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Abstract. The rapid ionization of D2 in a short and intense laser pulse generates
a rotational–vibrational (RV) nuclear wave packet in D+

2 . By solving the time-
dependent Schrödinger equation in full dimensionality, we simulate the coherent
evolution of such wave packets and discuss their ro-vibrational dynamics. Within
a harmonic time-series analysis of the evolving nuclear probability density, we
characterize the RV dynamics in D+

2 in an external intense linearly polarized
infrared laser field in terms of quantum-beat (QB) spectra in which both
internuclear distance and molecular orientation relative to the linearly polarized
laser field are resolved. Based on numerical examples for the nuclear dynamics
without and under the influence of pulsed and continuum-wave (cw) laser light,
we discuss and quantify the signature of RV couplings in QB spectra and the
extent to which the QB analysis of measured time-dependent fragment kinetic
energy release spectra is expected to image the laser-dressed RV structure of D+

2 .
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1. Introduction

Within the past decade, intense ultrashort laser pulses with intensities in excess of 1015 W cm−2

and durations of a few optical cycles have become available in many basic-research laboratories
worldwide as valuable tools for time-resolved investigations of the bound and free (dissociating)
motion of nuclei in excited molecules [1]–[14]. Such ultrashort laser pulses are being used in
a rapidly increasing number of pump–probe experiments that destructively image the nuclear
motion inside (small) molecules. In such experiments, a first short laser pulse, the pump
pulse, has a bandwidth covering several rotational and vibrational excited molecular states,
and generates a coherent ro-vibrational nuclear wave packet either in the neutral molecule or,
following ionization, in the molecular ion. The time evolution of this nuclear wave packet
is subsequently imaged with a second short, time-delayed, probe laser pulse. This second
pulse quickly ionizes the excited molecule (or molecular ion), leading to its fragmentation by
‘Coulomb explosion’ (CE) [15, 16]. Rapid ionization (on the time scale of nuclear motion) by
the probe pulse followed by the detection of the energy distribution of molecular fragments is the
basic idea behind the CE-imaging technique that allows the reconstruction of nuclear dynamics:
repeating these excitation (pump) and delayed CE (probe) steps for a sequence of pump–probe
delay times τ provides a time series of kinetic energy release (KER) spectra [4]–[6], [17]–[19].
This sequence constitutes a ‘molecular movie’ that captures the temporal evolution of the
nuclear probability density as a function of nuclear positions. Such ‘movies’ were shown
experimentally to reveal, for example, the classical motion of nuclear wave packets’ center of
mass, as well as purely quantum mechanical effects, such as cycles of wave packet dephasing
and revival [4, 6, 12, 17, 18, 20], in agreement with theoretical predictions [15].

Experiments that resolve in time the coherent nuclear motion are most conveniently
performed and analyzed for diatomic molecules for which CE imaging can accurately map
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the distribution of internuclear distances R in the excited molecule (or molecular ion). This
promotes our understanding of the evolution of a variety of molecular phenomena that are
triggered by intense laser pulses, such as vibrational-state-resolved dissociation, ionization
followed by fragmentation, the decoherence and dephasing of nuclear wave packets, and the
transient formation of laser-induced bound molecular states ([10, 21, 22] and references therein).
In particular, the most elementary molecules, H+

2 and its isotopologues, are accessible to, and
frequent targets of, experimental studies [4, 6, 7, 12], [17]–[19], and can be described in
accurate calculations [16], [23]–[27]. While most experimental and theoretical investigations
have studied molecular dynamics as a function of time and internuclear separation, recent
experimental [10] and theoretical [21] investigations have found that much can be learned
from a frequency analysis of the evolution of the excited nuclear wave function. As was
shown previously in numerical simulations that neglect molecular rotation, Fourier analysis
of a time series of spectral data over a finite interval of pump–probe delays τε[0, T ] yields
R-dependent quantum-beat (QB) spectra that reveal the nodal structure of bound vibrational
states of the lowest adiabatic potential curve of the molecular ion, together with the
corresponding vibrational transition energies. This offers the prospect of imaging laser-dressed
molecular potential curves [10, 21].

In the present work, we extend earlier investigations [10, 21, 28, 29] of laser-induced
coherent nuclear dynamics in D+

2 by adding molecular rotation [26, 27]. We significantly
expand our previous exploratory work [27] on ro-vibrating D+

2 molecules by presenting and
discussing details of our calculation and spectral analysis, by considering a large range of QB
frequencies, and by varying both laser intensity and pulse lengths from 1013 to 1014 W cm−2 and
25 fs to continuum wave (cw), respectively. The paper is structured as follows. In section 2.1,
we describe our model for the interaction of one-electron diatomic molecular ions with an
intense linearly polarized laser electric field. In section 2.2, we review our numerical method
for solving the time-dependent Schrödinger equation (TDSE) which, in essence, combines the
split-operator numerical propagation of adiabatic nuclear wave functions (with regard to R) and
a basis-set expansion (with regard to the angle between the molecular axis and the laser electric
field vector). Next, in section 2.3, we define QB spectra and discuss some of their general
properties for the propagation of an initial ro-vibrational wave packet in a diatomic molecule
without and under the influence of an external (pulsed or continuous) laser electric field. We
conclude section 2 by modeling in section 2.4 the initial ro-vibrational nuclear wave packet in
D+

2 that results from the ionization of the neutral parent molecule (D2) in an ultrashort intense
pump laser pulse.

