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Abstract

We present a new method to extract momentum distributions from time-

dependent wavepacket calculations. In contrast to established Fourier

transformation of the spatial wavepacket at a fixed time, the proposed

‘virtual detector’ method examines the time dependence of the wavepacket

at a fixed position. In first applications to the ionization of model atoms

and the dissociation of H+
2 , we find a significant reduction of computing

time and are able to extract reliable fragment momentum distributions by

using a comparatively small spatial numerical grid for the time-dependent

wavefunction.

1. Introduction

Numerical wavefunction propagation for solving the time-dependent Schrödinger equation

has been used extensively in order to describe the dynamics of strongly perturbed systems

(Hermann and Fleck 1988, Kosloff 1994, Borisov et al 1999, Thumm 2002). Especially

in the area of laser–matter interactions at high intensities, this method is currently applied to

photoionization and photodissociation of few-particle systems such as the helium atom or small

molecules, where the low or reduced dimensionality of the problem makes time-dependent

calculations of this type feasible (Kulander et al 1996, Walsh et al 1998, Liu et al 2000, Lein

et al 2000, Parker et al 2001, Bandrauk and Chelkowski 2001). Usually, the propagation is

carried out in coordinate space and yields integral information about the considered process,

e.g. total dissociation or ionization rates. However, if one desires to compare the calculation

to differential experimental data such as momentum or kinetic energy distributions of the

fragments, one has to extract these distributions from the outgoing wavepackets. A well

established method is Fourier transformation (FT) which projects the wavefunction onto

momentum eigenfunctions at a fixed time. The finite width of the momentum distributions

gives rise to a significant dispersion of the wavepackets in coordinate space. Thus, a large

numerical grid and long propagation times are required to get the full momentum information

and to make the Fourier integrals converge. This becomes a serious computing time problem for

systems of higher dimensionality. If the asymptotic behaviour of the continuum wavefunction
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is analytically known, this problem can be avoided. Using analytical propagation for the

asymptotic part of the wavefunction, the size of the numerical grid can be kept rather small

(Keller 1995).

In this paper, we propose a new method to extract momentum distributions without

propagation of the wavepacket over a large numerical grid. Here, the time dependence of

the wavepacket at a fixed position is the source of the momentum information. Due to the

analogy of this procedure to an experimental situation, we call this the ‘virtual detector’ (VD)

method. The paper is structured as follows. After the general formulation, we demonstrate

this method analytically as well as numerically for Gaussian wavepackets in one dimension.

Next, we give numerical examples for the one-dimensional (1D) dissociation of H+
2 following a

Franck–Condon transition from the H2 ground state and for the strong-field ionization of a 1D

model hydrogen atom. We use atomic units throughout this paper, unless indicated otherwise.

2. General formulation of the ‘virtual detector’ method

The principles of quantum mechanics tell us that the wavefunction in any representation

contains complete information about the considered system. As an example, the momentum

distribution of a wavepacket � is given by

|�(k)|2 =
∣

∣

∣

∣

(2π)−3/2

∫

�(r) exp(−ikr) dr

∣

∣

∣

∣

2

, (1)

i.e. by FT of the wavepacket’s coordinate space representation �(r). Thus, the momentum

information is based on the global behaviour of � in coordinate space. In many applications,

transition rates which are related to the motion of wavepackets in coordinate space like

ionization and dissociation (Kulander et al 1996, Chelkowski et al 1996, Dundas et al 1999)

or reactive scattering (Neuhauser 1992) have been derived from the outgoing flux of the

wavepacket through a given surface. The time-integrated flux corresponds to the probability

of the corresponding ionization, dissociation or reaction channel. Using absorbing walls,

comparatively small numerical grids can be used and, thus, the computing time can be

significantly reduced. Here, we wish to extract information about the momentum distribution

from the time dependence of an outgoing wavepacket at a fixed position in coordinate space.

The input for FT is the spatial dependence of the wavefunction at a fixed time, i.e. the end of

the propagation.

