe delay (propagation
time) and QB frequency [12–14]. By splitting the nuclear
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FIG. 4. (Color online) Single-curve calculations for the (a), (b)
A 2�u and (c), (d) a 4�u states of O2

+. (a), (c) Probability densities
of the evolving vibrational wave packet and (b), (d) corresponding
power spectra.

probability density

ρi(R,t) = |	i(R,t)|2 = ρ incoh
i (R)

+
∑

(ν �=μ)

a∗
i,νai,μ exp(−iωi;μ,ν t)φ

∗
i,νφi,μ (5)

into the time-independent incoherent contribution

ρ incoh
i (R,t) =

∑
ν

|ai,ν |2|φi,ν(R)|2 (6)

and the time-dependent coherent contribution∑
(ν �=μ) a

∗
i,νai,μe−iωi;μ,ν tφ∗

i,νφi,μ, we exposed quantum beats
with frequencies ωi;ν,μ = ωi,ν − ωi,μ of vibrational-state
contributions to the nuclear wave packet in a given
potential curve Vi(R). Fourier transformation of the coherent
contribution over the finite sampling time T of pump-probe
delays yields

ρ̃i(R,ω; T ) = 1√
π

∫ t

0
dt[ρi(R,t) − ρ incoh

i (R)]e−iωt

=
√

2π
∑
μ �=ν

a∗
i,νai,μφ∗

i,ν(R)φi,μ(R)δT (ωi;ν,μ − ω)

(7)

and the power spectrum

Wi(R,ω) = |ρ̃(R,ω; T )|2, (8)

where δT (�) = 1/2π
∫ T

0 e(i�t)dt . The frequency resolution in
Wi increases with the sampling time T . Typically, sampling
times of the order of a few picoseconds are required to clearly
resolve vibrational beat frequencies in the power spectrum of
heavy diatomic molecular ions.

Examples for single-curve calculations are shown in
Figs. 4(a) and 4(b) for the A 2�u state and in Figs. 4(c) and 4(d)
for the a 4�g state of O2

+. The calculations were done with
a numerical grid length of 310 (excluding the absorber length
of 20) and a grid spacing 0.05 with time steps of �t = 1. We
also performed the same calculations for X 2�u and b 4�−

g

states of O2
+ (Fig. 3, not shown in Fig. 4). Comparison

of the simulated vibrational periods, revival times, and QB
frequencies for a number of electronic states with measured
KER spectra [7] revealed the a 4�u state as the best match to the
experimental oscillation period and QB frequencies. Table I
shows a comparison of the calculated and measured parameters
for each potential curve we tried in our calculations. Table I
reveals that closest to the experimental revival time of 1200 fs
are the a 4�u and A 2�u states. However, the A 2�u state can
be ruled out because it generates QB frequencies that do not
match the measured frequencies. Thus, state a 4�u appears to
be the most relevant in the dissociative dynamics, which is also
in agreement with the experimental findings in Refs. [7,20].

B. Nuclear dynamics on dipole-coupled electronic states

Modeling the coherent motion of nuclear vibrational
wave packets on several Franck-Condon-populated adiabatic
potential curves of the diatomic molecular ion, we allowed
for dipole coupling of (coherently launched) nuclear wave
packets 	i(R,t) in the electric field of the probe laser pulse by
numerically propagating the coupled TDSE,

i
∂

∂t

⎛
⎜⎝

	1

	2

...

⎞
⎟⎠ =

⎛
⎜⎝

TR + V1 D12 . . .

D21 TR + V2 . . .

. . . . . .
. . .

⎞
⎟⎠

⎛
⎜⎝

	1

	2

...

⎞
⎟⎠ , (9)

using the split-operator Crank-Nicolson scheme, with the
assumption that the wave packet is launched from the ground
state of O2 to the V1 state of O2

+ [12–14]. In analogy to (4)–(7),
Fourier transformation of the total nuclear probability density,

ρ(R,t) =
∑

i

ρi(R,t), (10)

TABLE I. Comparison of calculated (this work) and measured (Ref. [7]) revival times and (ν = 1 → ν = 2) QB frequencies for four
adiabatic electronic states of O2

+.