Numerical applications for the QB analysis of D+
2 follow in section 3. The undistorted (free)

evolution of the pump-laser-generated nuclear wave packet is examined in detail in section 3.1.
However, instead of only following the evolution of the ro-vibrational probability density in
time (see figure 1), we also study its frequency decomposition. This allows us to illustrate
and distinguish rotational and vibrational effects and to quantify ro-vibrational couplings in
QB spectra. Next, in section 3.2, we consider the ro-vibrational dynamics in D+

2 in a ‘probe
pulse pedestal’ in comparison with the field-free results of section 3.1. With such a pedestal,
we attempt to model the influence a realistic probe pulse has on the nuclear evolution prior to
destructively imaging the probability density of molecular ions. In section 3.3, we consider
the interaction of the molecular ion with a cw laser field. Our analysis of the coupling of
rotational and vibrational motion during the evolution of the nuclear wave packet in section 3 is
facilitated by comparisons with both previous investigations [10, 21] that disregard molecular
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Figure 1. Snapshots of the nuclear-density evolution for the field-free
propagation of a ro-vibrational nuclear wave packet in D+

2 . Top: first vibrational
period at times 0, 6, 12, 18 and 24 fs. Middle: vibrational revival at times 564,
571, 578, 585 and 592 fs. Bottom: rotational revival at times 11 035, 11 140,
11 255, 11 380 and 11 494 fs.

rotations, and with the limiting cases of rigid rotors and aligned molecular ions. In section 3.5,
we investigate the dependence of QB spectra for the ro-vibrating D+

2 molecular ion on laser
intensity and pulse length. Our conclusions are given in section 4.

We use atomic units throughout this work, unless otherwise indicated, and designate the
vibrational ground states of D2 and D+

2 with the index ν = 0 and excited states with ν > 1.

2. Theory

2.1. Formal solution of the time-dependent Schrödinger equation

After separating the center-of-mass motion, the TDSE of the D+
2 molecular ion in a laser field is

given by

i
∂

∂t
ψ( ER, Er , t)= Ĥψ( ER, Er , t). (1)

The vector ER identifies the internuclear distance, Er the electronic coordinate in the center-of-
mass system (CMS), and the Hamiltonian can be written as

Ĥ = T̂ + Ĥ el(Er; ER)+ ε(t)z,
(2)

Ĥ el(Er; ER)=
Êp

2

2
+

1

| ER|
−

1

|Er −
1
2

ER|
−

1

|Er + 1
2

ER|
,

where the operator ÊT relates to the kinetic energy of the relative motion of the nuclei and Êp to
the momentum of the electron. The laser electric field

ε(t)= ε0 f (t) cosωLt (3)
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is assumed to be linearly polarized along the z-direction and is expressed in terms of the carrier
frequency ωL, the maximal field amplitude ε0 and the envelope function f (t).

We numerically solve the electronic Schrödinger equation,

Ĥ el(Er; ER)ϕi(Er; ER)= Ei(R)ϕi(Er; ER), (4)

separately for a large number of fixed internuclear distances, in order to obtain the adiabatic
electronic wave functions {ϕi} and the corresponding energy surfaces, {Ei(R)}. The expansion
of the total wave function in (1) in terms of the complete set of electronic wave functions,

ψ( ER, Er , t)=

∑
i

�i( ER, t)ϕi(Er; ER), (5)

defines the nuclear wave functions {�i( ER, t)}. Inserting this Born–Oppenheimer (BO) expan-
sion into (1), followed by projection on to individual adiabatic electronic states, leads to a set
of coupled differential equations for the nuclear wave functions. By neglecting the non-BO
couplings, ∫

d3rϕ∗

j (Er; ER) E∇Rϕi(Er; ER) (6)

and ∫
d3rϕ∗

j (Er; ER)1Rϕi(Er; ER), (7)

while retaining all couplings induced by the laser electric field (in dipole approximation for the
electric field),

ε(t)di j( ER)= ε(t)
∫

d3rϕ∗

i (Er; ER)zϕ j(Er; ER), (8)

the contact transformation

�i(R, θ, t)=
4i(R, θ, t)

R
(9)

allows the set of differential equations for the components of the nuclear wave function

E4(R, θ, t)= (41(R, θ, t),42(R, θ, t), . . .) (10)

to be written as

i
∂

∂t
E4(R, θ, t)= (T̂ + Ê(R)+ D̂(R, θ, t)) E4(R, θ, t). (11)

This equation includes the nuclear kinetic energy

T̂ = −
1

2µ

∂2

∂R2
+

ÊL
2

2µR2
, (12)

with reduced mass µ, the nuclear angular momentum operator

ÊL
2

=
1

R2 sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

R2 sin2 θ

∂2

∂ϕ2
, (13)
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and the matrix representations in the set of adiabatic electronic wave functions {ϕi} of the energy
operator Ê(R),

Ei j(R)= Ei(R)δi j , (14)

and the dipole transition operator D̂(R),

Di j(R)= di j(R, θ)ε(t). (15)

We truncate this system of infinitely many coupled differential equations, assuming that only
the few lowest potential surfaces are populated and noticeably coupled by the interaction with
the laser field. This results in a finite and numerically accessible system. In general, this
neglect of non-BO couplings that would populate higher potential surfaces is justified since
nuclear motion occurs on a much slower time scale than electronic motion. We note, however,
that this approximation may break down near avoided crossings of two BO-potential surfaces
where electronic wave functions change in character and depend more sensitively on nuclear
coordinates.

