PHYSICAL REVIEW A 74, 012901 (2006)

Neutralization of H™ near vicinal metal surfaces
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We calculate the neutralization probability of H™ ions due to charge transfer in collisions with metal vicinal
surfaces. We apply a statistical Thomas-Fermi model with gradient correction to the kinetic energy and a local
density approximation for the exchange-correlation energy to compute the ground-state electronic structure of
the surface. In comparison with calculations for flat surfaces, we find work-function changes, induced by the
vicinal superstructure, in good agreement with published experimental and theoretical data. We evaluate the
shift and width of the H™ affinity level resonance for fixed positions of the ion near the surface. For incident
anions with a kinetic energy of 1 keV, the calculated ion-neutralization probabilities depend sensitively on the
impact direction, point of closest approach of the trajectory, and the surface morphology. We find that the ion
survival is more likely if the H™ ions approach the step from above, as compared to ions that approach a step
from below under otherwise identical scattering conditions. In particular, the electron loss after reflection at a
terrace of a monoatomically stepped Al surface is predicted to be resonantly enhanced if the ion approaches a

step from below.
DOI: 10.1103/PhysRevA.74.012901

I. INTRODUCTION

Experiments on the scattering of H™ and F~ ions on me-
tallic surfaces [1,2] reveal that resonant charge transfer be-
tween the projectile and the surface via electron tunneling is
the dominant process, which determines the lifetime of the
negative ion. Various theoretical models have been devel-
oped for calculating the shifts and widths of the projectile
energy levels in front of flat metallic surfaces [3-7]. Good
quantitative agreement with the experiment of Guillemot and
Esaulov [2] for the neutralization of H™ ions on flat Ag(111)
surfaces is achieved in calculations based on a realistic
model potential for the interaction of the electron with the
surface [1,7].

Most theoretical studies neglect effects related to the lat-
eral corrugation of the surface potential. A theoretical
method for calculating the shift and broadening of hydrogen
levels near impurity-covered surfaces shows that electron
tunneling rates are either increased for positively charged or
decreased in the case of negatively charged impurities [8].
The detailed study of the effects related to the lateral varia-
tion of the surface potential on the ion-neutralization prob-
abilities is stimulated by recent experiments with vicinal sur-
faces [9,10], where angle-resolved photoemission
measurements revealed lateral electron confinement in be-
tween surface steps. This confinement effect is attributed to
both the periodic step structure and a surface band gap,
which prevents fast tunneling decay of the confined electrons
into the bulk of the substrate. Experiments involving the neu-
tralization of O~ on Ni surfaces and Ne* on CdS surfaces at
kinetic energies above 1 keV [11,12] indicate that the ob-
served anisotropy of scattered ion fractions is a result of
variations in the electronic charge transfer rates that are
caused by the lateral change in the surface-electronic struc-
ture.

In the present paper, we study the reflection and neutral-
ization of H™ ions with incident kinetic energies of 1 keV on
nanostructured metal surfaces. Even though our method ap-
plies to arbitrarily structured surfaces, as a first application,
we consider the special case of vicinal surfaces. The motion
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of the active electron in the potential field of the projectile-
surface system is described by the Schrodinger equation, and
the projectile is assumed to move classically. In jellium ap-
proximation we replace the charge density of the positive
ionic cores by a smeared-out, uniform background charge
distribution. The electronic density of the surface and bulk
and the electron-surface interaction potential are calculated
by numerically solving the nonlinear Schrédinger equation
within the self-consistent Thomas—Fermi—von Weizsicker
(TFvW) model [13,14]. For projectile energies of the order
of 1 keV and large angles of incidence, charge transfer oc-
curs at short distances in front of the surface where, as com-
pared to atomically flat surfaces, the effects of the step struc-
ture on the surface modify both the electron transfer
dynamics and the motion of the projectile. In fixed-ion ap-
proximation, the width of the H™ affinity level resonance is
obtained by direct numerical integration of the two-
dimensional time-dependent Schrodinger equation, including
the two degrees of freedom of the active electron in the col-
lision plane. The H™ neutralization probability after reflection
from the surface is calculated from these static widths within
a rate-equation approach [15,16] for a set of model broken-
straight-line trajectories of the projectile, including both
electron capture from and electron loss to the substrate.

The plan of this paper is as follows. In Sec. II, we de-
scribe the theoretical details of the calculation. In Sec. III we
discuss our numerical results for both flat and vicinal sur-
faces. Section IV contains our conclusions. Unless stated
otherwise we use atomic units (e=h=m,=1).

II. THEORETICAL FORMULATION

In this section we present our method for calculating the
width of the H™ affinity level and the ion-neutralization prob-
ability in front of metal surfaces. In Sec. II A, we show how
the effective electron-surface interaction potential is evalu-
ated. In Sec. II B, we apply this model to vicinal surfaces. In
Sec. II C, we obtain the projected density of states, charge-
transfer rates, and ion-neutralization probabilities by numeri-
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cal propagation of the time-dependent Schrodinger equation.
Some details of the numerical method for evaluating the ef-
fective electron-surface interaction potential are given in the
Appendix.