Calculation Experimental values

State Oscillation period (fs) Revival (fs) QB frequency (THz) Oscillation period (fs) First full revival (fs) QB frequency (THz)

X 2�g 17 670 58
a 4�u 33 1000 30 34 �1200 30
A 2�u 36 1100 28
b 4�−

g 29 900 35
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for a finite sampling time T results in

ρ̃(R,ω; T ) ∼
∑

i

ρ̃i(R,ω; T )

∼
∑

i

∑
μ �=ν

a∗
i,νai,μφ∗

i,ν(R)φi,μ(R)δT (ωi;ν,μ − ω)

(11)

and the power spectrum

W (R,ω) = |ρ̃(R,ω; T )|2. (12)

In order to simulate KER spectra, we numerically prop-
agated the coupled equations (9) for a sufficiently long time,
including field-free propagation of the nuclear wave packets up
to ∼800 fs after the Gaussian-shaped 10-fs-long probe pulse.
This allowed us to separate the bound and dissociating parts
of the nuclear motion by introducing the internuclear distance
R1 as an effective range for the bound nuclear motion. R1 was
determined such that the probability current associated with
the dissociation of the molecular ion has relevant contributions
only for R > R1, whereas bound motion remained restricted
to distances R < R1 (Fig. 5). Fourier transformation of the
dissociating parts of the nuclear wave packets over the
interval [R1, Rmax] yields the momentum representations of
the dissociating wave packets in the adiabatic channel i,

	̃diss
i (P,T ) =

∫ Rmax

R1

dR 	diss
i (R,T )e−iPR, (13)

where Rmax is related to the size of the numerical grid and
R1 is of the order of 4 in our applications below. By inco-
herently adding the corresponding momentum distributions
ρ incoh

i (P,T ) = |	diss
i (P,T )|2, we obtained the pump-probe-

delay-dependent distribution of fragment KERs,

Cdiss(E,τ ) ∝
∑

i

ρ incoh
i (P,τ ), (14)

where E = P 2/2M is the kinetic energy per fragment, with M

being the nuclear mass. Subtracting the large incoherent static
contribution

Cdiss
incoh(E) = 1

T

∫ T

0
dτ Cdiss(E,τ ) (15)

FIG. 5. (Color online) (a) Probability density ρ(R,t) [Eq. (10)]
for O2

+ at fixed pump-probe delay τ = 10 fs for the a 4�u-f 4�g

two-state calculation. The yellow dashed line corresponds to R1 = 4.
The vibrational wave packet is considered purely dissociative and
propagated for 800 fs after the probe pulse. (b) Probability density
as a function of internuclear distance R at t = 800 fs (logarithmic
scale).

from Cdiss, we obtained the power spectrum as a function of
the beat frequency f = ω/2π ,

P diss(E,f ) =
∣∣∣∣
∫ T

0
dτ Cdiss

coh (E,τ )e−i2πf τ

∣∣∣∣
2

. (16)

We refer to this method as the “Fourier-transformation (FT)”
method.

After conducting single-curve calculations for several
potential curves of O2

+ and identifying adiabatic electronic
states, we solved the TDSE for the dipole-coupled a 4�u and
f 4�g , a 4�u and 4�+

g , and A 2�u and 2�+
g states in order

to investigate the dissociation channels involved. The best
match to the measured KER was obtained with the a 4�u-f 4�g

two-state calculation.
Figure 5(a) shows the probability density [see Eqs. (5)

or (10)] as a function of propagation time and internuclear
distance at a fixed pump-probe delay (τ = 10 fs) for a
calculation with two coupled states, a 4�u and f 4�g . In this
calculation we assumed that, initially, only the a 4�u state
is populated, through a Franck-Condon transition from the
ground state of O2. Physically, this assumption can be justified
by the fact that molecular ionization rates tend to be largest
for states of the molecular ion that are energetically closest
to the ground state of the neutral molecule. In our case this
favors the initial population of the X 2�g ground state of O2