By formulating the set of equations (11), we represented the nuclear wave functions in
spherical coordinates. Due to cylindrical symmetry about the internuclear axis, the angular
momentum Pϕ (related to the last term in (13)) is conserved. Therefore, the nuclear molecular
wave functions {4i(R, θ, t)} depend solely on ϕ, the angle designating the rotation of ER about
the laser electric field vector, through the factor eimϕ.

2.2. Numerical propagation of nuclear wave functions

We calculated the adiabatic potential surfaces Ei(R) in (4) and the corresponding dipole
transition moments (8) using the code dymol [30] based on an expansion in atomic s, p
and d orbitals centered at the two nuclei [31]. At each nucleus, we used 59 basis functions.
The BO surfaces were calculated for internuclear distances from R = 1 to R = 10 with a
step size of 1R = 0.1 and additional points at R = 11, 12, . . . , 15. Comparing the calculated
surfaces with [32], we found deviations of the order of 10−5. As another test of our numerical
accuracy, we investigated the behavior of adiabatic potential energy surfaces and dipole
couplings at large internuclear distances. We verified that in this limit (i) our calculated
surfaces are eigenstates of the H atom and (ii) the dipole moment induced by σg − σu coupling
becomes R/2, while (iii) the σg −πu dipole moment assumes the value of the atomic 1s–2p
coupling.

We propagate the vector of nuclear wave function components E4(R, θ, t) using the split
operator method [29, 33] implemented in the code WavePacket [34] and approximate the time-
evolution operator by a product of exponential operators:

E4(R, θ, t +1t)= e−i
∫ t+1t

t dt ′ Ĥ(t ′) E4(R, θ, t)

≈ e−iÊ(R)1t/2 e−iD̂(R,θ,t)1t/2 e−iT̂1t e−iD̂(R,θ,t)1t/2 e−iÊ(R)1t/2 E4(R, θ, t)+O(1t3).

(16)

We choose1t small enough so that Ĥ can be assumed to be time independent in the small time
intervals [t, t +1t] and evaluate the Hamiltonian at the point t of each interval. For all numerical
applications in this work, we included the three lowest potential surfaces Ei(R), i = 1, . . . , 3
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corresponding to the adiabatic electronic states ϕi , i = 1, . . . , 3 with symmetries σg, σu and πu,
respectively. For more details on our numerical method, see appendices A and B.

2.3. Quantum-beat spectra

In this section, we describe our computation of ro-vibrational QB spectra based on the nuclear
probability densities {|4i(R, θ, t)|2}. Following our definition of power spectra and spectral
line strengths in section 2.3.1, we analyze these quantities for the special cases of field-free
propagation (section 2.3.2) and propagation of ro-vibrational nuclear wave packets in cw laser
fields (section 2.3.3).

2.3.1. Power spectra and line strengths. Due to the orthogonality of the electronic wave
functions ϕi defined in (4), the nuclear probability density is the sum of the densities on each
BO surface:

%(R, θ, t)=

∑
i

|4i(R, θ, t)|2. (17)

Subtracting the time-independent finite-time average

%̄(R, θ)=
1

T

∫ T

0
dt %(R, θ, t) (18)

from the density, we obtain

c(R, θ, t)= %(R, θ, t)− %̄(R, θ). (19)

By subtracting %̄, all time-independent terms are removed. This is desirable, because (i) these
static terms do not describe transitions between ro-vibrational states and (ii) they would lead
to a huge background in the power spectra near frequencies f = 0. Fourier transformation over
the finite sampling time T results in the complex-valued probability density

c̃(R, θ, f )=

∫ T

0
dt c(R, θ, t) e−i2π f t . (20)

The density c̃(R, θ, f ) leads to the following spectra, which constitute the main subject of
our numerical applications below. While the fully differential power spectrum is given by
|c̃(R, θ, f )|2, for illustrative purposes it is advantageous to define the R- and θ -dependent power
spectra

A(R, f )=

∣∣∣∣∫ dθ sin(θ)c̃(R, θ, f )

∣∣∣∣2

(21)

and

W (θ, f )=

∣∣∣∣∫ dR c̃(R, θ, f )

∣∣∣∣2

, (22)

respectively, and the corresponding spectral line intensities

A ( f )=

∫
dR A(R, f ) (23)

and

W ( f )=

∫
dθ sin(θ)W (θ, f ). (24)
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2.3.2. Field-free propagation. Without laser interactions, the Hamiltonian (2) is time
independent and allows the separation of temporal and spatial parts in the stationary nuclear
wave functions of the D+

2 molecular ion. Assuming that the ro-vibrational wave packet is initially
on the BO ground-state surface E1(R), and because of our neglect of weak non-BO couplings
mentioned earlier, we only need to consider the nuclear wave function 41(R, θ, t). We expand
this wave packet in terms of stationary vibrational states χν,l(R) and rotational wave functions
(Legendre polynomials) Pl(θ),

41(R, θ, t)=

∑
ν,l

aνl e−iEνl tχν,l(R)Pl(θ), (25)

where the ro-vibrational energies are designated as Eνl .
The vibrational and rotational wave functions satisfy the orthogonality relations∫ π

