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We calculate ab initio the fraction of outgoing negative hydrogen ions that are normally incident on an
unreconstructed Si�100� surface with kinetic energies between 50 and 150 eV. The ground-state electronic
structure of the surface is derived from a self-consistent screened Thomas–Fermi–von Weizsäcker pseudopo-
tential including Wang-Teter shell structure corrections. Orbitals and energies of the electronic states in this
potential are obtained by solving Kohn-Sham equations. The dynamics of the transfer of a single electron
during the ion-surface collision is represented within the Newns-Anderson model, including image-charge
interactions and electron translation factor. We show that the outgoing H− fraction evolves at large distances
from the surface due to nonresonant transitions from the valence band levels of the substrate into the affinity
level of H−. In particular, we show that electron capture from dangling-bond surface-state resonances deter-
mines the final negative-ion fraction. We find good qualitative agreement with the experimental results of
Maazouz et al. �Surf. Sci. 398, 49 �1998�� for the scattering of hydrogen atoms and ions on silicon surfaces,
even though our calculations do not include the effects of reconstruction and projectile motion parallel to the
surface.
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I. INTRODUCTION

Experiments on the scattering of hydrogen atoms on Si
and Al surfaces �1� have measured the outgoing fractions of
H− ions. It was found that the negative-ion fraction on Si has
the same magnitude as for Al surfaces. The relatively small
variation in the observed final H− fractions is interpreted by
the authors in terms of different electronic structures of the
two surfaces. For Al targets, the authors explain their obser-
vation within a free-electron model for the surface, in which
the negative-ion fraction is formed on the outgoing part of
the scattering trajectories, where electron loss to the conduc-
tion band and parallel velocity dependent electron capture
from the Fermi sea of the substrate are competing. For Si
targets, the authors invoke an indirect mechanism of forma-
tion involving dangling-bond surface states. While for metal
surfaces, such as Al, there is excellent agreement between
theory �2� and experiment, the theoretical description of the
charge transfer near semiconductor surfaces is less devel-
oped. A recent ab initio theoretical approach �3� provided
negative-ion fractions on �2�1� and �7�7� reconstructed Si
surfaces in fair quantitative agreement with experiment �1�.
In particular, it was found that details of the electronic struc-
ture of Si surfaces are better revealed as the parallel compo-
nent of the impact velocity becomes smaller.

The neutralization of H− ions near free-electron surfaces,
such as aluminum, is well understood �2,4�. Aluminum does
not exhibit a significant band gap, and the screening response
of the electrons to the true nonuniformity of the crystal field
of the ions is of little importance. Due to the loss of memory
of the initial charge state prior to reflection from the surface,
H− formation occurs on the outgoing part of the scattering
trajectory. Resonant electron loss to the conduction band will
deplete the H− population on exit from the surface, while
resonant capture from the occupied valence band will be less
efficient, due to the work function of Al �W=4.3 eV� being
large compared to the binding energy of the affinity level of

the negative ion �Ea=−0.75 eV�. However, at nearly grazing
incidence, when the projectile has a dominant parallel veloc-
ity component v��, the situation is different. This is best un-
derstood in the rest frame of the projectile, where the veloci-
ties of the substrate electrons acquire a Galilean boost,
translating the Fermi sphere of the occupied valence states
by v��. Hence resonant electron capture from kinematically
shifted levels above the Fermi level occurs at large distances
from the surface, such that the production of negative ions
can compete with electron loss.

In the case of a semiconductor silicon surface, the situa-
tion is different due to the existence of an energy gap that
separates valence from conduction bands. Due to the pres-
ence of the band gap, the density of states near the Fermi
level is altered relative to the free-electron surface. This non-
free-electron character of the substrate needs to be ad-
equately represented in realistic charge-transfer calculations.

The objective of this work is to clarify the influence of the
detailed electronic structure of the target on the outgoing H−

fraction under backscattering conditions, i.e., when the in-
coming H− ions are normally incident to the surface and
reflect specularly. Based on a density-functional description
of the surface electronic structure and a Newns-Anderson
single-active-electron representation of the charge-exchange
dynamics between the surface and the incident projectile, we
have developed a new scheme for the calculation of charge
transfer near arbitrarily structured solid surfaces. In this
work we show first numerical ab initio results for the ex-
ample of H− ions interacting with Si�100� surfaces. The
physical �100� surface of the Si crystal undergoes reconstruc-
tion to a �2�1� superlattice. In view of �i� the unknown
relevance of amorphization effects in scattering experiments
on silicon surfaces �3�, �ii� in order to provide first numerical
results of our approach for a relatively simple �unrecon-
structed� surface morphology while retaining the most rel-
evant features of the Si electronic structure, and �iii� with
regard to trajectory-average effects that tend to weaken the

PHYSICAL REVIEW A 76, 052902 �2007�

1050-2947/2007/76�5�/052902�15� ©2007 The American Physical Society052902-1

http://dx.doi.org/10.1103/PhysRevA.76.052902


sensitivity of the final charge state of surface-scattered ions
on the detailed surface morphology, we disregard surface
reconstruction in this work. As we will demonstrate, valuable
insight into the charge-transfer dynamics can be obtained
from this study of the model unreconstructed Si surface.
Therefore, we first calculate the ground-state electronic
structure of an unreconstructed Si�100� surface from an ex-
tended Thomas–Fermi–von Weizsäcker �TFvW� method, us-
ing an empirical local pseudopotential for the description of
the ionic cores. We derive an orbital-free single-particle elec-
tronic potential. Next, we obtain orbitals and energies of the
target electronic states by solving Kohn-Sham equations. The
perturbation of these orbitals by the incident H− ion is de-
scribed within the Newns-Anderson model. Our calculations
were done for kinetic energies of the incoming H− ions be-
tween 50 and 150 eV.

The plan of this paper is as follows. In Sec. II we describe
the theoretical scheme of our calculations. In Sec. III we
present and discuss both, the numerical results for the static
electronic structure of the target and the electron-exchange
dynamics. Section IV contains our main conclusion. Unless
stated otherwise, we use atomic units �e=�=me=1�.

II. THEORETICAL FORMULATION

Figures 1�a� and 1�c� illustrate the geometry of the unre-
constructed �1�1� Si�100� surface employed in our calcula-
tions. The surface Brillouin zone �SBZ�, together with its
irreducible quarter, is shown in Fig. 1�b�.

A. Surface electronic structure

To calculate the equilibrium valence electronic structure
of the surface, we use a 13-layer slab of Si atoms with six

layers of vacuum added on top of the surfaces on both sides.
The height of the slab is H=25a0 /4, where a0=10.263 is the
bulk lattice constant of Si. The total ground-state energy den-
sity functional for the valence electrons is �5�

E�n� = Ts�n� +
1

2
� d3r d3r�

n�r�n�r��
�r − r��

+ Exc
LDA�n�

+� d3rvcore�r�n�r� , �1�

where n�r� is the electron density. Ts is the kinetic energy of
an auxiliary system of noninteracting electrons. The second
term is the repulsive electrostatic Coulomb energy for the
electrons, Exc

LDA is the exchange-correlation energy in local
density approximation, and vcore is the potential field of the
ionic cores of the crystal. The unscreened pseudopotential of
the Si ionic cores with charge Z=4 is

vcore�r� = �
I=1

N

vps�r − RI� , �2�

where N is the total number of cores with position vectors
�RI	 enclosed in a unit cell of volume �. We use an empiri-
cal local pseudopotential vps from Ref. �6�. In momentum
space it is given by

