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Abstract ‘

Theoretical results on the electron dynamics and on resonant level broadening in slow atomic interactions with metal
surfaces and thin metallic films are presented. Within the time-dependent close-conpling method, a wave-packet ap-
proach is introduced in which nondiagonal couplings in the subspace of metal states are taken into account. This
approach is applied in a study of the time evolution of the occupation of hydrogen states in front of a semi-infinite
metal, First-order level widths are calculated for hydrogenic atoms interacting with thin metallic films. They are found
to exhibit pronounced size-quantization effects arising from the confinement of the electronic motion in the growth

direction of the film. @ 2000 Elsevier Science B.V. All rights reserved.

PACS: 79.20.Rf; 34.50.Dy; 34.70.+¢; 73.20.Dx

1. Introduction

Studies of interactions of slow atoms and ions
with solid surfaces, in particular with metal sur-
faces, form a substantial part of the current re-
search activities in the fleld of atom-solid
interactions. [n contrast to swift collisions in which
the electron dynamics is governed by the kinetic
energy of the atoms, electronic processes in slow
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Germany.

atom-metal-surface collisions are driven by the
potential energy carried into the interaction region
by excited or ionized atomic particles [1,2]. In this
case, resonant one-clectron processes {resonance
ionization, resonance neutralization) as well as
Auger-type two-electron processes (Auger de-ex-
citation, Auger neutralization) are responsible for
charge transfer and electron emission. Over the
past decades, a vast number of experimental and
theoretical studies have dealt with various aspects
of electronic processes in slow atom-surface in-
teractions [3-11]. In recent years, particular em-
phasis has been placed on the investigation of
surface interactions of highly charged ions [12]).
Aside from their basic scientific relevance, studies
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of atom-surface interactions become increasingly
important in conjunction with technological ap-
plications (see, e.g. Refs. [10,12], and pertinent
papers in the present volume).

For the theoretical treatment of electronic
processes in atom-metal-surface interactions, a
variety of models and approaches based on the
classical-trajectory approximation to the atomic
motion have been devised and applied. Recently,
particular interest has been devoted to the non-
perturbative study of resonance formation of
atomic systems in front of metal surfaces. Exten-
sive calculations of (adiabatic) resonance energics
and widths have been performed using the self-
energy concept [13-15], the coupled-angular-mode
(CAM) method [16-20], the complex-scaling ap-
proach [21-23], and the stabilization method [24-
27]. Within the rate-equation approach, adiabatic
energies and widths have been used in time-de-
pendent calculations of resonance ionization of
Rydberg atoms [28-30]. Fully quantal, time-de-
pendent close-coupling calculations based on an
expansion of the total one-electron wave function
in terms of adiabatic resonance states [14,15] have
been 1nitiated [31]. For the description of surface
interactions of highly charged ions, in which multi-
electron transfer takes place into ionic states with
high principal quantum numbers, ‘“‘over-barrier”
models describing electron transfer as well as the
subsequent de-excitation and emission processes in
terms of classical electron currents and rate equa-
tions have been introduced [32-35]. In contrast to
interactions with surfaces of semi-infinite metals,
atomic interactions with thin metallic films have so
far remained a largely unexplored topic [36,37].

In the present paper, we discuss new theoretical
results on atomic interactions with metal surfaces
and thin metallic films. Within the time-dependent
close-coupling method, we apply a novel wave-
packet approach in which nondiagonal couplings
in the subspace of metal states, i.e., (direct) in-
elastic transitions within the conduction band, are
taken into account (Section 3). This feature dis-
tinguishes our approach from the time-dependent
optical-model approach [38) and the (fixed-atom)
self-energy method [13-15]. For atoms interacting
with thin metallic films, we study size-quantization
effects in rescnant level broadening by calculating

first-order level widths as a function of film
thickness (Section 4). In order to put the present
results into proper perspective, we outline and il-
lustrate in Section 2 the general framework un-
derlying the time-dependent description of atom-
surface interactions. Throughout this paper, we
use atomuc units (e =m. = i = 1).