A. Effective potentials

The effective potential felt by the active electron,
V=Veu+ Veguts (1)

contains the electron-surface interaction potential in the ab-
sence of the hydrogen core, V,_ ., and the electron-hydrogen
interaction potential, V, ;. We neglect corrections to the sur-
face potential due to the response of the surface to the per-
turbing field of the neutral core of the projectile. The poten-
tial of the hydrogen core is represented by a spherically
symmetrical model potential [17]. The model potential has a
screened short-range Coulomb part and a long-range polar-
ization part, which accounts for the interaction energy of the
electron with the induced dipole moment in the hydrogen
core,

U(r) = = (1/r)exp(= 2r) = (a/2r*)exp(- BIF?). (2)

In this equation, r is the radial distance from the nucleus,
a=9/2 is the ground-state polarizability of hydrogen, and
the parameter B is equal to 2.547. This potential holds a
single weakly bound state with energy E,=-0.76 eV. To en-
sure good numerical accuracy for small radial distances, the
potential is regularized according to [18]

yU
Ven=r——5—- (3)
VU~ +1

We use a two-dimensional model to describe the ion-surface
collision, in which the motion of the active electron is re-
stricted to the collision plane of the projectile trajectory. To
comply with the reduced dimensionality, the projectile-core
potential is reparametrized [7] with values w=0.1417 and
v=0.3923, in order to yield the correct affinity (0.76 eV) of
-

The electron-surface interaction potential V, g is calcu-
lated within the TFvW model for the equlhbrlum electronic
density of metallic surfaces [13,14]. The ground-state energy
density functional of the electron gas is

Eln]=T,[n] + En] + - f dr f L)
[r—r'|

,nj(r n(r’)
f fd r—r'| ° “

where n(r) is the electronic density and ny(r) the density of
the ionic cores in jellium approximation. The first term in Eq.
(4) approximates the kinetic energy of a system of non-
interacting electrons. We approximate this term as the sum of
the Thomas-Fermi term and the leading nonlocal quantum
correction to the kinetic energy (von Weizsicker term),
2
T[n]= J dr[clnm(r) + czM ) Q)
n(r)

The coefficients are
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TABLE 1. Wigner-Seitz radius r,, bulk electron density n,,
Thomas-Fermi screening length /1g, and Fermi wavelength Ny for
some metals. All quantities are in a.u.

Metal Ty ny, Itr \p
Al 2 0.0298 0.90 6.55
Cu 3 0.0088 1.11 9.82
Na 4 0.0037 1.28 13.10
K 5 0.0019 1.43 16.37

C2=&. (6)

3
Ci=—Bm)",
TSR 8

Following the semiclassical expansion of the kinetic energy
of the free-electron gas [19], the gradient parameter \,, takes
the value 1/9. This value is a valid approximation for a
weakly inhomogeneous and weakly interacting electron gas.
However, according to [14] the value \,,=1/4 provides bet-
ter quantitative agreement with density functional theory
(DFT) calculations based on the Kohn-Sham approach [20]
and will therefore be used in our numerical applications.

We adopt the local density approximation (LDA) for the
exchange-correlation energy,

Ey[n]= f drn(r)[e4(n) + &.(n)], (7)

where the Dirac exchange energy is given by
ex(n) = C3n'"(r). (8)

For the electron correlation energy we use Wigner interpola-
tion formula

C
gz — ©)
Cs+ry(n)
with coefficients
3 3 1/3
C3=_Z(;> , Cy4=-044, C5=728. (10)

The Wigner-Seitz radius r, in Eq. (9) is related to the bulk
density of the electrons n,=3/ 417r3. Values for r, that apply
to Al, Cu, Na, and K crystals are listed in Table I, together
with the Thomas-Fermi screening length Iyp=ky/(127n,)""?

12 and the Fermi wavelength N\p=2m/kp~r,, where kp
—(3 77271;,)1/ 3 is the Fermi momentum.

The ground-state properties of the system are obtained by
minimizing the energy-density functional (4), subject to the
constraint that the total number of electrons be conserved.
This is expressed by the Euler-Lagrange equation

OE[n] B
on(r) M7

(1

where the Lagrange multiplier u corresponds to the chemical
potential of the system. Evaluating the first variational de-
rivative in Eq. (4) gives the following equation for the elec-
tron density,
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Vn 2 A 4
] e e

Cs+ (4/3)r(n)
Y Cs+ ()P

5
§C1n2/3(r) + C2|:

+é(r) - u=0. (12)
The electrostatic Hartree potential ¢b(r) arises from the den-
sities of the electrons and the jellium ionic background and
satisfies Poisson’s equation

V2¢(r) =~ 4aln(r) - n,(r)].

The chemical potential is determined by the requirement that
the charge density n(r) approach its homogeneous bulk limit
n, deep inside the metal and by requesting that the electro-
static potential vanish deep inside the vacuum, such that

Cs+ (4/3)r,
(C5 + rs)z

(13)

5 4
M= _Cll’liB + _C3l/l/1,/3 + C4

3 3 (14)

+ ¢b’
where ¢, is the bulk value of the electrostatic potential.

By making the substitution n(r)=y¢(r), Eq. (12) results
in the nonlinear Schrodinger equation for the ground-state
von Weizsicker wave function,

A,
- ?Vzww(r) + Ueff(r) l;bw(r) = ,U«ww(l‘) > (15)
with an effective potential
_ 5 4/3 4 2/3
Verr(T) = (r) + 3 Ci, (r) + 3 C3,°(r)
Csy2B(r) + (4/3)(3/14m)'"3
b Sl D HERORT © ()

[Csy(r) + (3/4m) PP

The electron-surface interaction potential is evaluated as the
sum of the electrostatic Hartree potential and the local den-
sity approximation for the effective exchange-correlation po-
tential,

OE[n]

on(r) (17)

Ve—surf(r) = ¢(r) +

B. Application to vicinal surfaces

In order to simulate nanostructured surfaces within the
jellium model, the positive background charge density is pe-
riodically corrugated in the optical plane, following the sur-
face superstructure. We choose a right-handed Cartesian
laboratory reference frame S with origin situated on the step
ledge at the middle between the upper and lower corners of
the step (Fig. 1). The x and y axes are lying in the optical
surface plane, and the z axis is directed along its outward
normal. In order to determine the electronic charge density,
we represent the superimposed surface structure by introduc-
ing the shape function &(x,y) and assume that the uniform
jellium background charge density n,(r) is confined to the
space z<&(x,y)—i.e., n,(r)=n,0(&(x,y)—z) where 6(x) is
the Heaviside step function.