ṽps�q� = 4�ZF�q�/q2. �3�

The function F�q�= �cos�a1q�+a2�ea3q4
/ �1+a2� is the form

factor of the core and takes into account the Pauli repulsion
between the valence and core electrons, which is formally
expressed by the short wavelength cutoff of the unscreened
Coulombic core potential. Values for the pseudopotential pa-
rameters for Si are �a1=0.791,a2=−0.352,a3=−0.018	. We
approximate the noninteracting kinetic energy Ts as the sum
of the Thomas-Fermi local density approximation, the von
Weizsäcker term with gradient parameter �vW, and a nonlo-
cal correction introduced by Wang and Teter �7�,

Ts�n� = �
�

d3r
 3

10
�3�2�2/3n5/3�r� +

1

8

��n�r��2

n�r�
� + TWT�n� ,

�4�

where the Wang-Teter kinetic energy shift is given by �7–10�

TWT�n� = �
�

d3r�
�

d3r�Ks��r − r����n�5/6��r��n�5/6��r��

+ �
�

d3r�
�

d3r��
�

d3r�Ls��r − r��, �r − r���

� �n�5/9��r��n�5/9��r���n�5/9��r�� . �5�

Equation �5� is an expansion over fractional powers of the
deviation �n�z��r�=nz�r�−n0

z from the average electron den-
sity in the system n0=NZ /�. The exponents z=5/6 and 5/9
comply with the correct transformation of the functional un-
der uniform scaling of the spatial coordinates r→�r, given
by Ts�n��r��=�2Ts�n�. This expansion emphasizes the per-
turbative origin of the Wang-Teter kinetic energy, and there-

FIG. 1. �a� Orientation of the first four atomic planes of an
unreconstructed Si�100� surface, viewed from the vacuum side nor-
mal to the surface toward the bulk. The atoms are shown as circles.
The numbers in the circles label the atomic layers. The size of the
circles indicates how far the atoms are from the vacuum interface.
The spacing between the layers is a0 /4, where a0=10.263 a.u. is
the bulk lattice constant for Si. The area of the surface unit cell
�dashed line� is the square of edge length d=a0 /�2. �b� Surface
Brillouin zone corresponding to the planar unit cell. The irreducible
quarter of the zone with the four high symmetry points is also
shown. �c� Cut of the unreconstructed Si�100� surface along a plane
parallel to the y-z plane and perpendicular to the surface, intersect-
ing atoms with labels 1 and 4 in �a�. Our numerical examples in
Figs. 2, 4, and 5 below refer to this cut. Dots indicate the positions
of Si cores.
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fore its applicability is limited to systems with relatively
weak ionic pseudopotentials. The functional TWT is not posi-
tively defined, which is a drawback of our model. However,
the total kinetic energy of the gas is dominated by the non-
perturbative Thomas–Fermi–von Weizsäcker part, which is
positively defined and provides a strict upper limit to the
exact kinetic energy of the noninteracting gas �11�.

The single-particle two- and three-point static response
kernels Ks and Ls represent more accurately the screening of
the pseudopotential at intermediate wavelengths �2� /kF.
kF= �3�2n0�1/3 is the Fermi momentum corresponding to the
average electron density n0. The kinetic energy density func-
tional �4� becomes exact in the limit of a uniform free-
electron gas, perturbed by a weak static potential. In this case
the induced screening electron density relative to n0 to sec-
ond order in vcore can be written as

�ns�q� = 	s�q�vcore�q� + �
q1,q2

��q1 + q2 − q�

�
Is�q1,q2,q�
�2kF

vcore�q1�vcore�q2� , �6�

where 	s and Is are the linear and quadratic response func-
tions for the homogeneous free-electron gas. According to
the Kohn-Sham theorem �12�, Eq. �6� also gives the induced
density for the interacting electron gas, i.e., �n�q�=�ns�q�.
Alternatively, Eq. �6� can be derived from the Euler equation
�E /�n=const, using the representation �4� for the kinetic
energy �7�. The comparison of both expressions determines
the functional form of the screening kernels Ks and Ls. The
Fourier transform of Ks is given by

K̃s�q� = −
18

25
n0

1/3�	s
−1�x� − 	TF

−1 − 	vW
−1 �x�� , �7�

where

	s�x� =
1

2
+

x2 − 4

8x
ln�2 − x

2 + x
�, x = q/kF �8�

is the static limit of the Lindhard density response function
�11,13�, 	TF=kF /�2 is the Thomas-Fermi limit of 	s at long
wavelengths �q→0�, and 	vW=4kF /3�2�q /kF�2 is the von
Weizsäcker limit for the screening response of the free-
electron gas to a weak and rapidly varying �q
kF� external
potential. The inclusion of the linear response correction is
an important improvement over the TFvW kinetic energy
since it extrapolates the response properties of the true non-
uniform electron gas to the intermediate range of momentum
transfers. It includes the weak logarithmic singularity of 	s at
q=2kF, which is related to the long-range Friedel oscillations
of the electron density �5�. The application of quadratic re-
sponse theory gives results in the Fourier transform of Ls
�7,8,14�,

L̃s�q1,q2,q3� =
729

125�2n0
2/3� kF

2

18
+

kF
2

16�
i=1

3

xi
2 +

25

648
�n0

2/3

��K̃s�x1� + K̃s�x2� + K̃s�x3��

+
kF

5

27�6	s
−1�x1�	s

−1�x2�	s
−1�x3�Is�x1,x2,x3�� ,

�9�

where xi=qi /kF. If q1+q2=q3, the function Is is given by

Is�q1,q2,q3� =
− �2kF

2

6x1x2x3
�x1	s�x1� + x2	s�x2� − x3	s�x3�� ,

�10�

otherwise, for q1+q2+q3=0, it is given by

Is�q1,q2,q3� = U�q1,q2� + U�q1,q3� + U�q2,q3� . �11�

The function U has a discontinuity at x3
2=4 sin2 �. For x3

2

−4 sin2 ��0 it is

U�q1,q2� =
1

4x1x2 sin2 �
��x1 cos � + x2�ln�2 + x1

2 − x1
�

+ �x2 cos � + x1�ln�2 + x2

2 − x2
� + �x3

2 − 4 sin2 �

�ln� 4 cos � + x1x2 − 2�x3
2 − 4 sin2 �

4 cos � + x1x2 + 2�x3
2 − 4 sin2 �

�� ,

�12�

where � is the relative angle between q1 and q2, while for
x3

2−4 sin2 �0,

U�q1,q2� =
1

4x1x2 sin2 �
��x1 cos � + x2�ln�2 + x1

2 − x1
�

+ �x2 cos � + x1�ln�2 + x2

2 − x2
� + �4 sin2 � − x3

2

��� + arctan
− 2�4 sin2 � − x3

2

x1x2 + 4 cos �
�� . �13�

We use the local density approximation �LDA� for the
exchange-correlation energy as in our earlier studies �15�. In
particular, we use the Dirac approximation for the exchange
energy and Wigner’s interpolation formula for the correlation
energy of the electron gas. The variational Euler equation for
the equilibrium ground-state electron density, subject to the
constraint that the total number of electrons be conserved
and equal to NZ, is

�E

�n�r�
− � = 0, �14�

where � is the chemical potential of the electron gas.
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After making the substitution n�r�=�2�r� in Eq. �14�, the
ground-state properties of the electronic system are reex-
pressed in terms of a one-body “wave function” of the elec-
tron density, which satisfies the nonlinear Schrödinger equa-
tion


−
1

2
�2 + veff��;r� − ����r� = js��;r� , �15�

with an effective single-particle potential

veff�r� = vTF�r� + vH�r� + vcore�r� + vxc
LDA�r� . �16�

The Thomas-Fermi term

vTF�r� =
1

2
�3�2�2/3�4/3�r� �17�

is repulsive for the valence electrons due to Pauli’s exclusion
principle, and the electrostatic Hartree potential is

vH�r� =� d3r�
�2�r��
�r − r��

. �18�

The last two terms in Eq. �16� are the bare unscreened
pseudopotential of the ionic cores vcore�r� and the exchange-
correlation potential vxc

LDA�r�=�Exc
LDA�n� /�n�r� in LDA. The

right-hand side of Eq. �15� is the nonlinear Wang-Teter shell-
structure term js�� ,r�=−��r��TWT/�n�r�. Equation �15� is
solved by iteration using a 3D FFT method. Details about the
numerical scheme are given in Appendix A.