2. General framework

Adopting a reference frame in which the metal
is at rest, we describe the atomic motion in front of
the surface in terms of prescribed classical trajec-
tories D(¢). The electron dynamics in the atom-
metal system is then determined by a time-depen-
dent Hamiltonian H(¢) = H(D(t)). The total wave
function ¥ (7, 1) for a single active electron or hole
with position vector 7 obeys the one-particle
Schridinger equation

HOPE ) = i¥(F 1) (1)

(coordinates ¥ = (x,y,z) are used such that the
{x,¥)-plane coincides with the jellium edge of the
metal and the z-axis points towards the vaccum).
The function P(7; ¢} is expanded as
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where the basis functions (7 1) = ¥ (7 B(1)) are
bound-state atomic wave functions with energies
€, centered at the site of the atom (the label j de-
notes collectively a set of single-particle quantum
numbers; translational factors are neglected). The
basis functions ¢g(F) are jellium-type metal wave
functions ¢orresponding to wave vector k and en-

ergy ¢, and p{k) is the density of states. Channel
decompositions of the total Hamiltonian H{¢) are
introduced by writing

H(t) = Hi + Vi{t) = Hi (1) + Vi {0), (3)

where the Hamiltonian H{H;) defines the unper-
turbed jellium states (atomic states), and ¥ (¥) is
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the initial-channel (final-channel) perturbation (we
adopt the convention that the active electron or
hole initially occupies a jellium state).

By inserting expansion (2) into Eg. (1) and
projecting onto the basis functions, one obtains a
system of coupled integrodifferential equations [38]
for the amplitudes a,(r) and b;(s), which is virtu-
ally intractable. In the optical-model approach
[38], one remedies this situation by disregarding
the nondiagonal couplings among the jellium
states, so that the amplitudes b;(¢) can be elimi-
nated from the set of close-coupling equations.
The resulting system of equations for the ampli-
tudes a;(t) involves a complex potential matrix
(“optical potential”’} which is nonlocal in time. In
the fixed-atom limit, where the atom is at rest at a
distance D in front of the surface, the Hamiltonian
H, and consequently the optical potential, do not
explicitly depend upon time. The optical potential
then determines the (adiabatic) resonance states
formed at fixed D. Using instead of the optical
potential the closely related self-energy matrix &
[13,14] and invoking the Wigner—Weisskopf ap-
proximation [13,39,14], one obtains the (real) en-
ergies £, and the widths I', of the resonance states
from the complex eigenvalues ©, of & as
E,=Rew, [I',=-2Imuow, 4)
The associated eigenvectors represent the atomic-
subspace projections y, of the resonance wave-
functions.

Using the self-energy method, we have per-
formed large-scale calculations of resonance
energies and widths [14,15] for the case of a semi-
infinite metal. The channel Hamiltonians A, and
Hi have been defined in terms of a step-like jellium
potenttial and the pure Coulomb potential (with
effective core charge Z), respectively, and classical
image potentials have been assumed in the con-
struction of the channel perturbations ¥ and F;.
The numerical calculations rely crucially on the
efficient evaluation of coupling and overlap matrix
elements using the analytical techniques developed
in Refs. [40,41].

For the purpose of illustration, energies of the
m = () resonance states emerging from the asymp-
totic n =3 to n =7 manifolds for core charge

Z = 3 near an Al surface [15] are shown in Fig. 1(a)
as a function of ion-surface distance D. Our
calculation has been performed within the basis set
spanned by the »n =3 to n =9 manifolds. For
comparison, results for the » = 5, m = 0 manifold
obtained by Borisov et al. [20] using the nonper-
turbative CAM method are also shown. The
discrepancies between the CAM results and our
self-energy calculations originate mainly from our
approximation of the core image potential, which
leads to somewhat larger upward shifts of ail levels.