More specifically, for a periodically structured vicinal sur-
face that is translationally invariant along the y axis, we in-

PHYSICAL REVIEW A 74, 012901 (2006)

optical plane

metal

FIG. 1. Geometry and coordinate systems S and S, for a vicinal
surface with step length L, step height H, and a miscut angle «. The
optical surface plane is indicated by the dotted line. D is the posi-
tion vector for the projectile and r for the electron.

troduce a terrace width L and a step ledge of height H. The
surface of the ledge is orthogonal to the surfaces of the two
adjacent terraces. We chose the terrace to be L=ma, atoms
wide and na, atoms high, where q is the lattice spacing in
the plane with (001) orientation. This configuration corre-
sponds to the [m(001) X n(100)] structure, according to the
notation in [21].

More suitable for the numerical calculation is the refer-
ence frame S, which is obtained by rotation R,:r’
=(x",y’,z')=R,r of the frame S about its y axis by the mis-
cut angle a=arctan(H/L), such that the z’' axis of the new
reference frame is directed along the outward terrace normal.
Both reference frames are shown in Fig. 1. The jellium pro-
file function £ in S, is given by

E(x’)=%l[0(x’)—0(—X’)], —LR<x'<LR2. (18)

We have solved numerically the system of coupled equations

(13) and (15) in the rectangular domain
O=[-L12,L12]X[-2Z,7Z] (19)

in the reference frame S, subject to the boundary conditions

e Vig,=0, e, V=0, x'==xL12, V 7 €,
(20)
G (X'~ Z) = \n,, $(x',2)=0, Y x' e, (21)

e, -Vop=0, z/==xZ V x' e[-L12,L12], (22)

where e, and e,/ are unit vectors directed parallel and per-
pendicular to the terrace, respectively. The end points —Z and
Z are chosen sufficiently far in the homogeneous bulk and
vacuum (Z>r,), respectively, that the solutions in the sur-
face region are insensitive to variations of that range. The
homogeneous Neumann boundary conditions (20) and (22)
imposed on the electrostatic potential, together with the
boundary conditions for the wave function, ensure charge
neutrality of the jellium system in the domain (). The first set
of conditions (20) explicitly assumes that in S, the wave
function and the electrostatic potential do not vary with the
lateral coordinate x’ across these boundaries. This is justified
if the electron densities of two adjacent steps do not overlap

012901-3



BOYAN OBRESHKOV AND UWE THUMM

significantly. This means that the terrace period L=may
needs to be larger than the Thomas-Fermi screening length
Itr<ayg, i.e., m>1. The remaining set of boundary condi-
tions in (21) and (22) is dictated by the homogeneity of bulk
and vacuum.

The numerical solution for the electrostatic potential and
the wave function are periodically replicated (in the S,
frame) in a larger domain D=Q & Q& - -- & (), following the
contour of the corrugated jellium profile. By construction,
the numerical solution, together with its spatial gradient, is a
continuous function in D. The values of ¢, and ¢ at some
point r’ € D are calculated by translation from points in the
reference domain r), e () along a vector a=(n,L,n,H), where
n; and n, are integer numbers,

G (0)) = o (T'rg),  plrg) = BT, 'rg). (23)

The wave function and the electrostatic potential are subse-
quently evaluated in the laboratory frame S by back rotation
around the step edge direction by the miscut angle «,

$(0) — (R, (r) — ¢(R'T"). (24)

Equations (13) and (15), together with the boundary condi-
tions (20)—(22), are discretized on a two-dimensional spatial
mesh. The equations are solved by using a multigrid method
[22,23] with mesh spacings 6,=0.11 and 8.=0.08 on the fin-
est grid. The details of the numerical method are given in the
Appendix.

C. Charge-transfer rate and ion-neutralization probability

We describe the resonant charge-transfer process by the
Schrodinger equation for the motion of the active electron in
the collision plane of the projectile,

ioV(t)y=HV(t), H=T+V=- %(aﬁ + r?f) +V(x,2),
(25)

where T is the kinetic energy of the electron and V is its
potential energy as given in Egs. (1), (3), and (17). The tran-
sition amplitude for charge transfer is calculated in adiabatic
approximation for the motion of the ion, i.e., for an arbitrary
but fixed ion position,

A(;D) =(W(0)|¥(1;D)), (26)

where |W(0)) is the initial unperturbed affinity state of H-
and D is the position vector of the ion in the reference frame
S. Information about the positions, widths, and amplitudes of
resonances in the ion-surface system is contained in the pro-
jected density of states (PDOS),

e}

1 .
p(E;:D)=—Re f dte®'A(1;D). (27)
T 0

The width T, position E,, and amplitude a of an isolated
resonance state are determined by fitting the PDOS to a
Lorentzian curve and a constant background p,
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2

(E-E)*+T%4 (28)

p=pota
In order to calculate the resonance parameters I', E,, and a,
we numerically integrate the Schrodinger equation (25) using
the Crank-Nicholson propagation method on a single grid.
The parameters of the numerical grid in this calculation are
the same as in Ref. [7]. The grid extends over 100 equidis-
tantly spaced atomic layers into the bulk with lattice constant
ay and up to 100 a.u. into the vacuum side. The extension of
the grid in the lateral direction is between x=—400 and x
=400. The grid spacings are Az=0.2 and Ax=0.3, and the
time step for the numerical propagation of the wave function
is Ar=0.2. The calculation of the PDOS was limited to dis-
tances D=<11 of the ion in front of the optical plane at z
=0, since at larger distances the wave function would have to
be propagated over very long times (>15000 a.u.) for the
very narrow affinity-level resonance to become noticeable in
the PDOS.