B. Charge-transfer dynamics

The converged orbital-free potential is used to solve the
Schrödinger equation for the stationary noninteracting single
particle states


−
1

2
�r

2 + vs�r����,k�
�r� = ���k����,k�

�r� , �19�

where vs=vcore+vH+vxc
LDA is the local Kohn-Sham potential,

� is a band index, and k� is the conserved parallel Bloch
quasimomentum. Equation �19� is integrated numerically us-
ing the Car-Parrinello method �16� for a large number of
Bloch waves in the irreducible quarter of the SBZ, as de-
scribed in more detail in Appendix B. After diagonalization
of the Kohn-Sham Hamiltonian �19�, we describe the dynam-
ics of the electron charge transfer between the incident H−

ion and the surface within the Newns-Anderson model �17�,
based on the Hamiltonian

H�t� = �a�t�ca
†�t�ca�t� + �

k

�kck
†�t�ck�t�

+ 
�
k

Vak�t�ca
†�t�ck�t� + H.c.� , �20�

where k= �� ,k� ,�	 denotes the quantum numbers of the
Kohn-Sham states, � is the projection of the electron spin on
the surface normal, ca ,ck are the annihilation operators of the
anion and semiconductor states, �a ,�k are the corresponding
orbital energies, and Vak�t� are the matrix elements for trans-

fer of one electron from the surface to the anion. The cou-
plings Vak between target and projectile states are evaluated
using the expansion

Vak�t� =
��,��
�� �

G
c�,k�+G�a�Ve-H�G + k� − v�t��

� ei�G+k�−v�t��·D�t� �21�

over the reciprocal-lattice wave vectors G
=2��l /d ,m /d ,n /H�, where �l ,m ,n� are integer numbers.
D�t� is the classical trajectory of the center-of-mass of the
projectile relative to the surface, and v�t� is the collision
velocity. The adiabatic dependence of the matrix elements on
the impact velocity is a consequence of the Galilei transfor-
mation of the atomic wave function to the rest frame of the
surface.

We use the electron-hydrogen interaction potential Ve-H of
Ref. �18�,

Ve-H�r� = − �1 + 1/r�e−2r − ��H/2�e−r0
2/r2

/r4, �22�

where r is the relative distance between the electron and the
projectile, �H=4.5 is the ground-state polarizability of the
hydrogen atom, and r0=1.2. The potential �22� holds a single
weakly bound affinity level with energy �a=0.75 eV below
the vacuum level. This potential becomes unreliable at close
distances to the surface, because of the strong overlap
between the substrate with the adsorbate atom.

The equations of motion for the annihilation operators of
electronic states are given by

i�tcq�t� = �cq�t�,H�t�� , �23�

where q= �a ,k	. In explicit form we have

i�tca�t� = �a�t�ca�t� + �
k

Vak�t�ck�t�,

�24�
i�tck�t� = �kck�t� + Vak

* �t�ca�t� .

We note that our numerical approach does not account for
the orthogonalization of the atomic orbital a to the substrate
orbitals k. The significance of this effects can be studied only
in a separate calculation, which is beyond the scope of the
present work. The formal integration of Eqs. �24� for the
band operators gives an equation for the annihilation opera-
tor of the H− state

i�tca�t� = �a�t�ca�t� + �
t0

t

dt��r�t,t��ca�t��

+ �
k

Vak�t�e−i�k�t−t0�ck�t0� , �25�

where the retarded self-energy of the negative ion affinity
level is

�r�t,t�� = − i��t − t���
k

Vak�t�e−i�k�t−t��Vak
* �t�� . �26�

By expanding the interacting operator ca�t� over noninteract-
ing annihilation operators �19�,
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ca�t� = Saa�t,t0�ca�t0� + �
k

Sak�t,t0�ck�t0� , �27�

substituting the result in Eq. �25�, multiplying on the left by
the adjoint noninteracting creation operators, taking the ex-
pectation value in the initial state �t0� of the electrons, and
using that �t0 �cq

†�t0�cq��t0� � t0�=nq�qq�, nq being the
interaction-free occupation numbers of electronic states, we
obtain a set of decoupled equations for the amplitudes of ion
survival in the initial state Saa= �a , t �a , t0� and capture from a
crystal band Sak= �a , t �k , t0�,

i�tSaa�t� =� dt��̃r�t,t��Saa�t�� ,

i�tSak�t� =� dt��̃r�t,t��Sak�t�� + Ṽak�t� . �28�

The self-energy kernel

�̃r�t,t�� = − i��t − t���
k

Ṽak�t�Ṽak
* �t�� �29�

is expressed in terms of matrix elements of the hydrogenic-
core potential as

Ṽak�t� = eiA�t,t0�Vak�t�e−i�k�t−t0�. �30�

A�t , t0� is the classical action of the negative ion affinity en-
ergy level �a�t� along the trajectory of the projectile, which is
shifted due to the static long-range image-charge interac-
tions, and includes adiabatically a kinematic shift due to the
Galilei transformation of the atomic wave function to the rest
frame of the surface, i.e.,

A�t,t0� = �
t0

t

d��a��� = �a�t − t0� + �
t0

t

d�
�v����2

2

−
1

4

�b − 1

�b + 1
�

t0

t d�

D��� + �s
. �31�

The static bulk dielectric constant of Si is �b�12 �20�, the
surface plasmon wavelength �s�n0

−1/6 is introduced as a cut-
off distance, and the separation between the projectile and
the surface is D�t�. The probability to find the H− affinity
level occupied after the collision is

Pa��� = �Saa�� ,− � ��2 + �
�,k�

nk�Sak�� ,− � ��2, �32�

where nk=���F−�k� are the occupation numbers of the semi-
conductor band states prior to the collision. Some details for
the numerical solution of Eqs. �28� for the transition ampli-
tudes are given in Appendix C.

III. NUMERICAL RESULTS AND DISCUSSION

The ground-state electronic properties of the surface and
single-particle potentials are discussed in Sec. III A. In Sec.
III B we show results for the ion-charge fractions for incident
H− projectiles with kinetic energies between 50 and 150 eV.

A. Electronic structure calculation

Our orbital-free calculations were done for four different
models for the screening response in the electron gas. In the
first two models we neglect the Wang-Teter response correc-
tions. First, we solve the “TFvW model” with gradient pa-
rameter �w=1/4 as in our earlier studies �15,21�. In the sec-
ond model the strength of the von Weizsäcker term is
increased to �w=1. The last two models include the Wang-
Teter corrections to the TFvW functional with gradient pa-
rameter �w=1. In particular, the third model is extended to
include the linear response screening corrections �we will

FIG. 2. Contour map of the orbital-free va-
lence electron density of the unreconstructed
Si�100� surface along the plane shown in Fig.
1�c�. All graphs show the vacuum interface on
top and extend six layers into the bulk. �a� TFvW
��w=1/4� model, �b� TFvW ��w=1� model, �c�
TFvW ��w=1� model, including linear Wang-
Teter screening corrections, and �d� TFvW
��w=1� model, including linear and quadratic
Wang-Teter corrections. The contour line spacing
is 0.003 a.u. The distance between adjacent at-
oms along the y axis, and the interlayer spacing
along the z axis of the surface are indicated in �a�.
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refer to this model as the “linear WT model”�, while the
fourth model includes the full Wang-Teter kinetic energy
�referred to as the “quadratic WT model”�.