0
dθ sin θ Pl(θ)Pl ′(θ)= δl,l ′ (26)

and ∫
∞

0
dR χνl(R)χ

∗

ν′l ′(R)=

{
δν,ν′, for l = l ′,

Sνl,ν′l ′, for l 6= l ′.
(27)

Following the general procedure given in the previous subsection, we remove all diagonal
terms (ν = ν ′ and l = l ′) by subtracting the time-independent finite-time average and obtain

c(R, θ, t)= %(R, θ, t)− %̄(R, θ)

=

∑
ν 6=ν′,l 6=l ′

aνla
∗

ν′l ′χνl(R)Pl(θ)χ
∗

ν′l ′(R)Pl ′(θ)e
−i(Eνl−Eν′l′ )t

+
∑
ν,l 6=l ′

aνla
∗

νl ′χνl(R)χ
∗

νl ′(R)Pl(θ)Pl ′(θ)e
−i(Eνl−Eνl′ )t

+
∑
ν 6=ν′,l

aνla
∗

ν′lχνl(R)χ
∗

ν′l(R)P
2
l (θ)e

−i(Eνl−Eν′l )t . (28)

Fourier transformation over the finite time interval [0, T ] yields the complex-valued function

c̃(R, θ, f )=

∫ T

0
dt c(R, θ, t) e−i2π f t

=

∑
ν 6=ν′,l 6=l ′

aνla
∗

ν′l ′χνl(R)Pl(θ)χ
∗

ν′l ′(R)Pl ′(θ)δT ( fνl,ν′l ′ − f )

+
∑
ν,l 6=l ′

aνla
∗

νl ′χνl(R)χ
∗

νl ′(R)Pl(θ)Pl ′(θ)δT ( fνl,νl ′ − f )

+
∑
ν 6=ν′,l

aνla
∗

ν′lχνl(R)χ
∗

ν′l(R)P
2
l (θ)δT ( fνl,ν′l − f ), (29)

where δT ( f )=
∫ T

0 dt e−i2π f t and 2π fνl,ν′l ′ = Eνl − Eν′l ′ .
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Integrating |c̃(R, θ, f )|2 over either θ or R, while taking advantage of orthogonality
relations (26) and (27), we obtain the R- and θ -dependent power spectra

A(R, f )=

∣∣∣∣ ∑
ν 6=ν′,l

aνla
∗

ν′lχνl(R)χ
∗

ν′l(R)δT ( fνl,ν′l − f )

∣∣∣∣2

(30)

and

W (θ, f )=

∣∣∣∣ ∑
ν,l 6=l ′

aνla
∗

νl ′ Sνl,νl ′ Pl(θ)Pl ′(θ)δT ( fνl,νl ′ − f )

+
∑

ν 6=ν′,l 6=l ′

aνla
∗

ν′l ′ Sνl,ν′l ′ Pl(θ)Pl ′(θ)δT ( fνl,ν′l ′ − f )

∣∣∣∣2

, (31)

respectively.

2.3.3. Propagation in a continuum-wave laser field. When the molecular ion is exposed to a
cw laser field, the expansion (25) of the wave function in terms of the stationary vibrational
and rotational eigenfunction is no longer appropriate, since the Hamiltonian now depends on
time and molecular orientation. Owing to the time periodicity of the Hamiltonian, however, we
can apply Floquet theory [35] to expand the molecular wave function ψ( ER, Er , t) in (5) in terms
of laser-electric-field-dressed adiabatic (Floquet) states {ui,κ} that diagonalize the interaction of
the molecular ion with the laser electric field. The evolution of nuclear wave functions {4̂i} on
individual time-independent laser-dressed (Floquet) potential surfaces can then be written as

4̂i(R, θ, t)=

∑
κ

ai,κ e−iEi,κ tui,κ(R, θ). (32)

Note that, similarly to (25), we expand 4̂i in ro-vibrational states ui,κ(R, θ) with energies Ei,κ

on each Floquet potential surface. The label i identifies a given Floquet surface, and the index
κ collectively specifies ro-vibrational quantum numbers.

As in sections 2.3.1 and 2.3.2, we remove all time-independent terms from the probability
density (17). For the present case, this is achieved by omitting all diagonal terms in κ . Adding
the contribution from all adiabatic Floquet surfaces, we obtain

c(R, θ, t)=

∑
i,κ 6=κ ′

ai,κa
∗

i,κ ′ui,κ(R, θ)u
∗

i,κ ′(R, θ) e−i(Ei,κ−Ei,κ′ )t . (33)

Fourier transformation in analogy to (28) results in

c̃(R, θ, f )=

∑
i,κ 6=κ ′

ai,κa
∗

i,κ ′ui,κ(R, θ)u
∗

i,κ ′(R, θ)δT ( fi,κ,κ ′ − f ), (34)

where fi,κ,κ ′ = (Ei,κ − Ei,κ ′)/2π are the QB frequencies on a given Floquet surface i between
ro-vibrational states κ and κ ′.