III. NUMERICAL RESULTS AND DISCUSSION

In this section we discuss our numerical results for the
affinity-level width and ion-survival probability of H™ near
both flat (Sec. III A) and vicinal (Sec. III B) surfaces. The
purpose of Sec. III A is to assess the quantitative predictions
and the limitations of our model.

A. Affinity-level width of H™ in front of flat jellium surfaces

In the jellium model for flat surfaces, the background
charge density is n,0(—z). We numerically solved the one-
dimensional version of Egs. (13) and (15) for the grid size
specified by Z=50 and the mesh spacing 6,=0.05r,, subject
to the boundary conditions

(@) =0. $(-2)=\n. ¥ (2)=0. (29)
dz =%Z

Figure 2 shows the normalized charge-density profiles n
=7 /n;, and electrostatic Hartree potentials as a function of
the distance z from the jellium edge in units of Fermi wave-
lengths. Table II shows good agreement of our results for the
metallic work functions W=—pu calculated within the TFvW
model for a collection of flat jellium surfaces with the data in
[14], obtained within the same model, and the Lang-Kohn
results [25,26].

The calculated PDOS in front of a Cu-like surface (r,
=~ 3) is shown in Fig. 3 for several positions D of the ion. At
D=11.0, the affinity level appears as a narrow Lorentzian
peak far above the Fermi energy level Ep. At such large
distances charge transfer is due to electron loss into unoccu-
pied bulk states of the metal. Closer to the surface, at D
=5.5, the affinity energy level is shifted towards Ep. At D
=3 it becomes degenerate with the Fermi energy level (E,
~FEp), and the PDOS shows contributions evenly spread
over the entire conduction band. For D <3 the affinity en-
ergy level is shifted across and below the Fermi energy level,
and the charge transfer reverses its direction to electron cap-
ture from the conduction band. Close to the jellium edge, at
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9 [eV]

05 00 05 1.0
z[a]

FIG. 2. Electronic charge densities (a), normalized to the bulk
electronic density, and electrostatic potentials (b) for bulk Wigner-
Seitz radii r;=2, 3, 4, and 5. The distance z is measured in Fermi
wavelengths (see Table I).

D=1.0, the resonance profile of the affinity level is truncated
at the bottom of the conduction band.

Our model is based on the LDA for the effective
exchange-correlation potential and excludes the image
charge effects due to the long-range attractive interaction of
the active electron with the induced polarization charge on
the metal surface. In order to quantify the relevance of the
image charge effect for electron transfer, we show in Fig. 4
the results of our calculations for the affinity level width of
H™ near a flat Na surface with (xc) and without (x) correla-
tion effects (C,=C5=0), in comparison with our results ob-
tained from a model DFT potential [24], which includes the
image charge effects. As this comparison suggests, our ne-
glect of the image charge interaction leads to an increase of
the charge-transfer rate of the order of 10%. Figure 4 also
shows that neglecting correlation effects entails a reduction

TABLE II. Work functions W in eV for flat jellium surfaces,
compared with calculations by Chizmishya and Zaremba [14] and
Lang and Kohn [26].

T Present result Ref. [14] Ref. [26]
2 3.70 3.70 3.89
3 3.22 3.22 3.50
4 2.83 2.84 3.06
5 2.53 2.55 2.73
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FIG. 3. Projected density of states in front of a Cu-like surface
(ry=3). The number above each curve refers to the position D of the
ion with respect to the jellium edge.

of the affinity level width of the order of 20%-30% with
respect to the DFT result.

Our affinity-level widths of the H™ near a flat Cu surface
are plotted in Fig. 5 in comparison with results of Borisov et
al. [6]. The calculations in [6] are based on the effective DFT
potential [24], including the image charge effects. We have
good quantitative agreement at smaller distances (D <4);
however, at intermediate and large distances our widths are
3—4 times larger. We attribute this disagreement to both the
neglect of image forces and the reduced dimensionality of
our model.

B. Neutralization of H™ in front of vicinal jellium surfaces

In this subsection we present numerical results for the
charge-transfer rate and neutralization probability of H™ ions
colliding with vicinal metallic surfaces at a kinetic energy of
1 keV. The static width of the projectile level is obtained
from the PDOS given by Eq. (27). The ion-neutralization
probabilities are evaluated within a rate-equation approach
for a set of broken-straight-line trajectories, which reflect
specularly depending on the local conditions at the metal-
vacuum interface. The equilibrium electronic structure and
the surface potentials were evaluated for bulk electron den-

10'
v DFT
s+ (xc)-LDA
_ s P + (x)-LDA
2 10 2.,
= 20% G-
M N 9<;
10 a4
{ r= n

3 4 5 6 7 8 9 10 1

Dl[a.u.]

FIG. 4. (Color online) Affinity level widths of H™ as a function
of the distance D from the jellium edge of a flat Na jellium surface
(ry=4). DFT: based on the effective potential of Ref. [24], which is
adjusted to DFT results. (xc)-LDA: present result including ex-
change and correlation effects in local density approximation. (x)-
LDA: present result excluding correlation effects.
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10° —4— Borisov et al., Ref. [6]

0o 2 4 6 8 10 12
D [a.u.]
FIG. 5. (Color online) Comparison of the present result for the
static widths of the affinity level of H™ in front of a Cu jellium

surface (ry=3) with the numerical data of Borisov et al. [6]. Dis-
tances are measured with respect to the image plane.

sities, corresponding to r,=2, 3, and 4 (Table I).