In Fig. 1(b), level widths of those resonance
states in Fig. 1(a) that merge in the asymptotic
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Fig. 1. (a) inergies of the m = 0 resonance states emerging from
the asymptotic # = 5 to n = 7 manifolds for core charge Z =3
near an Al surface [15]. The dashed lines show results of the
CAM method [20] for the n = 5, m = 0 manifoid. (b} Widths of
the n = 5, m = 0 resonance states for core charge 7 = 3 near an
Al surface [15]. The symbols show results of the CAM method
[18,19]. The dash-dotted lines labelled by the electric quantum
number k are results of first-order calculations in the parabolic
(Stark) basis {18,19]. The labels G to @ in part (a) and (b), re-
spectively, refer to one and the same resonance state.
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n = 5 manifold of the Z = 3 hydrogenic ion [15]
are shown as a function of ion—surface distance D.
The symbols refer to the nonperturbative CAM
calculation of Ref. [18,19]. Although this calcula-
tion uses the refined surface potential of Jennings
et al. [42], our widths tend to agree very well with
the CAM results for the three states exhibiting the
largest widths (for details, see Ref. [15]}. In Fig.
1(b), we have also plotted first-order widths for
parabolic (Stark) states [18,19], obtained with the
surface potential used in our self-energy calcula-
tions. For the Stark states with the largest widths,
there is good agreement between first-order and
nonperturbative results, while for the other states
the first-order widths are considerably larger than
the nonperturbative widths.

In our calculations [14,15], we have obtained
converged results for resonance energies and
widths as well as for the associated wavefunctions
over broad ranges of the atom-surface distance
and of the atomic quantum numbers. Therefore,
the self-energy method appears to be well suited
for the generation of surface resonance states as
“two-center’” basis functions for the solution of
the time-dependent Schrodinger equation, in close
analogy to the quasimolecular treatment of slow
ion—atom collisions {43]. In order to exemplify this
aspect, we have initiated time-dependent calcula-
tions for ionization of highly excited atoms, using
a basis of adiabatic resonance states y, obtained
by diagonalizing the self-energy matrix & [31].

With the wave function ¥(F;¢) expanded as

A

W(F ) =Y culti, (7 D(1))

=l
% exp [4 f ! dt’EM(D(t’))} (5)

the coupled equations for the occupation ampli-
tudes c,{¢} are obtained as

6x() = =3 en (0 (D)5, + 5 b1 D) )

=1

% exp {_ i f AP {ELD() »EH{D(t’))}].
(6)

The operator 8/t = —v.8/3D (for perpendicular
incidence of the atom at constant velocity v.) gives
rise to velocity-dependent off-diagonal couplings
(**dynamic couplings” [43]) between the resonance
states y,(D). The diagonal width term I,/2 de-
scribes the decay (induced by the potentiai cdu-
plings between the atom and metal subspaces) of
the resonance state y (D) with energy above the
Fermi level of the metal into empty jellium states.
By suppressing the dynamic couplings in Eqs. (6),
we retrieve the classical rate equations used by
Nordlander et al. [28-30]. In order to simulate the
conditions of current experiments [44,45], we have
included in our calculations the effect of a uniform
(external) electric field of strength F. Total prob-
abilities for the statistically populated hydrogen
n = 5,m = 0 manifold to become ionized when the
atom approaches an Al surface down to atom-
surface distance D, calculated from the solution of
Eqgs. (6), are shown in Fig. 2 for two perpendicular
velocities v; and two field strengths F, both with
the dynamic couplings disregarded and with the
dynamic couplings fully included.

The external electric field is seen to have a very
small effect only, except for atom—surface distances
below 40 a.u. at »; = 2 x 1077 a.u. and below 30
au. at v, =2 x 107? au. When the velocity is
raised from the lower value (which is roughly

atom-surface distance (a.u.)

Fig. 2. Total probability for the statistically populated hydro-
gen n = 5,m =0 manifold to become tonized when the atom
approaches an Al surface down to atom—surface distance D
[31]. Upper bunch of curves: v, = 2 x 10~° a.u.; lower bunch of
curves: v. = 2 x 10~* a.u. Solid kines: no dynamic couplings,
F = 0; dashed lines: dynamic couplings included, F = 0; dotted
lines: no dynamic couplings, F = 2.5 x 107° a.u.; dash-dotted
lines: dynamic couplings included, F = 2.5 x 1075 a.u.
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equal to the subthermal perpendicular velocity in
the experiment of Ref. [44]) to the higher value, the
ion production sets in at much shorter distances
and tends to be smaller throughout. This feature is
related to the smaller time available for the decay
of the resonance states (mediated by the width
terms I, in Eqgs. (6)) when the atom approaches
the surface with higher velocity. The effect of the
dynamic couplings is very small at v. =2 x 1073
a.u. Hence, we may conclude that the classical
rate-equation approach is justified for subthermal
and thermal velocities, At v.=2x 1072 a.u,
however, the dynamic couplings influence the ion
production significantly, so that a fully time-de-
pendent, quantal treatment is appropriate.

