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Abstract

We calculate the 3Se and 1Se scattering lengths in low-energy e− + Rb(5s),

Cs(6s), and Fr(7s) collisions. Our approach is based on the relativistic version

of the modified effective range theory (MERT) and extrapolates eigenphases

provided by Dirac R-matrix calculations to zero energy. To test the accuracy

of our MERT extrapolation method, we compare the fine-structure components

for the lowest 3Po resonance of Fr− ion with full Dirac R-matrix calculations.

Low-energy electron scattering by highly polarizable systems can be described by the

modified effective range theory (MERT) whose non-relativistic version has been developed

by Fabrikant [1, 2]. This theory assumes that the electron wavelength is large compared to

the radius of the short-range interaction between the electron and the atom. This is a much

weaker restriction than the more common assumption [3] that the electron wavelength is large

compared to the radius of the polarization interaction. The non-relativistic version of the MERT

method was used to predict the lowest 3Po resonance states for Rb− and Cs− at a few meV

above the detachment threshold [2, 4]. Their positions and widths are in good agreement with

experimental data for Rb [5] and Cs [6] and accurate relativistic Dirac R-matrix calculations

(see table 2 in [7]).

The 3Se and 1Se scattering lengths in low-energy electron scattering by heavy alkali-

metal atoms are known only from non-relativistic calculations [2] for e− + Rb(5s) and Cs(6s)

collisions. No data are available for Fr targets. Recently, Greene et al [8] have predicted new

trilobite-like states of Rb2 molecules in a Bose–Einstein condensate. Their model requires

accurate scattering length data. Motivated by this work, we have computed accurate 3Se and
1Se scattering lengths for e− + Rb, Cs, and Fr collisions. For this purpose, we have modified

the non-relativistic MERT method [1, 2] in order to include relativistic interactions. MERT

allows the extrapolation of ab initio eigenphases to very low energies. The present MERT uses

eigenphases provided by relativistic Dirac R-matrix calculations [9] for two particular low

scattering energies below the first excitation threshold and extrapolates toward zero energy.

The Dirac R-matrix calculations were successfully applied to describe the low-lying

spectra of Rb−, Cs−, and Fr− [7, 10] and were found to be in good agreement with various

photodetachment and electron scattering experiments on Rb and Cs. Fr is the heaviest alkali-

metal atom and, therefore, relativistic interactions (i.e. the spin–orbit coupling) are strong. The

study of the low-lying spectra of Fr− was recently done in calculations of electron–Fr scattering
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for energies below 3 eV [7, 10]. These calculations predict a new value for the electron affinity

for Fr (0.492 eV) and identify a number of resonances in the low-lying spectra of Fr−: the
3Po [7] and 3Fo shape and 3Pe, 1Po

1, and 1Do
2 [10] Feshbach resonances below the first excitation

threshold.

In this letter we shall first present a modified version of the non-relativistic MERT [2] that

includes relativistic effects. Next, the accuracy of the relativistic MERT calculations will be

tested by comparing the fine-structure components of the 3Po resonance for Fr− with Dirac

R-matrix results at the same, very low, scattering energies [7]. Finally, we shall provide 3Se

and 1Se scattering lengths in e− + Rb, Cs, and Fr collisions. Throughout this letter we shall

use atomic units.

In the non-relativistic version of MERT [2], the scattering phase shift can be written in

the following form

tan δ = −(Mc + d)/(Ma + b) (1)

where the coefficients a, b, c, and d depend only on the atomic polarizability (α) and the

scattering energy E. These coefficients are calculated from solutions of the Schrödinger

equation (including a polarization potential) and can be expressed in terms of Mathieu

functions [11, 12]. M , on the other hand, depends on the short-range interaction. It is a

meromorphic function of energy and, within the effective range theory (ERT), can be written

as

M = β + ηE (2)

where the parameters β and η can be obtained from ab initio phase shifts. If M has a pole

in the vicinity of E = 0, we use a similar approximation for M−1. In the relativistic case

the problem becomes multichannel even below the first excitation threshold because of the

admixture of states with different orbital angular momenta and spins. We will now generalize

our MERT equations for this case.