Figure 6(a) shows the contour map of the normalized
electron density tﬂfv/ n,, for a vicinal Al surface (r;=2) with
(m,n)=(10,1), The lattice spacing for Al is ay=3.83. The
figure demonstrates the Smoluchowski effect of smoothing
of the electron density near the step edges [27,28]. Electrons
are effectively repelled from the step and flow from the edge
into the valley between the upper and lower terraces. Near
the edges, the electron density is highly nonuniform and this
inhomogeneity spreads in a lateral direction over a distance
of about one screening length. The electrons distribute simi-
larly at the double-stepped vicinal Al surface with (m,n)
=(10,2), as shown in Fig. 6(b); however, the contour map
follows more closely the jellium profile. Figure 6(c) presents
the charge density of a vicinal Na surface (r,=4) with
(m,n)=(10,2) and lattice spacing a;=3.99. In comparison
with Figs. 6(a) and 6(b), the electron distribution in Fig. 6(c)

w
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is more extended in the lateral direction, due to the larger
screening length of Na as compared to Al. Inside the bulk,
the charge-density overshoot, which is driven by the
gradient-correction term in Eq. (5), is modulated due to the
presence of steps. The electrostatic potentials in Figs.
6(d)-6(f) correspond to the electron densities in Figs.
6(a)-6(c). Due to the electron depletion from the step edges,
a residual unscreened electrostatic field of the edge ionic
cores penetrates into the vacuum side of the interface, while
the equipotential lines bend towards the lower corner of the
step due to the electron density increase in this domain.

The redistribution of the electron density at steps induces
a dipole moment, which is oriented towards vacuum [Figs.
6(a)-6(c)]. As shown in [29], the step dipole due to this
redistribution slightly diminishes the dipole moment on the
flat terrace and thus leads to a decrease of the metallic work
function W relative to the work function of a flat surface,
Wia- Table IIT displays our results for the work function
change AW=W;,—W in comparison with the theoretical
data of Ishida and Liebsch [29] and work-function changes
measured by Roth ez al. [30] for the Cu(117) and Cu(119)
vicinal surfaces of the flat Cu(001) surface. We note that the
work-function change for surfaces with step height 24, is
larger than for surfaces with step height a,, due to the in-
creased dipole moment along the step edge.

Our results for AW agree well with both theoretical values
based on the Kohn-Sham approach [29] and the experimental
data for vicinal Cu(117) and Cu(119) surfaces [30]. This pro-
vides evidence for a realistic description of the electronic
density distribution at the metal-vacuum interface within the
TFvW method.

The self-consistent electron-surface interaction potentials
in Fig. 7 show steep gradients near the step edges and vary
more slowly towards the lower corner of the step, due to the
above-mentioned electron density redistribution. The impor-
tance of the gradient correction term in Eq. (5) and

8
(a) r=2,m=19,n=1 &) so?

2" [a.u]
z; [a.u]

r=2,m=10,n=2 g {c)

r=4m=10,n=2

w»

E) E)
&, s 0
by N .
41 (e) H ]
r=2m=10.n=1 r=2,m=10,n=2 81 r=4m=10,n=2 ST
-3 B
i ¢ -5 @ & 10 18 -8 -0 5 O 5 10 15 15 10 5 0 & 10 18
¥ [a.u] x'[au] X' [au]

FIG. 6. Contour maps of the normalized electron charge densities n(x’,z")/n; (a)-(c) and electrostatic potentials ¢(x’,z’) (d)—(f) for
vicinal Al (r;=2) (a), (b), (d), (e) and Na (r,=4) (c), (f) surfaces with step length 10a, and step heights a (a), (d) and 2a (b), (c), (), (f).
The solid line in (a)—(c) indicates the profile of the positive ionic background charge. The contour-line spacing is 0.07 (a), (b), 0.08 (c),
0.43 eV (d), 0.44 eV (e), and 0.08 eV (f). The lattice spacings are ay=3.99 for Na and ay=3.83 for Al.
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TABLE III. Calculated work function W and work function
change AW in eV compared with results based on the Kohn-Sham
equations [29] and experimental data for vicinal Cu(117) and
Cu(119) surfaces [30]. The first column presents the value of the
screening parameter r,, the second and third columns specify the
surface morphology (m,n), the fourth and fifth column show our
results, and the last row includes published data for AW.

This work Literature data
T m n w AW AW
2 10 1 3.66 0.03 0.03 [29]
2 10 2 3.63 0.07 0.05 [29]
2.7 8 3.30 0.05 0.03 [30] for Cu(117)
0.04 [30] for Cu(119)

2.7 8 2 3.26 0.09
3 10 2 3.16 0.06

10 2 2.75 0.08

exchange-correlation effects is also expressed in the appear-
ance of a local minimum in the Na surface potential, as in-
dicated by the closed contour line in the metal interior in Fig.
7(c).