3. Wave-packet approach

In our wave-packet approach [46], we discretize
the continuum of metal states by replacing it with
a finite number M of normalizable wave packets
{(“Weyl packets” [47]), each formed by superim-
posing jellium functions within a narrow wave-
number interval. Using these wave packets in the
expansion of the wave function (7 1) (cf. Eq. (2)),
we obtain N + M coupled differential equations, in
which the nondiagonal couplings within the metal
subspace are fully taken into account. This feature
distinguishes the wave-packet approach from the
optical-model approach, in which different metal
states can interact only indirectly via the atomic
states.

Adopting a step-like jellium potential with
depth ¥, inside the metal, we construct wave
packets ¢_(z) describing the electronic motion in
the z-direction by superimposing jellium wave
functions ¢, (z) in  k-intervals (labeled
n=1,2,..) with centroid wave number &, = ki
and constant length .

3, { 2sin(3.2/2)

¢”(Z) = A 5:2

{eik,,: +R,,e_ik"z]9( - Z)
+ T,,e""”"'@(z)}, (7

where y, = /2V; — k2, and R, and T, are the re-
flection coefficient and transmission coefficient,

respectively, for centroid wave number %,. For the
motion in the surface plane {((x,y}-plane), wave
packets &,{x) and ¢, (y) are obtained by super-
imposing plane waves with wave number compo-
nent k, and &, in intervals (labeled / = [,2,... and
m=1,2,...) with centroid k; = £\ and k, = k"
and length 4, and &,, respectively, '

3. 2sin(d.x/2)

06 =\ 55— &
18, 2sin(d,y/2) 4
buly) = \/2—:5—},“’ ' )

The “metal part” of the total wave function ¥(7; 1)
(second term in the right-hand side of Eq. (2)) can
now be appréximated as

| Fo@ipet:PreE = T )6, P,
©)

where
¢1(F) = ¢I(I)¢m(y)¢n(z), (10)
and
B.E B
61=_2‘,‘+7+3_Vl.)3 (11)

with a = (/,m,n) and | +m+n<M. The func-
tions ¢,(¥) are (with respect to integration over
the full F-space) orthogonal and normalized to
unity.

Insertion into Eq. (1) of the expansion (2) with
the metal part (9) leads to the system of coupled
equations

( P <w,-1¢,>)(e—iw .0 )(a,m)
(@.lv,) - 1 0 e S\ B
(wr,:rwf) - <w,-|rf.-|¢1>)
@GT) o (0lVI60)

el 0 a,(t))
x| ... - . (12)
( 0 : e'”") (b,(r)

The matrix elements {¢,|¥|$, ) describe the direct
couplings between the wave packets. By
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numerically solving Eqgs. (12) for a given initial
occupation, we obtain the atomic and metal oc-
cupation amplitudes a;(t} and &,(¢) as a function
of time.

In order to demonstrate the feasibility of our
wave-packet approach, we consider the case of
perpendicular incidence of 2p (m = 0) hydrogen
atoms with velocity v. = 5 x 10~ a.u. upon an Al
surface. In the atomic subspace, we include all
states with n<5 and m=0 (as the magnetic
quantum number m is a conserved quantity, only
m = { states couple to the initial state). With this
choice, our results for the »# =2 manifold are
converged with respect to the atomic basis size.
The metal subspace is spanned by 160 wave-
packets ¢, describing the electronic motion in the
z-direction. For this number of wave packets, our
results are converged to respect to the size of the z-
dependent part of the metal subspace. For ease of
calculation, we confine the motion of the active
electron in the surface plane by choosing a single
wave packet, in which only in-plane wave numbers

k= : /k? + k2 <0.02 a.u. are taken into account (in
this range, the relevant transition matrix elements
can be approximated by their value at ky = 0). We
calculate the time evolution of the system along a
(reflected) straight-line trajectory with distance of
closest approach Dy, = 3.5 a.u. determined from
a planar-averaged Thomas-Fermi-Moliére po-
tential [34].