In contrast to the field-free result (29), the non-separable dependence of the Hamiltonian
in each Floquet channel on R and θ discourages an expansion in products of vibrational and
angular eigenfunction, and thus the simplifying orthogonality relations (26) and (27) are not
applicable. In comparison with the field-free power spectra (30) and (31), this will complicate
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the interpretation of the R- and θ -dependent QB spectra in a cw laser field,

A(R, f )=

∣∣∣∣ ∑
i,κ 6=κ ′

ai,κa
∗

i,κ ′δT ( fi,κ,κ ′ − f )
∫

dθ sin(θ)ui,κ(R, θ)u
∗

i,κ ′(R, θ)

∣∣∣∣2

(35)

and

W (θ, f )=

∣∣∣∣ ∑
i,κ 6=κ ′

ai,κa
∗

i,κ ′δT ( fi,κ,κ ′ − f )
∫

dR ui,κ(R, θ)u
∗

i,κ ′(R, θ)

∣∣∣∣2

. (36)

2.4. Initial vibrational and rotational distributions

We model the initial nuclear wave function of the molecular ion by assuming its separation into
a solely R- and a solely θ -dependent factor,

41(R, θ, t = 0)=

∑
ν

aν,l=0χνl(R)
∑

l

bl Pl(θ). (37)

The coefficients aν,l=0 are obtained as the results of a Franck–Condon (FC) transition from the
electronic and vibrational ground state of the non-rotating D2 molecule to the electric ground
state of D+

2 . In practice, we find these coefficients by modeling the ground state D2 nuclear wave
function as a Gaussian centered at the equilibrium distance R = 1.4 of D2, whose width we
adjust to the ground-state vibrational energy of the neutral molecule.

We model the initial angular wave function as a Boltzmann distribution at a rotational
temperature of 250 K. We use real expansion coefficients that are given by the square roots of
Boltzmann factors,

bl =

√√√√ e−
l(l+1)

2m R2kT∑
l ′=0,2,4 e−

l′(l′+1)
2m R2kT

, l = 0, 2, 4, (38)

and assume D2 molecules with net nuclear spin I = 0, allowing only for even values of l.
Since the occupation of rotational states with l > 4 is negligible at the considered rotational
temperature, we only include the lowest even values for l. The top left graph of figure 1 shows
the initial ro-vibrational probability density corresponding to (37).

3. Numerical results

3.1. Quantum-beat spectra for field-free propagation

We first discuss the transition spectra of the D+
2 molecular ion without a laser field. In this case,

the nuclear wave function components 4i remain uncoupled. Assuming that nuclear motion is
initiated in the lowest electronic state of the molecular ions, we can restrict our discussion to
the nuclear wave function component 41. Figure 1 shows snapshots of the field-free evolution
of nuclear probability density.

Figures 2–4 reveal the power spectra A(R, f ) and W (θ, f ), together with the
corresponding line intensities A ( f ) and W ( f ). Figures 2(a) and (b) display results for
molecular ions that are initially aligned with the laser polarization and do not rotate. All other
results in figures 2–4 are calculated for freely rotating molecular ions, starting with the coherent
initial state (37).
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Figure 2. Power spectra A(R, f ) (a) and (c), W (θ, f ) (e), and corresponding
spectral line intensities A ( f ) (b) and (d) and W ( f ) (f) for field-free evolution
of an aligned (a, b) and rotating (c–f) D+

2 molecular ion.

Figure 3. Zoom into specific frequency ranges of figures 2(c)–(f).
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Figure 4. Zoom into specific low-frequency ranges of figures 2(e) and (f).
Vibrational quantum numbers are indicated by short vertical lines in (b) and (d).

Figures 2(a)–(d) show QBs between adjacent vibrational states with1ν = 1 below 48 THz,
a series of QBs with 1ν = 2 below 92 THz, and a weak background of ‘intruder’ lines
corresponding to series of QBs with 1ν > 3. As we can see in figures 2(c) and (d) and 3(a)
and (b), every vibrational transition ν → ν ′ is split into multiple lines that correspond to different
rotational states l in (30). These lines display ro-vibrational couplings, because the energies Eνl

of the system cannot be written as a sum of vibrational and rotational energies (Eνl 6= Eν + El).
If the energies Eνl could be written as a sum of vibrational and rotational energies, these
ro-vibrational manifolds would collapse to just one line at the frequency 2π fνl,ν′l = Eνl −

Eν′l = (Eν + El)− (Eν′ + El)= Eν− Eν′ . To understand which vibrational transition belongs to
which l, we add the centrifugal kinetic energy l(l + 1)/(2µR2) to the ground-state BO surface to
obtain the effective potential Veff(R)= E1(R)+ l(l + 1)/(2µR2). In this potential, the distances
between consecutive vibrational eigenenergies for larger l are smaller, such that the transition
frequencies fνl,ν′l decrease with increasing l. Therefore, vibrational transitions for larger l can
be found at lower frequencies. The spacing between two neighboring rotational lines increases
with increasing l, since l(l + 1)/(2µR2) depends quadratically on l.

To support the statements of the previous paragraph, figures 3(a) and (b) take a closer
look at the three vibrational transitions (0 → 1, 1 → 2 and 2 → 3) in the frequency interval
between 42 and 48 THz. The plots show that each vibrational transition appears three times. This
results from the construction of the initial wave function (37), where only small l(= 0, 2, 4) are
included. If more rotational states were initially populated, one would observe a larger number
of lines in these spectra. Note that the distance between two neighboring lines increases with l.