At large distances, where the short-range interaction is negligible, the matrix of radial

wavefunctions F can be written as

F = φ + ψK (3)

whereK is the open-channels block of the reactance matrix, and φ andψ are solution matrices

with the following asymptotic form

φij ∼ δij sin(kr − liπ/2) ψij ∼ δij cos(kr − liπ/2). (4)

The indices i and j designate open channels, and δij represents the Kronecker symbol. The

solutions ψ and φ take into account only the long-range polarization interaction which, at

low energies, can be represented by a diagonal polarization potential −α/2r4. Therefore,

the matrices ψ and φ are diagonal in the whole space. They can be expressed in terms of

(unphysical) solutions f and g defined by the boundary conditions at the origin. These two

pairs of solutions are connected by linear relations

ψ(r, k) = f (r, k)a(k) + g(r, k)b(k) (5)

φ(r, k) = f (r, k)c(k) + g(r, k)d(k) (6)

where all matrices are diagonal. The solutions f and g smoothly depend on energy. As

in the one-channel case, all strong energy dependences are contained in coefficients a, b, c,

and d. These coefficients are calculated from the non-relativistic Schrödinger equation, as

described in [11, 12], since the effects associated with the relativistic dependence of energy

on velocity are negligible at low energies. The spin–orbit interaction effects are taken care of

by reassigning the scattering channels (J π classification instead of the 2S+1L classification).
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Substituting equations (5) and (6) into (3) and joining F with the internal wavefunction

using the matching condition of the R-matrix theory, we find an equation similar to equation (1)

K = −(Ma + b)−1(Mc + d). (7)

The major difference with the one-channel case is that now a, b, c, and d are diagonal matrices,

and M is a non-diagonal matrix (since the short-range interaction is non-diagonal). This

increases the number of parameters of the theory. However, the number of parameters can be

reduced in a representation where the K matrix is diagonal. This is necessary for computing

eigenphases. Let us assume that the matrices a, b, c, and d are not only diagonal but also

proportional to the unit matrix. This is valid exactly if we have coupling between channels

with the same orbital angular momentum l (e.g. for J π
= 1− scattering when we have coupling

between 1P and 3P states). In the case of coupling between different angular momenta (such as

for the J π
= 2− and 1+ scattering symmetries) this assumption is justified by the dominance

of the lowest angular momentum at low energies. Higher momenta are suppressed because of

the centrifugal barrier. Under this assumption, we apply an orthogonal transformation which

diagonalizes the K matrix in equation (7). It is easy to see that the M matrix is also diagonal

in the same representation, and the relation between eigenphases δi and eigenvalues Mi of the

M matrix is equivalent to equations (1) and (7),

tan δi = −(Mic + d)/(Mia + b). (8)

The described method is very efficient for studying the energy dependence of eigenphases

at very low energies in the resonance region and toward zero energy. In particular, we are able

to compute eigenphases in the energy region down to 10−6 eV. In this region the eigenphases

are well described by the two terms of the MERT of O’Malley et al [3],

tan δ = −kSL −
π

3
αk2 (9)

where the scattering length SL is given by [2]

SL = βα1/2. (10)

In order to compute the 3Se and 1Se scattering lengths for e− + Rb, Cs, and Fr collisions, we

extrapolate toward zero energy the eigenphases provided by our Dirac R-matrix calculations,

by using the relativistic MERT. For k → 0, the s-wave scattering length is defined as

−(tan δ)/k [13]. Our confidence in the Dirac R-matrix eigenphases for low-energy electron

scattering by heavy alkali-metal atoms is based on the excellent agreement with experimental

data for the lowest 3Po resonances of Rb− and Cs− [7].

Although MERT contains only two adjusted parameters for each symmetry, it reproduces

the energy dependence of the eigenphases in a wide energy range. For the present MERT

calculations, the two fit parameters are the Dirac R-matrix eigenphases for two reference energy

points between 100 and 200 meV. At 200 meV, the de Broglie wavelength λ = 2π(2E)−1/2
=

51.82 of the scattered electron is much larger than the radius of the short-range interaction,

which may be approximated by the effective atomic radius Rc. In [7], we have estimated Rc

as 4.7 for Rb, 5.1 for Cs, and 5.4 for Fr. The most important parameter responsible for the fast

variation of the eigenphases in our MERT calculations is the polarizability of the target.