+.
However, we also found that (i) the vibrational period in the
X 2�g state is not at all seen in the experimental spectra and
(ii) due to the strongly binding nature of this state, it does not
contribute to dissociation (for the range of laser parameters
we considered). In contrast, the next higher-lying bonding
a 4�u state of the molecular ion is shallow enough to strongly
contribute to dissociation and therefore is assumed to be the
(by far) most relevant populated initial state. Also, we found
that the KER spectra do not change if initially both a 4�u and
f 4�g states are equally populated. The delayed probe pulse
dipole couples the initial wave packet motion with the f 4�g

state. As mentioned above, for the KER spectra calculations
we took only the dissociative part of the wave packet into
account. The horizontal yellow dashed line indicates the
internuclear separation R1 = 4, beyond which the wave packet
is considered as purely dissociative. Figure 5(b) shows the
probability density on a logarithmic scale as a function of the
internuclear distance 800 fs after the pump pulse.

We investigated the effect of parameter R1 on the KER
spectra. The calculated KER, obtained using the FT method,
as a function of pump-probe delay is given in Fig. 6 for 10 fs,
3 × 1014 W/cm2 probe pulses and for R1 = 3 [Fig. 6(a)], R1 =
4 [Fig. 6(b)], R1 = 4.5 [Fig. 6(c)], and R1 = 5 [Fig. 6(d)].
From Fig. 5(b) one can see that for all values R1 > 4.5 the KER
spectra should give the same result. Indeed, the KER spectra
shown in Figs. 6(c) (R1 = 4.5) and 6(d) (R1 = 5) are almost
the same. We found that simulations with R1 = 4 yield the best
agreement with measured KER spectra (see Sec. IV below).

C. Comparison with the virtual detector method
for simulating KER spectra

In addition to the FT calculations, we also applied an
alternative, the so-called “virtual detector (VD)” method
for obtaining KER spectra [22]. This method allows the
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FIG. 6. (Color online) Calculated KER spectra for the dipole-
coupled states a 4�u and f 4�g as a function of pump-probe delay
for (a) R1 = 3, (b) 4, (c) 4.5, and (d) 5 for a 10 fs, 3 × 1014 W/cm2

probe laser pulse.

computation of fragment-momentum distributions without
propagating the wave packet over a large R interval. In these
VD calculations only, we used a grid length of Rmax = 40 with
spacing �R = 0.01 (Fig. 7). The VD covers the R interval
[RVD

min, RVD
max] = [6.5,16.5]. The calculation was carried out for

a total propagation time of 800 fs with time steps of �t = 1.
Applying the VD method, we calculated the momentum
expectation value of the fragments p(ti) in [RVD

min, RVD
max] at time

step ti . We then combined fragment momenta that fall into
small momentum bins in a histogram. From this histogram
we obtained the KER spectrum (see [22] for more details).
The KER spectrum obtained with the VD method in Fig. 8 is
almost identical with our results obtained using the FT method
for R1 = 4.5 [Fig. 6(c)].

D. Influence of a probe-pulse pedestal

Figure 9 shows calculated KER spectra for the same laser
parameters as in Fig. 8 using the FT method, with the exception
that R1 = 4 and a long Gaussian pedestal [12], with a length
of 100 fs and peak intensity 5 × 1011 W/cm2, is added to the
main pulse (Fig. 10). Due to the long pedestal a prominent
energy-dependent structure appears in the KER spectra. The
reason why the energy-dependent structure is present only
if a long pedestal is included can be explained based on
the relation δEδt � h. If only short pulses are present, the
resolution in energy is such that one cannot observe the
energy-dependent structure. On the other hand, if only

FIG. 7. Partitioning of the numerical grid into propagation, virtual
detector (VD), and absorption intervals. The VD covers the interval
[RVD

min, RVD
max].