Before discussing the θ -dependent power spectra, we examine the overlap matrix

Sνl,ν′l ′ =

∫
∞

0
dR χνl(R)χ

∗

ν′l ′(R) (39)

defined in (27). The stationary vibrational states are obtained by solving the Schrödinger
equation (

d2

dR2
+ E1(R)+

l(l + 1)

2µR2

)
χνl(R)= Eνlχνl(R). (40)

For small values of 1l = l − l ′ (which is the case for our initial wave function), the overlap
Sνl,νl ′ with l 6= l ′ of two vibrational states will be close to one, since their effective potentials
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E1(R)+ l(l+1)
2µR2 do not differ by much. For the same reason, the overlap Sνl,ν′l ′ with ν 6= ν ′ and

l 6= l ′ will be close to zero.
The θ -dependent spectra (31) consist of two parts. The first part (first line in (31))

describes the pure rotational beats, whereas the second part (second line in (31)) describes
ro-vibrational beats. The first part is dominant, because the second contains overlap integrals
of different vibrational states that are close to zero. By looking at the spectral line intensity
W ( f ) (figure 2(f)), we can clearly identify these two parts: in the dominant frequency range
( f < 10 THz), the intensity is two orders of magnitude higher than for the remainder of the
spectrum ( f > 10 THz).

After these preliminary remarks, we can analyze the dominant part of the θ -dependent
spectra, starting with figure 4, which maps l → l ′ rotational transitions in W (θ, f ) and W ( f ).
As shown in (31), there is a series of rotational transitions with a different nodal structure for
every vibrational state ν. The transition frequencies fνl,νl ′ for a fixed 1l (= l − l ′) decrease
for increasing ν. This can be understood by means of some basic considerations. For a given
angular momentum and mass, the rotational energy l(l + 1)/(2µR2) of a rigid rotor decreases
with R−2. Thus, the expectation value of R−2 in the electronic ground state decreases for
increasing vibrational excitation ν. This means that the ro-vibrational transition frequency for a
higher vibrational state is lower than for a lower vibrational state. Note that all these lines would
coincide if there were no ro-vibrational coupling.

Figures 4(a) and (b) zoom in on the ro-vibrational QB lines of figures 2(e) and (f) in the
energy interval between 0.2 and 3 THz for l = 0 → 2 transitions. We recall that the initial D+

2
wave function was assumed to be the result of an FC transition from D2, yielding a relatively
broad vibrational states distribution. We also recall that the molecular ion is assumed to be rather
cold rotationally. Due to this particular choice of the initial nuclear wave packet in the present
study, there are many more ‘vibrational satellite’ lines for a given 1l than there are ‘rotational
satellite’ lines for any given 1ν. This is clearly seen by comparing figures 3(a) and 4(a). The
ordering of the l = 0 → 2 QB lines in figure 4(a) is such that the vibrational satellite lines for the
vibrational ground state (ν = 0) have the highest frequency. Vibrational satellites for increasing
ν > 1 appear at successively smaller frequencies.

In order to (i) better understand the ro-vibrational spectra in figures 2–4 and (ii) clearly
resolve angular nodes of the stationary rotational states, we show in figures 5(a)–(c) the results
obtained in fixed-rotor approximation. In this approximation, the expectation value of R−2 is
calculated for a given vibrational state ν and subsequently used in the kinetic energy of the rigid
rotor, l(l + 1)/(2µ)〈R−2

〉. For figures 5(a), (b), and (c), we chose the vibrational ground state
(ν = 0, with 〈R−2

〉 = 0.2455), the 8th excited state (ν = 8, with 〈R−2
〉 = 0.1774), and the 16th

excited state (ν = 16, with 〈R−2
〉 = 0.1138), respectively. The different rotational energies result

in noticeably different rotational transition lines. The lowest spectral line in figures 5(a)–(c) can
only correspond to the rotational QBs of the l = 0 and l = 2 rotational states, because the nodal
structure of this line does not fit any other rotational transition (the Legendre polynomial P0 has
no nodes and P2 has two). The next higher spectral line corresponds to QBs of l = 2 with l = 4.
This spectral line has six nodes. Here, transitions from l = 0 to l = 6 would generate the same
number of nodes, but the l = 6 state is not included in the initial wave function. The third spectral
line, which is distinctly visible in these three spectra, corresponds to the interference of l = 0
and l = 4 stationary rotational states. The displayed nodal structure fits only this transition, and
the energy difference is larger than for the previously discussed two lines. It is noteworthy that
the l = 2 → 4 line in figure 5(b) has a higher energy than the l = 0 → 4 transition in figure 5(c).
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Figure 5. Power spectrum W (θ, f ) for the field-free evolution of an initial
rotational nuclear wave packet in fixed-rotor approximation. The internuclear
distance is chosen as the expectation value of R−2 in the vibrational ground
state (a), for the ν = 8 excited vibrational state (b), and for the ν = 16 excited
vibrational state (c) of the 1 sσg potential surface.

Accordingly, series of rotational QB frequencies for different 1l overlap. This is clearly seen
in, and complicates, the interpretation of figure 4(c).