Figure 2 shows the contour map of the electron densities
corresponding to the four orbital-free models as outlined
above. The common feature is obvious. In the bulk of the
crystal the electrons avoid the repulsive Pauli forbidden re-
gions and instead distribute in between the cores, forming
covalent bond charges. Near the surface the screening of the
pseudopotential is anisotropic, i.e., the electron density spills
out towards the vacuum at a distance of about �F /2�4 from
the jellium edge �located at half a lattice spacing in front of
the first surface layer�. �F=2� /kF is the Fermi wavelength.
In the opposite direction a polarization cloud forms at the
bulk side of the surface atoms. The resulting surface dipole
layer exhibits an asymmetry with respect to the position of
the jellium edge.

The TFvW ��w=1/4� density shown in Fig. 2�a� is highly
localized near individual atoms. The valence electron distri-
bution near the surface is rigid and exhibits a steep gradient
in vacuum direction, while the bridge to the bulk is provided
by the presence of polarization charges near the interior side
of the surface atoms. This polarization cloud exhibits the
highest degree of localization among the four different mod-
els. As a consequence of this distribution, the surface
pseudopotential is very efficiently screened, and valence
electrons in the surface region do not gain much potential
energy by interacting with the bulk lattice of Si ionic cores.
After increasing the strength of the gradient parameter to its
limiting value �w=1, as shown in Fig. 2�b�, the density ex-
hibits a higher degree of uniformity near the surface and in
the bulk. Because of this uniformity of the TFvW ��w=1�
electron distribution, the ionic pseudopotential remains
highly unscreened. The amplitudes of the bulk interstitial
charges have decreased by more than 20%, since the elec-
trons redistribute and fill the core regions of the crystal. This
filling of the core regions is even more efficient near the
surface, and is accompanied by �i� the depletion of the outer
regions of the atoms, �ii� a uniform spilling out of electrons
to the vacuum, and �iii� the expansion of the polarization
cloud at the bulk side of the surface atoms.

The inclusion of the linear response WT corrections im-
proves the highly uniform TFvW ��w=1� electron density
near the surface and in the bulk �Fig. 2�c��. The bulk elec-
trons partially deplete the core regions and increase their
presence in the interstitial bonding and interlayer regions. In
response to this redistribution, the surface density also
changes and part of the electronic cloud delocalizes towards
the bulk. The quadratic WT density is shown in Fig. 2�d�.
The amplitudes of the bulk bonding charges have slightly
increased, and the filling of the cores is more uniform. The
tendency of the electrons to delocalize in between the atomic
planes is more evident than in the linear WT model. A simi-
lar spill out of electronic density occurs near the surface
atoms.

The distinct characteristics of the surface electronic den-
sity in the four different models lead to different contribu-
tions to the potential difference across the surface dipole
layer des= �̄b−�vac and hence to the work function W=des

−�b. �̄b is the mean electrostatic potential in the bulk, �vac is
the vacuum electrostatic potential, and �b is the bulk chemi-
cal potential. In order to quantify this effect, we plot in Fig.
3 the electrostatically screened ionic potential, averaged over
a surface-unit cell in the direction normal to the surface. The
model-dependent work function is given in Table I in com-
parison with experimental results. Values for the surface di-
pole layer and bulk chemical potential are also shown.

The potential change in the dipole layer across the metal-
vacuum interface is des=3 eV as calculated from the TFvW
��w=1/4� model. The TFvW ��w=1� model predicts a sig-
nificant increase of des by 1.5 eV �Table I and Fig. 3�. The
TFvW ��w=1/4� model exhibits the lowest work function
and underestimates by 1 eV the measured values in �22,23�.
In contrast, the TFvW ��w=1� work function overestimates
the experiment by 0.7 eV. The bulk chemical potential has
not changed much relative to the TFvW ��w=1/4� predic-
tion. Therefore, the large difference of the work function
between the TFvW models is due to the electrostatic un-
screening of the ionic pseudopotential as �w→1.

The linear and quadratic response corrections are depolar-
izing the surface and decreasing des by 0.9 eV, relative to the
TFvW ��w=1� model. This is due to the above-mentioned

FIG. 3. �Color online� Variation of the electrostatically screened
ionic pseudopotentials in direction normal to the unreconstructed
Si�100� surface for the four different models for the screening re-
sponse of the electron gas: TFvW ��=1/4� model, TFvW ��=1�
model, linear Wang-Teter model, and quadratic Wang-Teter model
�see text�. The jellium edge is at z=0.

TABLE I. Numerical results for the work function W of the
Si�100� surface for four different models for the screening response
of the electron gas compared with the measured work functions in
Refs. �22,23�. The third and fourth columns show the potential-
energy change des across the surface-dipole layer and the bulk
chemical potential �b.

Model W �eV� des �eV� �b �eV�

TFvW ��=1/4� 3.8 3.0 −0.8

TFvW ��=1� 5.5 4.5 −1.0

Linear WT 5.2 3.6 −1.6

Quadratic WT 4.1 3.6 −0.5

Experiment �22� 4.8

Experiment �23� 4.7
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effect of delocalization of the electronic cloud relative to the
structure of the crystal. However, the linear WT work func-
tion still exceeds the experimental values. The screening in
the quadratic WT model is very efficient, and W is signifi-
cantly lowered by 1.1 eV with respect to the linear model.
Since the linear and quadratic WT screening corrections give
the same contribution to the surface dipole layer, the relative
difference for the work function in the WT models is due to
the bulk chemical potential �b. Since we use the LDA for
Exc, the exchange-correlation part of �b is the same for all
the models. Therefore the large work function change be-
tween the WT models is due to kinetic energy effects, im-
posed by the explicit nonlocality of the Wang-Teter kinetic
energy density functional as a direct consequence of the
Pauli exclusion principle.

Since the quadratic WT model does not overestimate the
measured work function of the Si�100� surface and also pro-
vides a realistic absolute value for W=4.1 eV, it will be used
in our further analysis. The different contributions to the self-
consistent single-particle potential vs for the quadratic WT
model are shown in Fig. 4. The electrostatically screened
ionic pseudopotential vH+vcore in Fig. 4�a� exhibits the struc-
ture of the crystal. It is repulsive for the electrons near the
core regions, while the attractive screened Coulombic part
has major influence in the bonding regions, where it has a
peak amplitude of 7–8 eV. The exchange-correlation poten-
tial in Fig. 4�b� is the dominant component of the pseudopo-
tential in the vacuum and interlayer regions of the crystal. In
the interstitial bonding regions it has a similar magnitude,
vxc�7 eV, as the screened Coulombic part of the pseudopo-
tential. The full single-particle Kohn-Sham potential is
shown in Fig. 4�c�.

The wave functions of the electronic states in the screened
pseudopotential are obtained by solving Kohn-Sham equa-
tions as described in Appendix B. The irreducible quarter of
the SBZ was sampled for a large number of points Nk=80,
and the lowest 40 states per wave vector were obtained. A
plane wave basis of size �Nx ,Ny ,Nz�= �23 ,23 ,27� was used to
represent electronic orbitals. As a result of the truncation of
the bulk crystal, we find two dispersive unoccupied surface
state bands, in good agreement with the theoretical results of
Refs. �24,25�. The orbital densities of these states along the
�J� line, k� = �0,ky�, of the SBZ are shown in Fig. 5. The
corresponding dispersion of the orbital energy as a function
of the parallel momentum for these two bands is shown in
Fig. 6 along the J��J contour in SBZ.