FIG. 8. (Color online) KER for dipole-coupled a 4�u and f 4�g

states as a function of the pump-probe delay for calculations using
the VD method [22] and a 10 fs, 3 × 1014 W/cm2 probe laser pulse.

the pedestal of the probe pulse is present, the oscillatory
motion cannot be resolved [7]. For example, in order to resolve
energies up to 0.1 eV, corresponding to the vibrational energy
spacing in the a 4�u state, one needs to use pulses that are
longer than 45 fs. The time-dependent structure is due to
the periodic motion of the coherent vibrational wave packet
on the given O2

+ state (the oscillation period for the a 4�u

state is 33 fs; Table I). A fragment-kinetic-energy-dependent
structure in the KER spectra was predicted as being due to
photoionization of vibrational states [7,20].

IV. COMPARISON WITH EXPERIMENT

The calculated KER (14) as a function of the delay and
the corresponding power spectrum (16) as a function of the
QB frequency f for the a 4�u-f 4�g two-state calculation

FIG. 9. (Color online) KER as a function of pump-probe delay
for the calculations using the FT method described in Sec. III B
with R1 = 4. The probe pulse includes the Gaussian pedestal. The
parameters used for the main pulse were 10 fs, with a peak intensity
of 3 × 1014 W/cm2, and for the pedestal 100 fs and 5 × 1011 W/cm2

(propagated for 800 fs after the end of the probe).
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FIG. 10. (Color online) Schematic of the temporal profile of
pump and probe pulses.

are shown in Figs. 11(a) and 11(b) for a 10 fs probe pulse
with a peak intensity of 3 × 1014 W/cm2 and a 100 fs,
5 × 1011 W/cm2 Gaussian probe-pulse pedestal. Figures 11(c)
and 11(d) show the measured KER and power spectrum for a
pump-probe intensity of 3 × 1014 W/cm2 and a pulse duration
of 10 fs. The sampling time in the experimental spectrum in
Fig. 11(d) is T = 2000 fs; the revival time (not shown) 1200 fs
[7]. Comparison with the experimental results in Figs. 11(c)
and 11(d) shows that several features of the experimental data
are reproduced. The oscillatory structure, with a period near
33 fs, is similar to the experimental period near 34 fs. The
progressive tilt in the KER with increasing delay complies
with a slightly larger return time of the more energetic spectral
components of the vibrational wave packet and was noticed
earlier in the fragmentation of D2

+ [3,13,14,23] and O2
+ [7]:

a nuclear wave packet with dominant spectral contribution
from low-lying vibrational states oscillates faster than a
vibrationally warmer wave packet (corresponding to higher
KER), causing the KER structure to tilt toward larger delays
for larger KERs. The difference in the classical oscillation
periods [24] that correspond to wave-packet components
centered around ν = 11 and 13 vibrational states amounts to
∼2.5 fs. This is consistent with the oscillation period difference
between the peaks on energy cuts at 0.13 and 0.32 eV in
the calculated KER spectra. However, the same difference in
oscillation periods is obtained from the measured data for 0.14
and 0.25 eV.

FIG. 11. (Color online) (a), (b) Calculated and (c), (d) measured
[7] KER spectra for O2

+ as a function of (a), (c) pump-probe delay
and (b), (d) frequency f . Calculated KER spectra include dipole
coupling of the a 4�u and f 4�g states by the 10-fs probe laser pulse
with 3 × 1014 W/cm2 peak intensity and a 100 fs, 5 × 1011 W/cm2

Gaussian pedestal. The power spectra in (b) and (d) are obtained for
a sampling time of 2 ps.