3.2. Quantum-beat spectra for realistic probe pulses

In this section, we discuss our numerical results for the evolution of a ro-vibrational wave packet
under the influence of a sin2 50 fs (full-width at half-maximum (FWHM)) 1014 W cm−2 probe
pulse pedestal. The interaction of the pedestal with the probe laser pulse significantly modifies
the nuclear dynamics in the molecular ion immediately before its destructive imaging by the
short and intense main part of the probe pulse. Note that we do not propagate the nuclear wave
function through the entire probe pulse, but instead terminate the propagation at the center of
the pedestal without including the main probe pulse. In this way, we simulate the evolution of
the nuclear wave function up to the point in time at which it would be probed (i.e. Coulomb-
explosion imaged) by an ideal ultrashort probe pulse that instantaneously ionizes the molecular
ion without any prior distortion [22]. The interaction with the probe pulse pedestal enables
electronic excitations of the molecular ion, which we allow for by including the first- and
second-excited BO state σu and πu in (5), in addition to the electronic ground state (1sσg).
We compare these results with previous rotation-free calculations [21].

Figure 6(a) shows the R-dependent power spectrum. The corresponding line intensity is
shown in figure 6(b). In the frequency interval between 40 and 50 THz, the nodal structure is
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Figure 6. Power spectra A(R, f ) (a) and W (θ, f ) (c) and the corresponding
spectral line intensities A ( f ) (b) and W ( f ) (d), including a 1014 W cm−2 probe
pulse pedestal (see text).

Figure 7. Zoom into the low-frequency range of figure 6.

identical to the one shown for laser-free propagation in the previous section. The most striking
changes induced by the probe pulse pedestal appear at frequencies below 40 THz. Between 25
and 30 THz, 1ω bond softening [22] allows the molecular ion to dissociate over the barrier in the
lowest laser-induced (Floquet) potential surface after the net absorption of one photon. In this
calculation, we do not find evidence for 1ω bond hardening [22], i.e., the transient trapping of
nuclear probability density in a laser-electric-field-dressed adiabatic potential surface due to the
absorption of one photon. At the considered high pedestal intensity, evidence for bond-softening
dissociation via the 3ω resonance is visible near 40 THz in figure 6(a).

Bond softening and evidence for bond hardening were discussed for non-rotating
molecules in the literature (see [21, 22] and references therein). New effects that are induced
by the rotation of the molecule appear below 10 THz, where a large number of spectral
lines emerge. These were found neither in rotation-free calculations [21] nor in our field-free
calculations including rotation (figures 2(c) and (d)). To explain these new lines, figure 7 zooms
into the low-frequency range of figure 6. Figures 7(c) and (d) show, at high resolution, the
main rotational QBs in W (θ, f ) and W ( f ), which are also visible in figures 6(c) and (d). In
figures 7(a) and (b), the same frequency range is mapped for A(R, f ) and A ( f ). When we
compare figures 7(b) and (d), we find a match in the frequencies of these new lines and the main
rotational QBs (l = 0 → 2, 2 → 4 and 0 → 4). These additional lines in figure 6(a) result from
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Figure 8. Graphs (a)–(f) are the same as in figure 2, but for the evolution of D+
2

ro-vibrational nuclear wave packets in a 1013 W cm−2 cw laser.

the fact that the orthogonality relations (26) and (27) used in the field-free case are weakened,
such that rotational QBs appear in the R-dependent spectra. Similarly, vibrational QBs can now
be found in the θ -dependent spectra.

3.3. Quantum-beat spectra in a continuum-wave field

Next, we discuss the ro-vibrational QB spectra of D+
2 in a cw laser field. We assume a turn-on

time of 10 optical cycles (≈27 fs) for a cw laser field with a sin2 ramp starting at t = 0 and the
same initial wave function (37) as in sections 3.1 and 3.2.

Figures 8(c)–(f) show the spectra of a rotating molecule, whereas figures 8(a) and (b) show
A(R, f ) and A ( f ) for the special case where the molecular axis remains aligned with the laser.
In figure 8(c), vibrational transitions are mapped and their nodal structure is clearly reproduced.
In comparison with figure 8(a), we notice that there are no QBs below 25 THz. In contrast,
figure 8(d) shows spectral lines below 12 THz.

The intensity distribution of ro-vibrational lines is distinctly different for the R- and
θ -dependent power spectra, due to different vibrational and rotational level spacings. In
figure 8(d), the strongest lines occur at frequencies above 30 THz, and correspond to QBs
between the initially populated vibrational states. All other lines are comparatively weak.
In contrast, figure 8(f) is dominated by strong lines below 12 THz, while all lines at higher
frequencies are weak in comparison.

A closer look at figures 8(d) and 8(f) reveals that the beat frequencies in both spectra
are equal. To understand this, we revisit the derivation of the power spectra in section 2.3.3.
Orthogonality relations (26) and (27) do not hold for the interaction with a cw laser, such that
the nuclear wave functions are not separable into angular and radial factors. Therefore, for the
propagation in a cw laser electric field, the two integrations needed to arrive at A(R, f ) and
W (θ, f ) merely cause different line strengths. In contrast to laser-free propagation, where the
integrations over θ and R in (30) and (31) eliminate a large number of ro-vibrational transition
frequencies by virtue of the orthogonality of stationary vibrational and rotational nuclear wave
functions, no such reduction in the number of QB lines occurs for the interaction with a cw
laser. This complicates the identification of rotational and vibrational QBs in the power spectra
and the assignment of vibrational (rotational) satellites to a given rotational (vibrational) state.
This is also expressed by the fact that the index κ in (32) refers to both rotational and vibrational
states, such that rotational and vibrational beats now emerge simultaneously. Physically this is
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Figure 9. QB spectra A(R, f ) and A ( f ) for different intensities and pulse
lengths: the intensities are 1013 W cm−2 on the left, 5 × 1013 W cm−2 in the
middle and 1014 W cm−2 on the right. The probe pulse pedestal is 25 fs long
(FWHM) in the two top rows (graphs (a)–(f)) and 50 fs (FWHM) in the two
middle rows (graphs (g)–(l)). The two bottom rows (graphs (m)–(r)) show results
for a cw laser.

due to the sustained non-separability of the molecular ions’ vibrational and rotational motion in
a cw laser field.