We first discuss results for slow electron scattering by Fr targets and analyse the three J π

symmetries in which we find the terms of the lowest 3Po resonance of Fr−, as a test case. At low

collision energies only a few channels are open. The J π
= 0− case has just one open channel

associated with 7sn′p1/2 configurations (n′ � 7), and equation (8) can be applied directly. Here

and throughout this letter n′ denotes bound and continuum orbitals. The J π
= 2− symmetry

is dominated by p-wave scattering. The analysis of the contribution of different channels to
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Table 1. MERT parameters η and β for slow e− + Fr collisions and J π symmetries that contribute

to the Fr−(3Po) resonance. The energies of the 3Po
J terms from the present relativistic MERT

calculations are compared with explicit Dirac R-matrix results in [7].

E(3Po
J ) (meV)

J π j η (eV−1) β MERT Reference [7]

0− 1/2 0.073 79 −0.066 82 12.4 13.2

1− 1/2 0.104 4 −0.142 9 23.5 24.0

3/2 −0.814 3 −0.145 0

2− 3/2 0.174 6 −0.330 8 40.7 40.8

Table 2. Relativistic MERT parameters η and β for s-wave scattering in e− + Rb, Cs, and Fr

collisions.

Rb Cs Fr

J π η β η β η β

0+
−0.049 38 0.035 12 −0.1762 −0.0662 −0.023 74 0.074 98

1+
−0.255 8 −0.900 3 −0.5120 −1.0810 −0.378 6 −0.752 5

the eigenvectors of the total Hamiltonian inside an R-matrix sphere of radius 40 shows that

p-wave scattering contributes about 97% to the partial cross section for electron scattering in

the 2− symmetry. In this case we can use the ERT model of O’Malley et al [3] for higher

partial wave contributions, such that the eigenphase sum is

δsum = − arctan
Mic + d

Mia + b
+ arctan

παk2

(2lh − 1)(2lh + 1)(2lh + 3)
(11)

where lh = 3. In equation (11),Mi is the eigenvalue of the M matrix for the dominant channel.

For the 1− symmetry the situation is different, since two p-wave scattering channels dominate,

7sn′p1/2 and 7sn′p3/2, and we have to use equation (8) separately for each eigenphase. The

same situation was observed for the 3Po resonances of Rb− and Cs− ions.

In table 1 we list the parameters β and η obtained for the four eigenphases discussed above

for e− + Fr collisions. In the J π
= 1− (and j = 3/2) symmetry we use the effective range

expansion ofM , while for the other symmetries we expandM−1. The present relativistic MERT

calculations for e− + Fr collisions allow us to resolve the fine structure components of the 3Po

resonance. The 3Po
J terms in table 1 are compared with earlier Dirac R-matrix calculations [7].

The agreement between the two calculations gives us confidence in the present relativistic

MERT method. In our MERT calculations we use the same atomic polarizability for Fr(7s)

(317.8) [14] as in [7].

The MERT method is designed to accurately describe the scattering of slow electrons with

large de Broglie wavelengths, and thus allows the computation of reliable s-wave scattering

lengths. For the calculation of the 1Se and 3Se scattering lengths, we have to use the eigenphases

in the 0+ and 1+ symmetries. The J π
= 0+ symmetry has only one (s-wave) channel. In the

1+ symmetry, the s-wave contributes with 99% to electron scattering for all three targets. In

order to compute the eigenphase sum in the 1+ symmetry, we use equation (11) with lh = 2.

Table 2 gives the parameters β and η in the 0+ and 1+ symmetries for the three targets. For

both symmetries, we use the effective range expansion of M .

The eigenphases, extrapolated to zero energy within the relativistic MERT method, are

almost identical with the eigenphases obtained from explicit Dirac R-matrix calculations,

except for ultralow energies. The differences between the two sets of eigenphases are negligible
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Figure 1. Electron scattering by Rb targets in the J π
= 0+ symmetry. Comparison between

explicit Dirac R-matrix calculations (dotted curve) and the relativistic MERT extrapolation (full

curve) to E = 0. (a) Statistically-weighted elastic cross sections and (b) convergence test for the

scaled eigenphase δ (according to equation (9), broken curve) for SL = 0.627 (cf table 3). E∗

(indicated by an arrow) represents the lower limit of validity for our Dirac R-matrix computations.

above 1 meV. This is demonstrated by the good agreement for the 3Po
J terms of Fr−. Below

1 meV, the Dirac R-matrix eigenphase slowly starts to deviate from the MERT extrapolation,

reaching a relative difference of 0.9% at 0.3 meV. This difference increases with decreasing

E. As an example, we show in figure 1 results below 0.5 meV for e− + Rb collisions, in the

0+ symmetry. At 0.074 meV, the Dirac R-matrix eigenphase shows a discontinuity and then

drops rapidly to zero at 0.015 meV, which is reflected by a minimum in the Dirac R-matrix

cross section (figure 1(a)). Figure 1(b) shows a convergence test for the 1Se scattering length

for e− + Rb collisions. The broken curve shows −(tan δ)(2E)−1/2 according to equation (9)

for SL = 0.627 (table 3). Our MERT data (full curve) converge to this curve below 0.03 meV.