The PDOS of the system is calculated for a sequence of
lateral positions Dy, of the ion at a fixed distance D, in
front of the optical surface as indicated in Fig. 8. The PDOS
for a vicinal Al surface with (m,n)=(10,1) is shown in Fig.
9(a) for D,,=4. At the midterrace position (3), at D=8,
the affinity level lies above the Fermi energy level (Ep=
—-3.66 eV) and charge transfer is due to electron loss. The
width of the affinity level resonance is I'=1.34 eV. When
positioned above the lower corner of the step [position (2),
D,,=2], the affinity energy level is shifted close to Er and
the resonance width becomes I'=2.16 eV. Right above the
step edge [position (1), D,,,,=—2], where affinity is below Ep,
the width is very large (I'=4.68eV) and the charge transfer
proceeds via electron capture from the delocalized bulk
states of the target. At larger distances from the optical sur-
face plane, at D, =7, the PDOS lies to a great extent above
Eg, as shown in Fig. 9(b); i.e., the transfer is due to electron
loss. The affinity-level width is now 1.07, 0.77, and 0.50eV
at positions (1), (2), and (3), respectively. The abrupt varia-
tion of the width in the vicinity of the step edge [position (1)]
can be explained in terms of the width of the potential barrier
between the surface and projectile [cf. Fig. 7(a)]. At the up-
per corner of the step, the surface potential rises steeply to-
ward the vacuum. This reduces the barrier width and favors
electron tunneling, while electron transfer near the lower cor-
ner of the step is less likely, due to the larger barrier width.

Figure 10 shows the PDOS in front of a double-stepped
vicinal Na surface (r,=4) with (m,n)=(10,2), for two posi-
tions of the H™ ion in front of the optical plane, D,,,=5 and
8, respectively. The Fermi energy level is at Ep=-2.75 eV.
The charge-transfer process shares qualitatively the same
features as discussed above for the monoatomic vicinal Al;
however, the affinity level shift and width vary more rapidly

with the lateral coordinate Dy, At D,,,,=5, the charge trans-
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(a)

r=2m=10,n=1

x'[a.u.]

121(b) .05 r=2m=10n=2
5
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3,
N

-8
-12

15 10 -5 0 &§ 10 15

x'[a.u.]

FIG. 7. Electron-surface interaction potentials according to Eq.
(17) for vicinal Al (rg=2) with step heights ag (a) and 24, (b) and
for vicinal Na (r;=4) with step height 2a (c). The step length is
10aq in all graphs. ay=3.83 for Al and a(=3.99 for Na. The
contour-line spacing is 1 eV (a), (b) and 0.3 eV (c).

fer results in electron loss near the midterrace position (3),
the affinity becomes degenrate with E, (E,~Ey) near the
lower corner of step (2) [Fig. 10(a)]. The effect of the nar-
rower conduction band of Na is seen in the saturation of the
width near the upper corner of the step at position (1), where
the energy level is shifted close to the bottom of the conduc-
tion band, E,=~-6 eV. At position (1) the width is 1.33 eV,
at the lower corner position (2) we have 1.46 eV, and at the
midterrace position (3) I'=0.45 eV. At D,,=38, in Fig. 10(b),
the loss process determines the character of the charge trans-
fer and the width shows a larger variation with D, as com-
pared to the monoatomically stepped vicinal Al. Above the
step edge at position (1), the width is I'=1.00 eV, while at
the midterrace position (3) we find I'=0.17 eV.

The static widths extracted from the PDOS for the vicinal
Al surface with (m,n)=(10,1) and (m,n)=(10,2) and Na
surface with (m,n)=(10,2) are shown in Figs. 11(a)-11(c),
respectively. We find that the affinity level width T" clearly
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D
(ORI e)| &)

vacuum

optical plane

Dpar[a.u.]

FIG. 8. Geometry for the calculation of the PDOS of H™ in front
of a vicinal surface. The ion position vector D= (D, Dy is mea-
sured with respect to the origin O of the reference frame S in the
Fig. 1. Position (1) of the ion is near the upper corner of the step,
position (2) is above the lower corner of the step, and point (3) is
above the midterrace position.

exhibits the vicinal structure of the surface. It oscillates in
the lateral direction with the terrace period and decays expo-
nentially into the vacuum. The charge transfer results in elec-
tron loss near midterrace positions, where I" acquires a mini-
mum. For small distances D,,,~4 and near the step edges,
the affinity level is shifted across and below the Fermi level
and charge transfer proceeds by capture of a target electron
from the conduction band. The effect of the narrower con-
duction band of Na is expressed in the sudden decrease of

(ay D_=4au.
r=2, m=10,n=1

10°4

p (E)

ST o0 A= S—
108 87 654-3-2-10

E [eV]
(b) D=7 a.u. @)
'}=2= m=10,n=1
m (
o
10
10° . i : :
6 -5 4 3 2 1 0

E [8V]

FIG. 9. Projected density of states for H™ in front of a vicinal Al
surface with (m,n)=(10,1). The ion is at D,,,=4.0 a.u. in front of
the optical plane (a) and at D,,,=7.0 a.u. (b). The lateral positions
of the ion, (1), (2), and (3), are indicated in Fig. 8. The Fermi
energy level Ep=-3.66 eV is denoted with a dotted line.
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102 {a)D_=5au.
r.=4,m=10,n=2 3)
Bl @
o (1 :
< 4o
10° . ; — .
-8 -5 4 -3 -2 -1 0
E[eV]
10%{ (b) Dpor=8 a.u. (3)
r=4, m=10,n=2
gy
iy 10
10° ;
-8 -5 4 -3 -2 -1 0

FIG. 10. Projected density of states for H™ in front of a vicinal
Na surface with (m,n)=(10,2). The ion is at D,,,=5.0 a.u. in front
of the optical plane (a) and at D,,=8.0 a.u. (b). The lateral posi-
tions of the ion, (1), (2), and (3), are indicated in Fig. 8. The Fermi
energy level Ep=-2.75 eV is denoted with a dotted line.

the width at small D, in the vicinity of the step edges [cf.
Fig. 11(c)].