3.4. Laser intensity and pulse length dependence

In this section, we investigate the dependence of R-dependent QB spectra of ro-vibrating
molecular ions on the intensity and duration of the probe pulse pedestal. By doubling the
probe pulse pedestal duration of the sin2 pulse from 25 fs (FWHM) (two top rows in figure 9,
graphs (a)–(f)) to 50 fs (two middle rows in figure 9, graphs (g)–(l)), the spectral density at
higher values of R increases. This is consistent with a longer pulse being able to transfer more
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energy to the molecular ions, which, in addition, have more time to dissociate by bond softening.
For the cw laser (two bottom rows in figure 9, graphs (m)–(r)), all higher vibrational states
are fully depleted by bond softening. Their probability density is far outside the displayed R
range, such that the bond-softening process is less obviously imaged than for the pulsed laser
interactions. Due to the long exposure to the cw laser electric field, all vibrational QB lines are
ac-Stark shifted to lower frequencies.

In section 3.2, we found that the laser weakens orthogonality relations (26) and (27). At
higher intensities, we find that the same effect is enhanced. The line intensity of the spectral lines
below 10 THz grows for increasing laser intensity. For an intensity of 1014 W cm−2 (figures 9(e)
and (k)), 3ω bond softening near 40 THz is visible.

4. Conclusions

We applied internuclear distance and molecular orientation-dependent Fourier transformation
imaging in order to analyze ro-vibrational nuclear motion in coherently ro-vibrationally excited
D+

2 . We discussed how this imaging method can be used to display (i) the nodal structure of
the bound vibrational and rotational wave function, (ii) the laser-electric-field-dressed adiabatic
molecular potential surfaces, (iii) the ro-vibrational transition energies and (iv) the emergence of
vibrational and rotational QB multiplets. These multiplets are due to the coupling of rotational
and vibrational degrees of freedom. Examination of their line strengths allows the quantitative
assessment of ro-vibrational couplings. For the future, QB spectroscopy offers the prospect of
imaging laser-dressed molecular potential surfaces of (small) molecules, based on a time series
of measured angle-resolved KER spectra.
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Appendix A. Numerical propagation of the nuclear wave function

In order to propagate the nuclear wave function E4(R, θ, t) on a two-dimensional numerical grid,
we use the split-time-evolution operator in equation (16) and successively apply, from right to
left, each exponential operator to the wave function components {4i}. In position representation,
the first, second, fourth and fifth exponents are complex-valued functions, while the kinetic
energy term (12) is a differential operator.

In order to take advance of the diagonal representation of the kinetic energy operator in
momentum space, we fast Fourier transform [36] the wave function before applying the kinetic
energy term in (12),

4̃i(P, θ, t)=
1

√
2π

∫
∞

0
dR 4i(R, θ, t)e−iP R. (A.1)

We truncate the integral over R and choose an equidistant R grid with M points in the
interval [Rmin, Rmax]. We approximate the infinitesimal line element dR by the finite difference
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1R = (Rmax − Rmin)/M , represent the wave function at the grid points Rk = Rmin + k1R with
k = 0, 1, . . . ,M − 1, and obtain

4̃i(Pj , θ, t)≈
1

√
2π

M−1∑
k=0

1R 4i(Rk, θ, t)e−iPj Rk . (A.2)

With regard to θ dependence, we expand in Legendre polynomials Pl , taking advantage of
the conserved nuclear angular momentum component along the laser polarization (z-direction).
Introducing x = cos θ , we numerically calculate the angular momentum projections

4i,l(R, t)=

∫ 1

−1
dx Pl(x)4i(R, θ, t) (A.3)

by Gaussian quadrature, evaluating the integrand at non-equidistant points xn with different
weights wn at each point (for a detailed explanation, see [37]),

4i,l(R, t)≈

N−1∑
n=0

wn Pl(xn)4i(R, xn, t). (A.4)

The Gaussian quadrature (A.4) provides the exact result (A.3) if the integrand is a polynomial
of degree (2N − 1) or less. Otherwise, its error∫ 1

−1
f (x)dx −

N−1∑
n=0

wn f (xn)=
22N+1(N !)4

(2N + 1)[(2N )!]3
f (2N )(ξ), (−1< ξ < 1) (A.5)

is proportional to the (2N )th derivative of the integrand. In our case (m = 0), the quadrature
points are the N zeros of the Legendre polynomial PN (x), and the wn are the corresponding
weights.

Appendix B. Numerical values

In this section, we list the numerical parameters used. For the discrete Fourier transformation
(A.2), the finite integration interval [Rmin, Rmax] is [0.2, 15]. In order to use the fast Fourier
transformation algorithm, we split the integration interval into 256 = 28 parts. For the x = cos θ
integration, we used 30 grid points. We perform the time propagation using equidistant time
steps 1t = 0.01 over a sampling time of T = 49 ps.
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