For the following considerations, we rewrite the wavefunction in the form

�(r, t) = A(r, t) exp(iφ(r, t)) (2)

with a real, time-dependent amplitude A(r, t) and a real, time-dependent phase φ(r, t). At a

given position rd, φ(r, t) contains information about the momentum distribution. To reveal

this information, we consider the current density j at rd of outgoing particles with mass µ,

j(rd, t) =
ρ(rd, t)

µ
∇φ(rd, t) with ρ(rd, t) = |A(rd, t)|2. (3)

The (probability) current density can be interpreted as the product of the probability density ρ

and a ‘local’ velocity v at position rd which corresponds to the momentum

k(rd, t) = µv = ∇φ(rd, t). (4)

The simplest example is an outgoing monochromatic plane wave �(r, t) =
(2π)−3/2 exp[i(kr − ωt)] where the phase gradient is directly related to the momentum

k. Similar to an experimental time-of-flight set-up, we now have to apply a ‘binning’ or

‘histogramming’ procedure in order to derive the momentum distribution dN/dk. In order
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to keep this formulation transparent, we consider here the 1D case. Having the VD located

at xd, for each time t , we get the momentum k(xd, t). After time integration, the probability

for finding the number of ‘events’ �N with momenta k within a small interval �k around a

momentum value k j is given by

�N(k j ) = �k

∫ ∞

0

dt j (xd, t)

{

1 for k ∈
[

k j − �k
2

, k j + �k
2

]

0 else.
(5)

In the limit of an infinitesimal interval length dk, the ‘box’ distribution in (5) becomes a δ

distribution,

dN

dk

∣

∣

∣

∣

k′
=

∫ ∞

0

dt j (xd, t)δ(k ′ − k(xd, t)). (6)

The implicit time dependence of the argument of the δ distribution can be transformed into an

explicit time dependence according to

dN

dk

∣

∣

∣

∣

k′
=

∑

m

∫ ∞

0

dt j (xd, t)
δ(t − tm)

| dk
dt

(tm)|
tm : k(tm) = k ′ (7)

=
j (xd, t (k ′))

| dk
dt

(t (k ′))|
. (8)

Equation (7) can be reduced to (8) if j (xd, t) has dominant contributions only for sufficiently

large t . This applies in the example below (section 3.1), where k(t) is a monotonous function

in t and the argument of the δ distribution in (6) has only one zero.

The VD method can be extended to higher-dimensional calculations. In this case, the

detector becomes a (hyper)surface the flux through which is given according to (3) by the

current density at all points rd on this surface. The momentum spectra for all points, integrated

over the entire (hyper)surface, yield the final momentum spectrum. The choice of the surface

depends on the physical problem and the range of momentum components of interest. In

the following two sections 3.1 and 3.2, we will test this technique for a moving Gaussian

wavepacket in one dimension.

3. Simple test: momentum distribution for a moving Gaussian wavepacket

3.1. Analytical result

The Gaussian wavepacket is prepared at time t = 0, centred at x = 0 with an initial width 	

and an initial (average) momentum k0,

G(x, t = 0) =
(

1
√

	π1/4

)

exp

(

−
x2

2	2

)

exp(ik0x). (9)

The momentum representation of this wavepacket

M(k) =
1

√
2π

∫ ∞

−∞
G(x, t = 0) exp(−ikx) dx =

√
	

π1/4
exp

(

−
1

2
(k0 − k)2	2

)

(10)

leads to the time-dependent, freely propagating wavepacket in coordinate space

G(x, t) =
1

√
2π

∫ ∞

−∞
M(k) exp

(

i

(

kx −
1

2
k2t/µ

))

dk

=
1

π1/4

√

	

	2 + it/µ
exp

(

−
(x − ik0	

2)2

2(	2 + it/µ)

)

exp

(

−
1

2
k2

0	
2

)

. (11)
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In order to derive the phase gradient, we rewrite G(x, t) in the form A(x, t) exp(iφ(x, t)) with

the real, time-dependent amplitude

A(x, t) =
√

	

4
√

π(	4 + t2/µ2)
exp

(

−
	2(x − k0t/µ)2

2(	4 + t2/µ2)

)

, (12)

and a real, time-dependent phase

φ(x, t) =
	4k0(x − 1

2
k2

0 t/µ) + 1
2
x2t/µ

	4 + t2/µ2
+ θ(t). (13)

The additional global phase θ(t) is not of interest, since it does not affect the phase gradient.