FIG. 12. (Color online) (a) Franck-Condon amplitudes {|aν |2} for
the vertical ionization from the ground state of O2 to the a 4�u state of
O2

+. (b) Delay-integrated focal-volume-averaged KER as a function
of the pump-probe delay, with a main pulse length of 10 fs and a
Gaussian pedestal length of 100 fs and for R1 = 4. The focal-volume
average is performed for peak intensities of the probe pulse between
1013 and 4 × 1014 W/cm2, with a fixed ratio of the peak intensities
of the main pulse and pedestal of 0.01. (c) Delay-dependent focal-
volume-averaged KER spectrum.

For better comparison with the measured KER we focal-
volume averaged our calculations for the intensity range 1013

to 4 × 1014 W/cm2 with steps of 1013 W/cm2, keeping the
ratio between the peak intensities of the main pulse and the
pedestal constant, according to

Cdiss(E,τ ) = 1

N

N∑
n=1

Cdiss(In; E,τ ),

where Cdiss is given by (14) (Fig. 12). The volume-averaging
effect on the energy-dependent structure is small. As in Figs. 9
and 11(a), the energy-dependent structure, with a spacing
of approximately 0.1 eV, is still seen in the focal-volume-
averaged result [Fig. 12(b)], where the separation between the
peaks corresponds to the kinetic energies from the vibrational
states in the a 4�u electronic state: ν = 10 (0.03 eV), ν = 11
(0.13 eV), ν = 12 (0.23 eV), ν = 13 (0.32 eV), and ν = 14
(0.41 eV). The expected KERs in the brackets are calculated
as the dissociation energy limit of the a 4�u state subtracted
from the sum of the given vibrational level and photon
energy. The vibrational state ν = 10 of the a 4�u state is
energetically just above the dissociation limit of the f 4�g-ω
field-dressed Floquet potential-energy curve. Fig. 12(a) shows
the Franck-Condon amplitudes {|aν |2} for vertical ionization.
The population decreases as the vibrational quantum number
increases. Thus, we conclude that the origin of the energy
structure likely arises from the vibrational states as predicted
in Refs. [7,20].

V. SUMMARY

We developed a method for identifying the adiabatic elec-
tronic states involved in the dissociation of small molecules.
We first calculated adiabatic potential curves and electric
dipole-coupling matrix elements with the quantum chemistry
code GAMESS. Next, we calculated nuclear probability-density
spectra as a function of time and QB frequency for one
molecular potential curve at a time and compared calculated
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revival times and beat frequencies with experimental data.
After identifying relevant electronic states, we included laser-
induced dipole coupling in improved wave-packet propagation
calculations and again compared resulting KER spectra with
experimental data [7]. We applied this scheme to O2 molecules.
After separately employing different combinations of elec-
tronic states of O2

+ in our calculations, we concluded that
the a 4�u and f 4�g states are key players in the dissociation
dynamics, as the calculated and measured KER are similar,
with matching oscillation periods and revival times (not shown
in Fig. 11).

Calculating KER spectra in nuclear wave-packet propaga-
tion calculations based on the Fourier-transformation method
discussed in Sec. III B and the virtual detector method in
Sec. III C, we obtained almost identical results. KER calcula-
tions including long probe-pulse pedestals were found to add
an energy-dependent structure that is reminiscent of - but does
not clearly reproduce - the energy dependence in measured
KER spectra. The interpretation of this observed energy
dependence remains a challenge for future investigations.
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APPENDIX

1. Choice of basis functions

Atomic orbitals (AO) are modeled as Gaussian functions
centered at each nuclei of the diatomic molecule (or molecular
ion). These AO orbitals are linearly combined to form MOs
with a set of expansion coefficients {Ci}. The MOs are
multiplied with electron-spin orbitals and combined to make
Slater determinants in order to satisfy the Pauli exclusion
principle. The CSF wave functions are equivalent to these
Slater determinants (once the coefficients {Ci} have been
optimized). The CSF wave functions are linearly combined
to create the MC wave function with coefficients {Ak}.
The expansion coefficients {Ci} and {Ak} are determined
simultaneously based on a variational principle [11].