Figure 5�a� presents the orbital density of a dangling bond
spz hybrid state, which is directed normal to the surface with
a node below the atoms of the first atomic layer. The dimer-
like bridge state in Fig. 5�b� has a py character and is con-
fined to the first atomic layer in between adjacent surface
atoms. The dangling-bond band exhibits weak dispersive fea-
tures along the chosen contour and has a bandwidth of
0.8 eV. At the J� point, k� = �0,� /d�, this state has spz char-
acter. By decreasing the crystal quasimomentum along the
J�� line, the orbital density smears among the atoms in the
first atomic layer and rapidly decays into the bulk; at � this
state is nearly degenerate with the valence band. The py
bridge states are shown in Fig. 5�b� near the J� point. They
exhibit pronounced dispersive features within a bandwidth of
about 2.7 eV �Fig. 6�; similarly their orbital density is dis-
tributed in between the Si cores as the momentum ky de-
creases from 0.3 to 0.2. The bulk wave-vector contributions
to this state are rapidly destroyed as ky approaches the center
of the SBZ, and a nodal structure evolves in between the
atoms of the first atomic layer. Near the � point this band has
merged into the conduction band. Both surface states exhibit
weak dispersive features along the �J line, k� = �kx ,0�. Cor-
responding orbitals are not shown. The comparison of our
results for the band structure calculation with the results in
Refs. �24,25� shows that the behavior of the two surface-state
bands along the chosen lines in the SBZ exhibits a similar
overall trend.

An important group of bulk states that influences the
charge-transfer dynamics exhibit anomalous surface ampli-
tudes in their densities. These surface-state resonances of
dangling bond type are shown in Figs. 5�c� and 5�d� near the
� point of SBZ. Inside the bulk, the orbital densities exhibit
clear covalent bonding character. Near the vacuum-surface
interface, the orbital densities gain amplitude above the sur-
face atoms and protrude in the direction of the vacuum.

The total density of states calculated using 3200 elec-
tronic states,

��E� =
2

�
�
�,k�

�„E − ���k��… , �33�

is shown in Fig. 7. Clearly there is a loss of spectral weight
above the Fermi level, and an energy gap opens in between
the valence and conduction bands. The surface-state bands
reside in the gap region. The dangling-bond band is weakly

FIG. 4. Different contributions to the single-particle Kohn-Sham pseudopotential for the valence- and conduction-band electrons of an
unreconstructed Si�100� surface along the plane shown in Fig. 1�c�. All graphs show the vacuum interface on top and extend six layers into
the bulk. �a� Hartree potential of the electronic and ionic-core charges vH+vcore, �b� exchange-correlation potential in LDA, and �c�
orbital-free Kohn-Sham potential. Only negative values of the potential relative to the vacuum energy level are shown. The contour line
spacing is 0.05 a.u. �a�, 0.03 a.u. �b�, and 0.08 a.u.�c�.
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split off the valence-band maximum and appears as a peak at
0.4–0.5 eV above the Fermi level. The dimer band is in-
creasing its spectral weight near the conduction-band mini-
mum at �−2 eV. The narrow band of valence states between
−8 and −4 eV is most important for the description of the
charge transfer. The structures at low energies E�−8 eV are
due to core localized bulk states. Even though these states
are important for the screening of the Si ionic cores, they are

not relevant for the charge-transfer dynamics in the consid-
ered range of collision energies.

B. Scattered H− fraction

The outgoing negative ion fractions were obtained by
solving Eqs. �28� for the transition amplitudes. Trajectories
were evaluated for normal incidence using the Thomas-
Fermi-Molière interatomic potential �21� at kinetic energies
between 50 and 150 eV of the incoming projectiles. Table II
gives the outgoing part of the scattering trajectories D�t� for
three incoming energies E=150, 100, and 50 eV. The classi-
cal turning point of the trajectories is reached at t=0, and the
distance between the surface and projectile is measured rela-
tive to the jellium edge at D=0. The classical trajectories are

FIG. 5. Orbital densities of an unreconstructed Si�100� surface along the plane shown in Fig. 1�c�. The first 3.5 layers are shown.
Dangling-bond- ��a�, top row� and the dimer-surface-state bands ��b�, second row� along the J�� line in the irreducible quarter of the surface
Brillouin zone �see Fig. 1�b�� for four selected parallel crystal momenta k�. Atomic planes parallel to the surface are indicated by horizontal
lines in �a�,�b�. The positions of the Si cores are shown as dots in �a�, �b�. In �c� and �d� the orbital densities of two surface-state resonances
near the � point of surface Brillouin zone are represented.

FIG. 6. �Color online� Dispersion of the two surface-state bands
of unreconstructed Si�100� surface as a function of the parallel mo-
mentum k� = �kx ,ky� along the J��J contour in the surface Brillouin
zone �see Fig. 1�b��. The negative values of ky along the J�� line
correspond to decreasing momentum. Energy is measured relative
to the vacuum energy level. The position of the Fermi level, EF=
−4.1 eV, is denoted by the dashed line.

FIG. 7. Total density of states for the unreconstructed Si�100�
surface, calculated using 3200 electronic states in the irreducible
part of the surface Brillouin zone. Arrows indicate the dangling-
bond �db� and dimer-state bands �ds�.
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calculated by solving Newton’s equations of motion after
averaging the Thomas-Fermi-Molière interatomic interac-
tions between the projectile and individual Si atoms of the
substrate over the surface plane �“planar average”�.

The couplings of the projectile affinity level to individual
orbitals of the substrate are shown in Fig. 8 for four selected
states at the � point �k� =0� of SBZ, together with the phase
portrait of the ion trajectories. The ion-surface interactions
are oscillatory functions of the collision velocity and decay
exponentially with the distance from the surface. However,
the interaction range with the valence-, surface-, and
conduction-band states is very different. The couplings to the
valence-band states are usually localized at smaller distances
D�5 in front of the surface �Fig. 8�a��. The interactions with
the dangling-bond surface states �cf. Fig. 5�a�� and dangling-
bond surface-state resonances �cf. Figs. 5�c� and 5�d�� are
dominant and exhibit pronounced long-range behavior, as
shown in Fig. 8�b�. The surface-aligned bridge states near the
� point, exhibit short-range interactions with the atomic or-
bital �Fig. 8�c��. The larger strength of their interactions dis-
tinguishes these states from the valence band. The couplings
to the conduction band exhibit the longest interaction range,
as Fig. 8�d� suggests.

The contributions to the evolving charge states of H− are
shown in Figs. 9�a�–9�c� for incident kinetic energies E
=150, 100, and 50 eV, respectively. For all kinetic energies
we observe a rapid decay of the initial negative-ion fraction
due to electron loss to the conduction band of the surface.
This loss is followed by capture from the valence band at
large distances D�6–7 prior to reflection from the surface.

The affinity level of H− is rapidly depleted at smaller dis-
tances D�6. As the projectile approaches the turning point,
the capture probability approximately stabilizes for a time
interval of about 70 a.u. After reflection from the surface, the
H− fraction continues to evolve, due to capture which occurs
at distances between D=4 and 7. From the comparison of the
results shown in Fig. 9, we also see that the final negative-
ion yields are weakly dependent on the considered range of
kinetic energies. The oscillations in the charge state of the
decaying initial fraction prior to reflection are not physical,
because the energy levels of the surface were calculated only
up to the vacuum energy level. The major contribution to the
final negative yield comes from the amplitudes Sak for cap-
ture of a valence electron. These amplitudes are not sensitive
to the high energy cutoff �i.e., the neglect of the unbound
continuum part with �k�0� of the spectrum of the surface
Hamiltonian. These contributions to the survival amplitude
Saa due to transition into and out of unbound continuum
states were not studied here, in view of technical complica-
tions related to the proper definition of asymptotic scattering
states within our finite-size slab calculations. Therefore, in
our further analysis of numerical results, we will neglect the
small contributions from the residual-ion amplitude Saa all
together and consider only the contributions Sak from
valence-electron capture.