According to (3), (4), we find the ‘local’ momentum at position xd:

k(xd, t) =
∂

∂x

∣

∣

∣

∣

x=xd

φ(x, t) =
	4k0 + xdt/µ

	4 + t2/µ2
= µv (14)

≈ µxd/t (xdt/µ � 	4k0, t2/µ2 � 	4), (15)

and the outgoing current

j (xd, t) = ρ(xd, t)k/µ = |A(xd, t)|2k/µ =
	

√

π(	4 + t2/µ2)
exp

(

−
	2(xd − k0t/µ)2

	4 + t2/µ2

)

k

µ
.

(16)

Note, that for the 1D case considered here, there is no need to distinguish between current and

current density. Provided that the approximation given above is valid, equation (15) is directly

related to a time-of-flight measurement in an experiment with a particle detector placed at

position xd, and the label ‘VD method’ appears appropriate. However, we note that this analogy

with the experiment is limited and possibly misleading, since a real ‘measurement’ of the

momentum at a fixed position would violate the uncertainty principle. Nevertheless, the phase

gradient is related to the momentum distribution. Physically, (13)–(15) show that the leading

edge of the Gaussian wavepacket is moving faster than the remaining part, corresponding to

normal dispersion.

For sufficiently large t (15) holds and we can use the approximation (8). With j (xd, t)

from (16) and using t (k) ≈ µxd/k (15) we finally obtain

dN

dk
=

	
√

π(	4 + x2
d/k2)

exp

(

−
	2(xd − k0xd/k)2

	4 + x2
d/k2

)

xd

k
(17)

≈
	

√
π

exp(−	2(k − k0)
2) = |M(k)|2 (x2

d/k2 = t2/µ2 � 	4),

(18)

which is the momentum distribution of the wavepacket (see (10)). The conditions (15), (18)

mean that the momentum components of �(x, t) which have the same initial phase at t = 0 (9)

are dephasing due to the dispersion relation in (11), Ekin = 1
2
k2/µ. According to (14), k(t)

is equal to k0 for very small t and exhibits a maximum before it reaches the asymptotic 1/t

behaviour.

3.2. Numerical result

Let us now consider the numerical test of the VD method for the Gaussian wavepacket. Here,

as well as for the other examples in section 4, we use the Crank–Nicholson propagation scheme

which provides unconditional numerical stability. The momentum spectra are generated as
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Figure 1. Convergence behaviour of the VD method for a moving Gaussian wavepacket. The exact

analytical momentum distribution (10) is given by the thick solid curve. The numerical momentum

spectrum is shown for different positions xd of the VD: — · —, xd = 5; · · · · · ·, xd = 10; - - - -,
xd = 20; ——, xd = 50.

follows. For each time step ti the phase gradient of the wavepacket at the position xd of

the VD is calculated using a five point formula. According to (5) and (14), the momenta

ki = k(ti) = ∂/∂x[φ(x, ti)]xd
and �N/�k(ki) are combined to a histogram. This procedure

ensures correct normalization, i.e. the integrated momentum distribution gives the total yield

in the corresponding fragmentation channel. Figure 1 shows the convergence behaviour of

the VD method with increasing xd, i.e. the transition from (14) to (15) and (17) to (18),

respectively. In the present example we use a Gaussian wavepacket initially centred at x = 0

with 	 = 1, k0 = 5, µ = 1. The propagation was performed up to t = 25 with time intervals

�t = 10−3 on a numerical grid which extends from x = −20 to 280 with a grid spacing

of �x = 0.05. The numerically derived momentum distribution converges quickly towards

the analytical result |M(k)|2 as xd increases from 5 to 50. Once convergence is reached, the

numerical distribution no longer depends on xd (see (18)). The smaller width of the numerical

momentum distributions for values of xd that are smaller than required by approximation (15)

is caused by the ‘soliton-like’ behaviour of the wavepacket at small t . In this case we find

k(xd, t) ≈ k0 which leads to an (unphysical) δ distribution �N/�k ≈ δ(k0). Once the

dispersion-induced broadening of the wavepacket becomes large compared to the initial width

	, the numerical momentum distribution also broadens and converges to the analytical result.