The unphysical Dirac R-matrix results at energies below 0.1 meV are due to numerical

errors in the backward integration in the outer region [9]. Norcross [15] has shown that

in the presence of closed channels the wavefunction in the open channel contains errors

which accumulate as Aexp(−κr) (κ is the wavenumber in the closed channel and A is a

constant) during backwards integration from large distances r of the asymptotic close-coupling

equations. Since the scattering length is defined at zero energy, backward integration from

extremely large distances would be necessary. But even if we started the backward integration

at infinity, we would not be able to provide accurate Dirac R-matrix eigenphases because of the

above mentioned arguments. Therefore an alternative procedure to extrapolate eigenphases
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Table 3. 1Se and 3Se scattering lengths for e− + Rb, Cs, and Fr collisions compared with previous

non-relativistic MERT data [2] and Dirac R-matrix results for 3Se scattering lengths in [7]. Values

of the polarizations α for Rb(5s) [16], Cs(6s) [16], and Fr(7s) [14].

1Se 3Se

Target This work Reference [2] This work Reference [2] Reference [7] α

Rb 0.627 2.03 −16.1 −16.9 −13 319.2

Cs −1.33 −2.40 −21.7 −22.7 −17 402.2

Fr 1.34 — −13.4 — −12 317.8

down to E = 0 is necessary.

The 1Se and 3Se scattering lengths derived from our relativistic MERT calculations for

electron scattering by Rb, Cs, and Fr atoms are given in table 3. We have checked the

accuracy of the MERT results by choosing different energy reference points and looking at the

corresponding variations of the scattering length. The resulting uncertainty can be estimated

as ±1%. For all targets our new results for the 3Se scattering lengths based on equation (9)

for k → 0 are larger (in absolute magnitude) than the previous estimations [7] based solely

on the Dirac R-matrix calculations. The Dirac R-matrix calculations in [7] were a qualitative

estimate for the sign of the 3Se scattering lengths for e− + Rb, Cs, and Fr collisions. These

calculations do not provide accurate values. Higher orders of k should have been included in

equation (9) in order to provide accurate values for the 3Se scattering lengths in [7].

Table 3 compares our relativistic MERT results with previous non-relativistic calculations

for e− + Rb and Cs collisions from [2] and shows the atomic polarizabilities used in the present

calculations for Rb(5s) [16], Cs(6s) [16], and Fr(7s) [14]. The large values of α explain the

good agreement between the 3Se scattering length data from the two independent calculations.

Indeed, the spatial wavefunction of the 3Se state is antisymmetric and, therefore, the long-range

effective interaction (which is dominated by the polarization interaction) is more important

than for 1Se scattering. Since the polarizabilities used in the present calculations are not

significantly different from those used in [2] (319.2 instead of 328 in [2] for Rb(5s), and 402.2

instead of 402 in [2] for Cs(6s)), little change was found in the 3Se scattering length values. The

large negative 3Se scattering length indicates that the attractive polarization potential supports

a 3Se virtual state rather than a bound state.

The 1Se scattering state has a symmetric spatial wavefunction and short-range electronic

correlations are more important than for the 3Se case. With respect to the previous non-

relativistic two-channel calculations [2], the present Dirac R-matrix calculations use a much

larger basis set (for details see [7]) and thus better represent the short-range correlation effects.

This explains the significant difference between our present 1Se scattering lengths and the

results of [2].

In summary, we have provided new, accurate values of the 1Se and 3Se scattering lengths

for electron scattering by Rb, Cs, and Fr atoms. Our calculations were performed within

the relativistic MERT method and used two fit parameters that we adjusted to eigenphases

computed within the Dirac R-matrix method for collision energies between 100 and 200 meV.

This work was supported by the Science Division, Office of Fusion Energy Sciences, Office

of Energy Research, US Department of Energy.
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