In order to analyze this result, we show in Figs. 10�a� and
10�b� the amplitude Ar= ���t , t−��� of the self-energy of an
electron evolving into and out of the affinity level of the
incident H− ion with a kinetic energy of E=150 eV. Here �
�0 is the time interval between the present and previous
charge state of the projectile. We see that Ar is strongly
peaked at equal times �=0 with a width of less than �c
=50 a.u., which is the characteristic correlation time over
which the system holds memory of its previous state. There-
fore long-time correlations are not relevant for the dynamics.

The peaking of the self-energy of the electron at equal
times suggests that the adiabatic approximation may be ap-
plicable. For this approximation to be valid, the couplings
Vak�t� must vary slowly on a time scale over which the ker-
nel changes ��c�50�. Using the adiabatic approximation to
Eq. �28�, the ion-survival amplitude is given by

TABLE II. Outgoing part of the trajectories for incident H− ions
backscattered from a Si�100� surface. The point of closest approach
is reached at time t=0. D is the distance from the jellium edge of
the surface and E is the incoming kinetic energy.

t �a.u.� 0 50 100 150 200 250

E=150 eV D �a.u.� 0.2 3.0 6.9 10.8 14.7 18.6

E=100 eV D �a.u.� 0.5 2.5 5.6 8.8 12.0 15.2

E=50 eV D �a.u.� 1.1 2.2 4.3 6.5 8.7 10.9

FIG. 8. Real part of the interactions Re�Vak�D ,v�� of the H− affinity level orbital with the Kohn-Sham orbitals of an unreconstructed
Si�100� surface. D is the ion-surface distance relative to the jellium edge and v is the velocity of the projectile along the surface normal. The
couplings are shown near the � point of the surface Brillouin zone �k� =0�. �a� Interaction of the affinity level orbital with a state near the
valence-band maximum. �b� Interaction with the dangling-bond surface state, together with the phase portrait of the classical trajectories for
incident projectiles with kinetic energies of E=150 �solid�, 75 �dashed�, and 50 eV �dotted line�. �c� Coupling to the dimer orbital. �d�
Interaction with a conduction-band orbital.
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Saa�t� = exp
− i�
t0

t

d��a���� , �34�

where the resonance energy �a�t�=��t�− i��t� is expressed in
terms of affinity level shift and width

��t� = �
k

P 1

�a�t� − �k

�Vak�t��2, �35�

��t� = ��
k

���a�t� − �k��Vak�t��2 �36�

where P�1/x�=d ln �x � /dx. Both quantities are shown as a
function of distance to the surface in Fig. 11�a�. We see that
the width of the affinity level resonance has a significant
magnitude �=4 eV at even larger distances D=7, i.e., the
initial negative-ion fraction leaks rapidly into the conduction
band of the surface, while the chemisorption shift � is al-
most negligible at such distances. Noticeably the width ex-
hibits a strong dependence on the incoming kinetic energy of
the projectile, and decreases rapidly as the velocity of the
projectile decreases.

The same adiabatic approximation can be applied in order
to obtain an analytic representation for the capture ampli-
tudes Sak, by expanding Eq. �28� in a perturbation series

Sak�t� = Sak
�1��t� + Sak

�3��t� + ¯ , �37�

where Sak
�1�=−i�tṼak�t��dt� is the first-order capture ampli-

tude. The next nonvanishing contribution in the perturbation
series satisfies the equation

i�tSak
�3� = �t

�̃r�t,t��Sak
�1��t��dt�

= − �
j

Ṽaj�t��
−�

t

dt�Ṽaj
* �t���

−�

t�
dt�Ṽak�t�� . �38�

We take the slowly varying couplings Vak outside the inte-
grals to obtain

i�tSak
�3� � −

Ṽak�t�
� ak + i0��j

�Vaj�t��2

 kj + i0
� Sak

�1��t��ak�t� , �39�

where  kj =�k−� j are the unperturbed transition frequencies
of the substrate. The complex frequencies

�ak�t� = �ak − i�ak = �
j

�Vaj�t��2

 kj + i0
. �40�

can be interpreted as collision-induced shifts �ak and broad-
enings �ak of the unperturbed transition frequencies  ak�t�
=�a�t�−�k. The shift �ak describes a virtual transition of a
valence electron into the affinity level of the negative ion.
The broadening �ak originates in indirect energy-conserving

FIG. 9. Contributions to the H− fraction near an unreconstructed Si�100� surface as a function of time for three different collision energies
�a� 150 eV, �b� 100 eV, and �c� 50 eV. Negative times correspond to the incoming part of the trajectory. The point of closest approach is
reached at t=0. The solid curve is the probability for survival of the initial H− fraction �first term in Eq. �32��. The dashed curve is the
probability for capture of an electron from the valence band of the crystal into the affinity level of H− �second term in Eq. �32��. The sum
of the two contributions gives the observable outgoing H− yield �not shown�.

FIG. 10. �Color online� Amplitude Ar�t , t−��
of the self-energy kernel relating the charge state
of H− near an unreconstructed Si�100� surface at
two times t and t−�.
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transitions between the highly degenerate band states of the
substrate. These shifts and broadenings are shown in Fig.
11�b� for −0.3��k��F�−0.15. We see that both quantities
are highly dispersed and vary rapidly with the distance from
the surface D.

If the perturbative expansion is carried to infinite order, it
is easy to verify by induction that

i�tSak�t� = �ak�t�Sak�t� + Ṽak�t� . �41�

Therefore, the amplitudes for electron capture

Sak = �
t0

�

dt�Vak�t��Gak�t,t�� , �42�

describe excitation and propagation of resonances that
evolve from the substrate into the adiabatically shifted affin-
ity level �a�t� of the negative ion. The Green’s functions

Gak�t,t�� = − i��t − t��exp
− i�
t�

t

d�� ak + �ak����� ,

�43�

are the propagators of these resonance states. In our further
analysis we will refer to Eq. �42� as adiabatic approximation.

We first show that �i� the adiabatic approximation is ap-
propriate for a qualitative discussion of the numerical results
and �ii� only selected substrate states can stimulate electron
capture into the affinity level of the negative ion. In Fig.
11�c� we compare our numerical results in adiabatic approxi-
mation with our numerical solution of the Newns-Anderson
model given by Eq. �28� for incident H− with kinetic energies
of 150 eV. As the comparison suggests the adiabatic ap-
proximation can explain well the numerical data on both the
incoming and outgoing part of the projectile’s trajectory. At
small distances form the surface the direct numerical integra-
tion of the Newns-Anderson model differs significantly from
the adiabatic approximation. This difference occurs because
the collision-induced broadening �ak is very large at small

distances to the surface, making the numerical integration
difficult. However, the numerical distortion of the adiabatic
approximation at these distances is not relevant since elec-
tron capture on the incoming and outgoing part of the trajec-
tory are separated by a large time interval ��50. This inter-
val is larger than the memory range of the self-energy kernel
�c. Therefore, electron capture on the incoming and outgoing
part of the trajectory are not related. This is in agreement
with the observation by Maazouz et al.�1� of the complete
loss of memory of the initial charge states. Individual contri-
butions to the electron capture probability Pa�t� near the �
point of SBZ, obtained after direct integration of Eqs. �28�
are shown in Fig. 11�d� for a group of eight occupied valence
states below the Fermi level. We see that dominant contribu-
tions to Pa�t� are coming from the two dangling-bond
surface-state resonances, which exhibit strong and long-
range interactions with the negative-ion affinity level �cf.
Fig.8�b� and Figs. 5�c� and 5�d��.