4. Numerical applications of the ‘virtual detector’ method

4.1. Momentum distribution of dissociating H+
2

As a first application, we study dissociation of the H+
2 molecule following (fast) single ionization

of H2. The stationary ground state (v = 0) nuclear wavefunction of the neutral H2 molecule

is promoted via a vertical (Franck–Condon) transition onto the potential curve of the H+
2

molecular ion. In our simulation this is achieved by propagating the v = 0 state of H2 on the

potential curve of H+
2 in the electronic ground state. Since the electronic ground state potential

curves for H2 and H+
2 differ in equilibrium distance and width (Huber and Herzberg 1979),
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Figure 2. Wavepacket dynamics of H+
2 following a Franck–Condon transition from the H2

vibrational ground state. The time evolution of the probability density is shown as a contour

plot on a logarithmic grey scale (R: internuclear distance). The position Rd = 20 of the VD is

indicated by the dashed line. Note the revival of the bound part of the wavepacket at t = 275 fs.

the wavefunction becomes a non-stationary wavepacket leading to a coherent superposition

of many (bound) vibrational states of H+
2 as well as to dissociation. For comparison, the

momentum distribution of the dissociative part of the wavefunction will here be calculated by

using (a) standard FT (equation (1)) and (b) the VD method. The 1D numerical grid for the

internuclear distance R extends from R = 0.05 to 500 with a grid spacing of �R = 0.05. The

propagation was carried out until tmax = 2 × 104 (480 fs) with intervals �t = 1.

Figure 2 shows the time evolution of the probability density as a contour plot on a

logarithmic grey scale. The FT needs to be taken only for the dissociating part of the

wavepacket. Thus, one has to wait until the wavepacket has left the region of bound states,

which are localized at R < 15. By the time the slowest dissociation components have left that

region, the fastest components already reach distances of R = 420 which defines a minimum

size of the array needed for the FT (figure 3). The sharp cutoff of the wavefront at R = 420 is

caused by the finite grid spacing which supports free propagation of momentum components

up to kmax ≈ 1/�R = 20 according to Nyquist’s criterion. The corresponding maximum

velocity vmax = kmax/µ = 20/918 = 2.18 × 10−2 gives the position of the wavefront at the

end of the propagation at time tmax at Rmax = 435 which is close to the cutoff in figure 3. In

contrast to FT, a VD located at Rd = 20 requires a much smaller numerical grid extending only

to R = 30. This includes an absorber located between R = 20 and 30, which is adjusted to

prevent reflections of the wavepacket at the boundary of the numerical grid. We implemented

this absorber as a fourth-order optical potential Vopt = 0.05(R − 20)4 starting at R = 20. We

also checked the convergence by comparing the numerical momentum spectra for Rd = 20

and 40 which show no significant difference. This demonstrates the efficiency of the VD

method which reduces the computation time in the present example by more than an order

of magnitude. A comparison of the FT result for the fragment momentum spectrum dN/dk

with the VD method is given in figure 4. Both results agree very well except for the small

superimposed oscillations which are caused by the finite grid size (for the FT) and by the finite

number of time steps which causes a statistical error in the VD method. The statistical error

can be reduced either by using smaller time steps �t or by using a set of VDs which extends
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Figure 3. Snapshot (log scale) of the 1D probability density for the H+
2 nuclei (see also figure 2)

as a function of the internuclear distance R at t = 480 fs. The bound part of the wavepacket is

localized at R � 15, whereas the dissociative part has already spread from R = 15 to 420. The

position Rd = 20 of the VD is indicated by the dashed line. Note the sharp cutoff of the wavefront

at R = 420 due to the the finite grid spacing (�R = 0.05).
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Figure 4. Momentum spectrum for dissociation of H+
2 following a Franck–Condon transition from

the H2 vibrational ground state. Thick solid curve: VD method; thin solid curve: FT result.

over a finite array of grid points. The latter method was found to be much more effective with

respect to computation time, since it only requires the calculation of the phase gradient at a set

of fixed positions xd. The time propagation is a matrix operation on the entire numerical grid

and, thus, reduction of �t is much more time consuming.