The survival probability P of H™ in collisions with a vici-
nal Al surface with (m,n)=(10,1) is calculated from the rate
equation
O = TP T 01 P). (30)
where I’ and I, are the electron loss and capture rates
evaluated along the projectile’s trajectory D(z). We assume
the following description for the ion-neutralization process:
if the affinity level E, is above the Fermi energy level, the
ion is neutralized via electron loss, while below Ey only
capture is allowed—i.e.,

I', E,=ZE,

F cq — . =
loss 0’ Eu<EF’ cap

0, E,=E,,
I, E,<E.
(31)

Due to the broken translational invariance of the interface
in the lateral direction, the ion-survival probability depends
on the local surface conditions. The rate equation (30) is
solved for a set of predefined straight-line trajectories, which
reflect specularly on the terrace at the point of closest ap-
proach D, and at a fixed distance Dy, from the step ledge.
We consider only two types of collision trajectories. Trajec-
tories which approach the step ledge from above will be
referred to as “step-down” and those approaching the ledge
from below as “step-up.” These trajectories are sketched in
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FIG. 11. (Color online) Static affinity-level width of H™ as a function of the ion position (Dp, Dpoy) in front of a vicinal Al surface (r,=2)
with (m,n)=(10,1) (a), vicinal Al surface (r,=2) with (m,n)=(10,2) (b), and vicinal Na surface (r,=4) with (m,n)=(10,2) (c). The
numbers attached to each curve indicate the distance D, (in a.u.) of the ion from the optical surface plane.

Fig. 12. Trajectories which are significantly perturbed by the
steps are not considered.

Figure 12(a) shows the survival probability of the ion
along step-up and step-down trajectories as a function of the
angle of incidence with respect to the optical surface plane.
The ion reflects specularly at a distance Dg.,=3a, from the
step ledge and point of closest approach D ,=1.0 above or
below the step. We see that the ion-survival probability is a
rapidly varying function of the incidence angle 6;,. and that
survival along step-down trajectories is more likely. More-
over, the survival probability along the step-up trajectories
has a well-pronounced resonance dip at an incidence angle of
about 25°. The survival along step-down trajectory also
shows a small dip at ;.= 15°. A similar qualitative behavior
of the survival probability is observed if the ion reflects near
a midterrace position at the distance Dg.,=5a, from the
ledge, as seen in Fig. 12(b). The dip in the ion-survival prob-
ability along the step-up trajectory is shifted to smaller
angles of incidence, close to 6,,.,=~18°. The survival along
the step-down trajectory is more likely and monotonically
decreases with the decrease of the incidence angle.

In order to further analyze these results, we show the
variation of the affinity energy level E, along the projectile’s
trajectory for reflection at Dy,=3a, above or below the step
(Fig. 13). At large angles of incidence the survival probabil-
ity is large P~ 10%, since the interaction time of the projec-
tile with the surface is minimal. The affinity level depends
only weakly on details of the surface morphology [Figs.

W/ \"/ —
W

metal
lhp I'D

13(a)-13(d)]. The survival probability for a step-up trajec-
tory at 6,,,=26° is P~0.1% [Figs. 13(e) and 12(a)]. This is
due to an increase of the interaction time and enhancement
of the electron loss at the nearest step edge on the outgoing
part of the trajectory, after £, has crossed E from below. By
further decreasing the angle of incidence to 6,,.=20° [Fig.
13(g)], the affinity level of the projectile repeatedly crosses
the Fermi energy level aftter reflection from step-up trajec-
tory. On the exit part of this trajectory, at the position of the
nearest step edge, the electron transfer occurs via capture
from the conduction band (E, < E), which indeed favors ion
survival, P=~1%. We conclude that the dip in the survival
probability along the step-up trajectory is due to resonant
enhancement of the electron loss on the outgoing part of the
scattering trajectory, caused by the presence of a perturbing
step edge on the surface. lon survival along the step-down
trajectories is favored, since the projectile is reflected away
from the nearest step edge, which decreases the interaction
time [Figs. 13(b), 13(d), and 13(f)]. However, at smaller
angles of incidence, for 6,,.=12°, electron loss is enhanced
along the incoming part of the step-down trajectory, due to
the encounter of an edge prior to reflection from a terrace
[Fig. 13(h)].

Our conclusions in this paper agree qualitatively with ear-
lier results of a theoretical study on the formation of H™ ions
at stepped Al surfaces in grazing incidence collisions [31],
which clearly reveal enhancement of the ion-formation prob-
ability along step-down trajectories. We also note that the

FIG. 12. (Color online) ITon-
survival probability for 1 keV H™
colliding with a monoatomic vici-
nal Al surface (n=1) as a function
of the projectile’s angle of inci-

(8) v/ i (b)
10 o L
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A S P /
— 10° / _ 35 v
2 / P Dmp_s a, o 104 4
o D= 1.0 \/
1074 1024
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dence 6;,. with respect to the op-
tical surface plane. The ion re-
flects specularly at the point of

D..=58 closest approach D ,=1.0 a.u.