In order to rationalize this result we make use of the adia-
batic approximation. In Fig. 12�a� we show the collisional
shifts �ak and broadenings �ak of two electronic transitions
that occur for k� =� at a collision energy of 150 eV. The first
state �u� is the surface-state resonance shown in Fig. 5�c�
with energy �u�−0.2. The second state �l� is a deep valence-
band level with orbital energy �l=−0.5. We drop the index
“a” in what follows in order to simplify the notation. The
broadenings �l,u become very large close to the jellium edge,
i.e., �l=8 eV at D=3.5 and �u=8 eV at D=6. Therefore
these excitations can evolve only at large distances from the
surface. The shifts � exhibit significant magnitudes at large
distances from the surface, i.e., at physisorption distances.
For example, �l��u�3 eV at D=9. At distances, where
the energy �l,u carried by the excitations is close to or
matches the transition frequency − l,u, the phase factor in
Eqs. �42� and �43� varies slowly. This gives the major con-
tribution to the transition amplitudes Sl,u. The energy-
matching distances are Dl=6 and Du=8.5 for the lower and
the upper transitions, respectively. Therefore, in order for the

FIG. 11. Results for H− interacting with an
unreconstructed Si�100� surface. �a� Adiabatic
shift and width of the affinity level resonance �a

for kinetic energies 150 eV �solid lines� and
50 eV �dashed lines� of the incident negative ion.
�b� Adiabatic shifts �ak and broadenings �ak of
the transition frequencies  ka �dashed lines� for
incident 150 eV H− ion. The distance D in �a�
and �b� is measured relative to the jellium edge.
�c� Comparison of the H− fraction calculated by
direct numerical integration of the Newns-
Anderson model �solid line� with our adiabatic
approximation �dashed line�. �d� Individual con-
tributions to the H− formation probability from
eight valence states near the � point of the sur-
face Brillouin zone, calculated by direct numeri-
cal integration of the Newns-Anderson model.
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transitions to occur, the couplings must exhibit long range.
The couplings Vl and Vu relevant for the two transitions

are shown in Fig. 12�b�. The upper transition, which is
stimulated by the interaction of the affinity level with the
surface-state resonance, is long ranged, while the lower tran-
sition exhibits a shorter interaction range. The integrands
!l,u�t2�=Gl,u�t1 , t2�exp�−i l,u�t1− t2��Vl,u�t2� for t1→� in
Eqs. �42� and �43� are shown in Figs. 12�c� and 12�d� as a
function of the distance from the surface, respectively. The
lower transition is less likely to occur, as Fig. 12�c� shows.
This is because before the energy-matching condition
�l�− l is satisfied, the phase factor changes rapidly, which
leads to the cancellation of the contributions from Vl until
D�Dl. Hence a narrow region of less than 2 a.u. near Dl
gives the main contribution to the integral where, however,
the coupling Vl is very weak. In contrast, a wider region of
distances D=7–11 contributes to electron capture for the
upper transition as shown in Fig. 12�d�. The phase is nearly
stationary over this interval of distances, and the contribution
to the amplitude Su after integration is evidently much larger.
The effects of the nonorthogonality between the basis states
in our scattering calculations �i.e., Nak= �a �k��0� would
change the effective couplings Vak. This effect would be
stronger at smaller distances from the surface, where the
collision-induced broadenings �ak are large and no charge
transfer occurs. At larger distances D�6, where formation of
H− states is favored, the effects of the overlap are weakened,
and one may expect that long-range couplings to surface
states are not significantly altered by orthogonalization
effects.

The negative-ion fractions calculated from the direct nu-
merical integration of the Newns-Anderson model are shown
in Fig. 13 as a function of the incident velocity of the H− ion
in comparison with experimental data of Maazouz �1� for
scattering of hydrogen atoms on Si surfaces for incident en-
ergies of 1 keV and various angles of incidence. Even
though our results overestimate the experiment, the theoret-

ical negative-ion fraction decreases as the impact velocity is
lowered. A similar trend is observed in the experimental data.
The theoretical results in Ref. �3� are in much better agree-
ment with the experiment as the perpendicular velocity vp

becomes smaller. However, their results start to systemati-
cally deviate from the experiment at higher vp. The smoother
variation of our fraction with increasing vp tends to agree
better with the experimental results of Maazouz et al. There-
fore, we provide evidence for a realistic description of charge
transfer near a silicon surface, even though our model does
not include the effects of the surface reconstruction and par-
allel motion of the projectile.

FIG. 12. �Color online� �a� Collisional shifts
�l and �u and widths �l and �u for two transition
frequencies  l and  u for H− colliding with an
unreconstructed Si�100� surface at a kinetic en-
ergy of 150 eV. �b� Coupling strengths �Vl� and
�Vu� relevant for transitions from the states �l� and
�u� into the affinity level of H−. �c� Contribution
!l to the electron capture amplitude from the
state �l� with energy �l=−0.5. �d� Contribution !u

to the electron capture amplitude from the state
�u� with energy �u=−0.22 �see text�. The dotted
lines in �c� and �d� indicate the real part of !l,u.
The dashed lines are the imaginary parts of !l,u.
Solid lines indicate the envelopes �!l,u�.

FIG. 13. �Color online� Outgoing H− fraction after collision
with an unreconstructed Si�100� surface as a function of the normal
velocity of the projectile. Triangles represent experimental results
of Maazouz et al. �1� for the outgoing H− fraction for incident H
atoms with kinetic energies of 1 keV and for various incidence
angles. The inverted triangles are our theoretical results for nor-
mally incident H− ions. Circles represent theoretical H− fractions
calculated by E. A. Garcia et al. for 1 keV hydrogen atoms incident
on a Si�111�7�7 surface.
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IV. CONCLUSION

We have calculated ab initio the outgoing H− fraction af-
ter backscattering of normally incident H− ions with kinetic
energies between 50 and 150 eV on an unreconstructed
Si�100� surface. We show that the final negative-ion fraction
evolves from the Fermi sea of the substrate by nonresonant
capture of an electron from dangling-bond surface-state reso-
nances into the affinity level of H−. Our results for the de-
pendence of the negative-ion fraction on the velocity com-
ponent normal to the surface are in qualitative agreement
with the experiment of Ref. �1�. The remaining difference
may be due to effects of the nonvanishing orbital overlap,
surface reconstruction, and trajectory-dependent parallel-
velocity effects. We intend to address these effects, while
making reference to results of our present work.
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APPENDIX A: WANG-TETER CORRECTIONS AND
FITTING FUNCTIONS

The Wang-Teter kinetic energy is a sum of two terms,
TWT=T1+T2. T1 and T2 are the linear and quadratic response
contributions. The variational derivative of T1 is �T1 /�n�r�
=5/6n−1/6�r�F̃��T1 /�nG

�5/6��=5/6n−1/6�r�F̃�Ks�G�n−G
�5/6��,

where G are the reciprocal lattice wave-vectors. F and F̃
denote forward and inverse Fourier transformations, respec-
tively. The source term js in Eq. �15� requires the evaluation
of the derivative of T2 in momentum space �T2 /�nG

=5/9F�n−4/9�r�F̃��T2 /�nG
�5/9��	. In order to evaluate this de-

rivative, the three-point kernel is approximated as

Ls�x1,x2,x3� � ��x1,x2,x3��
t=1

4

f it
�x1�f jt

�x2�fkt
�x3� , �A1�

where xi=Gi /kF. �f i�x� , i=1, . . . ,7	 are the Wang-Teter
screening functions, introduced to factorize the nonseparable
analytic dependence of the wave vectors in Eq. �12�. The
three-point function � is