4.2. Quiver motion of an electron ionized by a strong laser field

In the second numerical example, we examine the strong-field ionization of a 1D model

hydrogen atom, in particular, the effect of the quiver motion of the electron on the momentum

distribution. The mean quiver energy of an electron in the presence of the laser of electric field

strength E and frequency ω is expressed in terms of the ‘ponderomotive energy’ Up = E
2/4ω2.
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Figure 5. Strong-field ionization of a 1D model hydrogen atom by a 0.1 PW cm−2 intensity,

800 nm CW laser (with 25 fs ramp): contour plot (logarithmic grey scale) of the time evolution of

the electron probability density. The positions of the VD are indicated by the broken lines. Selected

classical trajectories starting within one optical cycle are shown as solid curves. The labels give

the corresponding phases relative to the sin(ωt) CW laser electric field.

The electron–nucleus interaction of the atom is modelled by a soft-core Coulomb potential

(Su and Eberly 1991) −1/
√

x2 + a2 where the parameter a = 1.4 is adjusted to the ionization

potential of hydrogen. The 1D grid extends from x = −200 to 200 with a grid spacing of

�x = 0.2. Fourth-order optical potential absorbers were used covering the first and last 100

grid points.

The quiver motion may lead (depending on the phase of the laser field, when the electron

was ionized) to a rescattering of the electron (Corkum 1993, Paulus et al 1994, Kulander et al

1995, Feuerstein et al 2000). Figure 5 shows the time-dependent electron probability density

for the 1D model hydrogen atom interacting with a CW 800 nm laser at 0.1 PW cm−2 with a

25 fs sin2 ramp. For the propagation,1100 time steps were used per optical cycle. Interestingly,

the outgoing electron ‘jets’ exhibit a structure similar to classical electron trajectories in a

laser field (see, e.g., figure 1 in Feuerstein et al 2000). For comparison, we show selected

classical trajectories starting within one optical cycle for different phases of the oscillating

laser field (sin(ωt)). Rescattering occurs for phases 90◦ � ωt < 180◦ and 270◦ � ωt < 360◦,

respectively. The VD method allows us to extract the (not directly observable) momenta of

the quiver motion. In order to demonstrate the effect of the quiver motion, we consider the

momentum distributions derived for two different positions of the VD. In the first case, the

VD is placed at a distance xd = 8 from the atomic nucleus. This distance is smaller than the

classical quiver amplitude xq = E/ω2 = 5.3×10−2/0.0572 = 16.4, but lies outside the region

with significant density of bound states which would otherwise disturb the spectrum. At this

position close to the nucleus, rescattering events influence the momentum distribution (solid

curve in figure 6). Negative momenta (note that xd > 0) are observed with a cutoff close to

the classical maximal recollision momentum (Corkum 1993) krec = −
√

2 × 3.17Up = −1.2.

If the VD is placed at xd = 40 we exclude negative drift momenta, since only the

corresponding classical trajectories starting at 90◦ < ωt < 270◦ reach the VD. Thus, the

momentum distribution is shifted towards positive momenta (the dashed curve in figure 6)
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Figure 6. Momentum distributions for an electron after strong-field ionization of a 1D model

hydrogen atom. Laser parameters: 0.1 PW cm−2 intensity, 800 nm wavelength, CW with a 25 fs

ramp. The VD is placed at xd = 8 (solid curve) and xd = 40 (dashed curve), respectively. Typical
momenta for an electron in a laser field are indicated by arrows (also see the text).