D,=10 above the upper terrace (step-

down) or lower terrace (step-up)

at a distance Dyp=3ay (a) or 5a,
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tal lattice spacing is ap=3.83 a.u.
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and the terrace width is L=10a,.
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FIG. 13. (Color online) Affinity energy level of H™ along the projectile’s trajectory at a kinetic energy E=1 keV colliding with vicinal Al
surface (m=10,n=1). 6, is the angle of incidence with respect to the optical surface plane. The distance of closest approach is D =1.0 and
the distance from the step ledge is 3ag. (a) Step-up trajectory, 6,,,=82°. (b) Step-down trajectory, 6;,,=82°. (c) Step-up trajectory, 6.
=36°. (d) Step-down trajectory, 6;,,=36°. (¢) Step-up trajectory, 6;,.=26°. (f) Step-down trajectory, 6;,.=23°. (g) Step-up trajectory, 6,

=20°. (h) Step-down trajectory, 6;,.=12°.

oscillations of the affinity-level width, shown in Fig. 13, are
consistent with both the result of LDA calculations based on
a cluster model for the surface [32] and scattering experi-
ments with 4-keV Ne* ions on vicinal CdS surfaces. In Ref.
[12], a clear correlation has been observed between the Ne*
fractions and the lateral variation of the surface potential
along the outgoing trajectories of the scattered ions. The au-
thors observe an increased neutralization probability near Cd
atoms, due to the depletion of electronic charge near these
atoms, and decreased neutralization near S atoms, due to the
increase of electron density around the sulfur atoms.

IV. CONCLUSION AND OUTLOOK

We have calculated the neutralization probability of H™
ions colliding with vicinal surfaces at a kinetic energy of
1 keV. The surface electronic structure is calculated within
an application of the Thomas—Fermi—von Weizsicker model
using a local density approximation for the exchange and
correlation energy [14]. Our results for the work function
change near vicinal metal surfaces are in good agreement
with both experiment [30] and Kohn-Sham calculations [29]
and indicate that we represent the metal-vacuum interface
fairly accurately. The presence of localized dipole moments
at steps predicted within the TFvW model is consistent with
recent experimental measurements [28]. The affinity-level
width of H™ as a function of the ion-surface distance is ob-
tained by projecting the density of states of the collision
system onto the unperturbed projectile affinity level. We find
a resonant enhancement of the electron loss along the outgo-
ing part of the projectile’s trajectory, depending on the direc-
tion of the surface steps. As a consequence we find that ion
survival is less likely along step-up trajectories. Our conclu-

sions in this work are also consistent with the predicted in-
crease of the H™ formation probability in grazing collisions
with Al surfaces along step-down trajectories [31].

Our jellium-based approach does not include the periodic
crystal structure of the metal in the bulk or the contribution
from the long-range image forces. We will extend our model
by including these effects in the future. In parallel, we intend
to improve our modeling of the classical motion of the pro-
jectile, in response to the sensitive dependence of the ion-
survival probability on the collision trajectory predicted in
this work.
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APPENDIX: SOME DETAILS OF THE NUMERICAL
METHOD

Due to the translational invariance of the jellium system
in the step-edge direction, Egs. (13) and (15) together with
boundary conditions (20)—(22) are discretized on a two-
dimensional spatial mesh =(§,, 8.), with standard central
finite-difference approximation for the Laplacian. The non-
linear Schrodinger equation (15) is solved by iteration in
imaginary time,

(e + o) = ' (0) + (— %L’W Vetr — M) Yo, (A1)

where L" is the finite-difference approximation for the La-
placian and the parameter ot satisfies the stability condition
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a<(1/4) min(@f, 53) First, a trial density is defined and the
electrostatic potential is evaluated from the Poisson’s equa-
tion with multigrid method [22,23]. ¢" and ¢" are the exact
and approximate solution on the finest grid. The residual of
Poisson’s equation is r'=f"—L"¢" with f'=—4m(y?—n,).
The error e=¢"— @/ also satisfies Poisson’s equation L"¢"
=r". The residual is transferred to a coarser grid (with H
=2h), =1y, where I' is a linear restriction operator,
which evaluates the residual on the coarser grid by taking a
local average of the fine-grid residual. The residual equation
Lef=¢ on the coarser grid is solved, and the fine-grid
approximation is updated via ¢« @'+Ie", where I?; is a
linear interpolation operator from the coarse to the fine grid.
In order to accelerate the convergence properties of this
coarse grid correction scheme, the number of the coarser
grids is successively increased (Q", Q% , Q% . .), and the
two-grid iteration is applied sequentially between these
grids, proceeding from the finest to the coarsest and back to
the finest grid. This cycle is repeated N, times at each level
of refinement. This is necessary in order to accelerate the
damping of the low-frequency error components of the cor-
rection to the solution on the finest grid, while the high-
frequency components of the error are smoothed by using a

PHYSICAL REVIEW A 74, 012901 (2006)

relaxation method applied »; times in the beginning of the
coarse grid correction and v, times at the end.

We use a bilinear interpolation for the operator /%, a half-
weighting scheme for the restriction operator If, and use
Gauss-Seidel relaxation for the solution update process, by
sequentially relaxing the residual equation on the grid lines
for fixed x. At each iteration step we Gram-Schmidt normal-
ize the solution to the right-hand side of the Poisson’s equa-
tion, as required by the Neumann boundary conditions (20)
and (22). We use six grids in the numerical calculation of the
electrostatic potential. Mesh spacings on the finest grid J,
=0.11 and 6,=0.08 were found to be adequate. The conver-
gence properties and the quality of the solution were as-
sessed empirically by monitoring the L2 norm of the residual
on the finest grid. For v;=v,=5 and N, =15, we find that the
relaxation scheme approximates the electrostatic potential
sufficiently well.

The electrostatic potential ¢ is used to update the effec-
tive potential v.¢ in Eq. (16) and the value of the chemical
potential in Eq. (14). The new approximation for the von
Weizsicker wave function is obtained from Eq. (Al). The
iterations proceed until self-consistency is reached. The self-
consistency is assumed when the chemical potential has con-
verged to six significant digits.
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