��x1,x2,x3� = −
13

540
−

1
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 x1

4
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2x3

2 +
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−
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2
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x1
2
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2 −

x3
2

x1
2� . �A2�

Explicit expressions for the functions f i are given in �7,8�.
The representation �A1� leads to the variational derivative

�T2�n�
�n�5/9��G�

= −
729kF

2

125n0
2/3� f1�x�

20
�− 13

9
G1�G� −

1

x2G2�G�

−
x4

2
G3�G� + G4�G� −

1

x2G5�G� + x2G6�G��
+ 3f2�x��2G7�G� + f3�x�G8�G�� + 6f4�x�G9�G�

+ 3f5�x�G10�G� + 6f7�x�G11�G�

+ 3f6�x�G12�G�� , �A3�

where the functions Gi�G� are defined in Ref. �8� as

G1�G� = F�F1�r�2� ,

G2�G� = F�F2�r�F3�r�� ,

G3�G� = F�F3�r�2� ,

G4�G� = F�F4�r�F3�r�� ,

G5�G� = F�F4�r�F1�r�� ,

G6�G� = F�F3�r�F1�r�� ,

G7�G� = F�F5�r�F6�r�� ,

G8�G� = F�F6
2�r�� ,

G9�G� = F�F7�r�F8�r�� ,

G10�G� = F�F8
2�r�� ,

G11�G� = F�F9�r�F10�r�� ,

G12�G� = F�F10�r�2� . �A4�

The corresponding real-space functions Fi are given by the
expressions

F1�r� = F̃�nG
�5/9�f1�x�� ,

F2�r� = F̃�nG
�5/9�f1�x�x4� ,

F3�r� = F̃�nG
�5/9� f1�x�

x2 � ,

F4�r� = F̃�nG
�5/9�f1�x�x2� ,

F5�r� = F̃�nG
�5/9�f2�x�f3�x�� ,

F6�r� = F̃�nG
�5/9�f2�x�� ,

F7�r� = F̃�nG
�5/9�f5�x�� ,
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F8�r� = F̃�nG
�5/9�f4�x�� ,

F9�r� = F̃�nG
�5/9�f6�x�� ,

F10�r� = F̃�nG
�5/9�f7�x�� . �A5�

The “wave function” of the ground-state electronic density is
expanded in plane waves,

��r� =
1

���
G

eiG·rcG, �A6�

and the equations for the coefficients are solved by iteration,

�1 + D�t/2�cG
�m+1� = 2cG

�m� − �1 − D�t/2�cG
�m−1�

− ��G
�m� − ��m�cG

�m���t . �A7�

m denotes the number of the iteration, �G
=F���r�F−1��TWT/�nG�	+�G�H�� ;G−G��cG�, H is the ef-
fective TFvW Hamiltonian on the left-hand side of Eq. �15�,
D=1.0 is a damping coefficient, and the propagation time
step �t=0.05 was found to be adequate for convergence. The
chemical potential is updated from

��m� =
���m����m��
���m����m��

. �A8�

The iterations of Eq. �A7� continue until the residual of the
wave function becomes sufficiently small.

APPENDIX B: KOHN-SHAM EQUATIONS

Following Ref. �26�, we implement the Car-Parrinello
method �16� to solve Kohn-Sham equations �19�. In this
method the orbitals satisfy a system of coupled Euler-
Lagrange equations of motion,

�t
2�k�t� = − �HKS − �k�t���k�t� + �

l�k

�kl�t��l�t� , �B1�

where HKS is the Kohn-Sham Hamiltonian and k= �� ,k	. The
Langrangian multipliers �k correspond to orbital energies and
the orbital couplings �kl derive from the constraints of or-
thogonality ��k ��l�=�kl. In practice we propagate the par-
tially constrained equations of motion for small time steps �t,
i.e.,

�t
2�k�t� = − �HKS − �k�t���k�t�, t − �t t t + �t ,

�B2�

where �k= ��k �HKS ��k� / ��k ��k�. Next we impose the or-
thogonality constraints using the Gram-Schmidt procedure,

��k� ←
��k�

��k��k�
− �

l�k

��l��k�
��l��l�

��l� . �B3�

An orbital is considered as converged and excluded from the
propagation �B2�, if the Euclidean norm of the residual Rk
has become sufficiently small, i.e.,

��Rk��2 = ���HKS − �k��k��2 � � . �B4�

Exploiting the periodicity of the crystal slab geometry used
in our calculations, the orbitals are expanded over the recip-
rocal lattice wave vectors G,

��,k�r,t� =
1

���
G

c�,k+G�t�ei�k+G�·r �B5�

where k= �k� ,0�. The addition of a small friction term of the
form ��,kċ�,k+G and substituting the plane-wave expansion in
Eq. �B2� leads to a set of coupled equations for the dynamics
of the coefficients

c̈�,k+G + ��,k+Gċ�,k+G +  �,k+G
2 c�,k+G = − B�,k+G, �B6�

where

 �,k+G
2 =

1

2
�k + G�2 − ���k�, ��,k+G = D� k+G� . �B7�

D is an infinitesimal damping constant and the driving
“forces” are

B�,k+G = �
G

vs�G − G��c�,k+G�. �B8�

After specifying the initial conditions �t= t0 �c�,k+G

=c�,k+G
�0� , ċ�,k+G= ċ�,k+G

�0� 	, the Eqs. �B6� together with the con-
straints �B3� are propagated numerically up to t=T, such that
Eq. �B4� is satisfied for each �, i.e.,

B�,k+G�T� =  �,k+G
2 �T�c�,k+G�T� , �B9�

and the matrix representation of the Hamiltonian HKS in Eq.
�19� is diagonal. The wave functions ��,k are stationary. For
a small time step �t, Eqs. �B6� can be integrated analytically
if the variation of the forces B� may be ignored. The solution
of Eq. �B6� is

c�,k+G��t� = e−��,k+G�t�2 cos� �,k+G�t�c�,k+G�0� − c�,k+G

��− �t�� + �1 + e−2��,k+G�t − 2e−2��,k+G�t

�cos� �,k+G�t��
B�,k+G

 �,k+G
2 . �B10�

After each propagation time step, the constraints of orthogo-
nality �B3� are imposed, new initial conditions are calcu-
lated, and the next propagation step is executed. The propa-
gation time step �t=0.12 and damping constant D=0.04
were found to be adequate. More than 50 000 small time
steps were necessary to converge the residuals to an accuracy
of �=0.000 05.

APPENDIX C: NEWNS-ANDERSON MODEL

The equations for the transition amplitudes are the Voltera
equations �see also �27��

�t� = �
t0

t

dt�K�t,t����t�� + g�t�, ��t0� = �0. �C1�

Since the kernel is nearly singular and strongly peaked at
equal times t= t�, we regularize Eq. �C1� by change of vari-
ables �=1/ �1+exp�−��t− tc��� and obtain
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��� = �
0

�

d��J���K��,���J��������� + g���J��� , �C2�

where �� �0,1� and J���=1/ ����1−��� is the Jacobian of
the transformation. tc is the point of closest approach and
�−1�25 is the characteristic time interval over which the
kernel changes near the point of closest approach. The trans-

formed equation has end-point singularities, which are unim-
portant since the couplings to the substrate vanish as �
→0,1.

We discretize these equations on an uniform mesh with
time step ��=0.0001, evaluate the derivative using a two-
point finite difference approximation, and use a trapezoidal
rule to calculate the integrals.
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