and extends up to the upper limit for the classical motion of an electron in a strong laser

field kmax = 4
√

Up = 1.9. Here, the drift and quiver momenta (the maximum value of both

being 2
√

Up = 0.95) add up constructively. We note that the asymmetry of both spectra

shown in figure 6 with respect to k = 0 is not caused by an absolute phase effect, but rather

by the fact that we considered only one direction, i.e. we used only one VD. Absolute phase

effects are negligible in this example since the laser field is turned on sufficiently slowly and, at

0.1 PW cm−2, the ionization rate is relatively small, i.e. the ionization occurs over many optical

cycles without depletion of the bound states. A VD placed at −xd would yield a mirror image

of the corresponding momentum distribution. Thus, the sum of the spectra for VDs placed at

xd and −xd will give a symmetric spectrum since absolute phase effects are negligible.

5. Conclusion

In this paper we proposed a new method to extract momentum and kinetic energy distributions

from time-dependent wavepacket propagation calculations. Compared to the established FT

method which uses the spatial dependence of the wavepacket at a fixed time, this new VD

method examines the time-dependent behaviour of the wavepacket at a fixed position xd.

Thus, the size of the spatial array needed to extract the momentum spectrum can be reduced

significantly. As a test, for 1D Gaussian wavepackets, the equivalence with FT was shown

analytically. In numerical examples we demonstrate that compared to FT, the computation time

can be reduced by more than a factor of ten. In addition to being faster than the FT method,

the use of the VD method provides momentum information that is not otherwise available, as

shown in our example for the quiver motion of an electron ionized by a strong laser field.

Acknowledgments

This work was supported in part by the National Science Foundation (grant no PHY-0071035)

and the Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy



716 B Feuerstein and U Thumm

Research, US Department of Energy. BF acknowledges the financial support in the form of a

Research Scholarship provided by the Deutsche Forschungsgemeinschaft.

References

Bandrauk A D and Chelkowski S 2001 Phys. Rev. Lett. 87 273004

Borisov A G, Kazansky A K and Gauyacq J P 1999 Phys. Rev. B 59 10935

Chelkowski S, Conjusteau A, Zuo T and Bandrauk A D 1996 Phys. Rev. A 54 3235

Corkum P B 1993 Phys. Rev. Lett. 71 1994

Dundas D, Taylor K T, Parker J S and Smyth E S 1999 J. Phys. B: At. Mol. Opt. Phys. 32 L231

Feuerstein B, Moshammer R and Ullrich J 2000 J. Phys. B: At. Mol. Opt. Phys. 33 L823

Hermann M R and Fleck Jr J A 1988 Phys. Rev. A 38 6000

Huber K P and Herzberg G 1979 Molecular Structure and Molecular Spectra IV. Constants of Diatomic Molecules

(New York: Van Nostrand-Reinhold)

Keller A 1995 Phys. Rev. A 52 1450

Kosloff R 1994 Annu. Rev. Phys. Chem. 45 145

Kulander K C, Cooper J and Schafer K J 1995 Phys. Rev. A 51 561

Kulander K C, Mies F H and Schafer K J 1996 Phys. Rev. A 53 2562

Lein M, Gross E K U and Engel V 2000 J. Phys. B: At. Mol. Opt. Phys. 33 433

Liu W C, Eberly J H, Haan S L and Grobe R 2000 Phys. Rev. Lett. 83 520

Neuhauser D 1992 Chem. Phys. Lett. 200 173

Parker J S, Moore L R, Merhag K J, Dundas D and Taylor K T 2001 J. Phys. B: At. Mol. Opt. Phys. 34 L69

Paulus G G, Becker W, Nicklich W and Walther H 1994 J. Phys. B: At. Mol. Opt. Phys. 27 L703

Su Q and Eberly J H 1991 Phys. Rev. A 44 5997

Thumm U 2002 22nd Int. Conf. on the Physics of Photonic, Electronic and Atomic Collisions (Santa Fe, NM) ed

S Datz et al (Princeton, NJ: Rinton Press) p 592 Book of invited papers

Walsh T D G, Ilkov F A, Chin S L, Châteauneuf F, Nguyen-Dang T T, Chelkowski S, Bandrauk A D and Atabek O

1998 Phys. Rev. A 58 3922