The appropriate choice of basis functions is important for
the accuracy of the calculated potential curves. The basis set
is the set of (mathematical) functions (for example Gaussians)
from which the WF is constructed. Since HF and MCSCF
methods are variational, larger basis sets usually lead to more
accurate results. The basis set with two Gaussians on each
AO is called a “double-ζ” basis. The higher the number of
Gaussians used for each AO is, the more complete the basis is
(multiple-ζ basis set). We used the Dunning-type correlation-
consistent polarized valence triple-ζ basis set (cc-pVTZ) [25].
The Dunning-type basis set is an example of a multiple-ζ basis
set. The correlation-consistent part of the name indicates that
the basis set was optimized for calculations including electron
correlation through excited CSFs.

TABLE II. Electronic configurations (molecular orbitals with
occupancy) of the calculated MCSCF states of O2

+.

Main electronic configuration

State 1σg 1σu 2σg 2σu 3σg 1πu 1πg 3σu

X 2�g 2 2 2 2 2 4 1 0
a 4�u 2 2 2 2 2 3 2 0
A 2�u 2 2 2 2 2 3 2 0
b 4�−

g 2 2 2 2 1 4 2 0
f 4�g 2 2 2 2 2 2 3 0
4�+

g 2 2 2 2 1 4 2 0

2. Configuration state wave functions

The MCSCF WFs were optimized with the
[(1σg)2(1σu)2(2σg)2(2σu)2] “frozen core,” meaning that
the occupations of those MOs were not allowed to vary. The
calculations were done for fixed internuclear separations R

with steps of 0.02 Å. Dipole-coupling matrix elements for
different R were calculated including configuration interaction
within the graphical unitary group approach (GUGA) [26].

The ground state of the oxygen molecule has the con-
figuration [(1σg)2(1σu)2(2σg)2(2σu)2](3σg)2(1πu)4(1πg)2. A
large number of final molecular ion states with different
multiplicities and symmetries can be generated after valence
photoionization. Some of these states are given in Table II,
which shows the main configurations that contribute more
than 70% to the norm of the MCSCF WF. GAMESS outputs
only designate electronic configurations. To link the calculated
potential curves and dipole-coupling matrix elements to a
given MCSCF state, we used Table II.

The MCSCF process minimizes energy using the varia-
tional principle. “Root switching” can be a problem if two
states are close in energy and MO and CSF coefficients are
only optimized for one MCSCF state. To avoid this problem,
we carried out state-averaged MCSCF calculations [27], where
MO orbitals are optimized not for any one state energy Ej

(which is usually the ground state), but for the average of two
or more states E = ∑N

j wjEj , where N is the number of states
(in our case 14) included in the average and the coefficients
wj are positive constants with normalization

∑
j wj = 1. The

MCSCF WFs are optimized to minimize the energies Ej . The
number of MOs used in the variation space was 60; the number
of the Cartesian Gaussian basis functions (atomic orbitals)
used was 70. In MCSCF calculations, the specification of
how many MO are occupied is crucial. One needs to specify
the so-called active space. MCSCF active-space choices are
often abbreviated as “(m,n),” where m is the number of active
electrons and n is the number of orbitals. As an active space
we used MCSCF (7, 6) for O2

+. The six orbitals are the σ , π ,
σ*, and π* orbitals of O2.

3. Geometry optimizations

When performing computations, it is important to
understand the geometry of the molecule since many of the
physical and chemical properties of the molecule depend
on it. We optimized the molecular geometry of neutral
(equilibrium internuclear distance of 1.152 Å) and singly
charged (equilibrium internuclear distance of 1.087 Å) oxygen
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molecules using restricted open-shell SCF WFs, where the
occupation of closed shells by the electrons is assumed to be
fixed, with the WFs represented as a single Slater determinant.
“Restricted” indicates that the spin-up and spin-down orbital

coefficients in the expansion and energies are the same. The
symmetry used was D4h for the linear molecule with inversion
center [28] since the full D∞h point group is not supported in
GAMESS.
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