In Fig. 3, occupation probabilities of the
n=2m=>0and n = 3, m= 0 atomic manifolds as
well as the sum of the probabilities of all 160 metal
states are shown as a function of the atom-surface
distance D. On the incoming branch of the atomic
trajectory, for distances larger than about 18 a.u.,
only Stark-like mixing between the 2s and 2p
(m =0} states occurs. At D = 18 a.u., population
of the » = 3 manifold (thin lines in Fig. 3) sets in at
the expense of the population of the initially oc-
cupied 2p (m = 0} states, thereby suppressing the
mixing of the 2s and 2p (m = 0) states. Electron
transfer to the metal starts at D ~ 12 a.u., i.e, ata
distance lying between the classical threshold dis-

1.0

0.8

04 n=3

manifold

Occupation probability

9.2

0.0 -
36.0 24.0 12.0

0.0
D(au.)

melal states

Fig. 3. Occupation probabilities of the atomic #» = 2,m =0 and # = 3, m = 0 manifolds and of the metal states for perpendicular
incidence of 2p (m = () hydrogen atoms with velocity v. = 5 x 107> a.u. upon an Al surface, plotted as a function of atom-surface
distance D for the incoming branch (left part) and the outgoing branch (right part) of the atomic trajectory. For further explanation,

see text.
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tances D,.> =8 au. and D,.; =18 au. On the
outgoing branch of the trajectory, the occupation
of the n =2 states tends to stabilize for D > 20
a.u.,, while Stark-like mixing among the n =3
states as well as interactions with other atomic
states continue to change the occupations in the
n=23,m=0 subspace. The occupation of the
metal states stabilizes beyond D= 12 a.u., ie,
beyond the distance where electron transfer to the
metal sets in on the incoming branch.

In Fig. 4, the results of Fig. 3 are shown in
parabolic representation, in which hydrogenic
orbitals are described in terms of the quantum
numbers »,k, m, instead of the quantum numbers
n,l,m of the spherical representation. The quan-
tum number & is the “electric”” quantum number.
A comparison of Figs. 3 and 4 shows that the
parabolic basis is more appropriate to describe the
interaction at large distances, where the perturbing
field of the surface changes relatively little over the
extent of the projectile orbits and thus leads to the
hybridization of spherical hydrogenic states inzo
“Stark-like” states labelled n k,m [15]. Accord-
ingly, we find that for the n =2 manifold, the

population of the parabolic states with electric
quantum numbers k¥ = —1 and +1 varies less than
the 25 and 2p population in Fig. 3. The k=1 state
is oriented towards the surface and couples
stronger with the metal subspace (resulting in
faster charge transfer) than the £ = —1 state which
is oriented away from surface. After the collision,
the ¥ =1 component has become depopulated
while the k= —1 component ends up with a
(small) nonzero population,

4. Thin metallic films

The interaction of atoms and ions with thin
metallic films is a topic that has attracted atten-
tion only recently [36,37). Basically, one expects
novel phenomena to occur in this type of inter-
action due to the confinement of the electronic
motion in the growth direction of the film and to
the associated quantization of the energy spec-
trum (“‘size quantization™), in much the same way
as in the case of semiconductor quantum-well
structures [48].

k=—1

06 |

0.4 |
k=1

Occupation probability

metal states

-
YTy

=3 J
manifold

0.2 -
=3
manifold
> i
0.0 - — S M
36.0 24.0 12.0 0.0 12.0 24.0 36.0
Dau.)
Fig. 4. Same as Fig. 3, but in parabolic representation for the hydrogen states. Electric quantum numbers ¥ = —1 and & = 1 correspond

to orbitals oriented away from and towards the surface.
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We have studied the resonance broadening of
hydrogenic levels near a thin metallic film by cal-
culating first-order level widths (or, in other
words, firsi-order rates for resonant transitions of
electrons or holes between atom and film). While
the nonperturbative self-energy method can be
easily extended so as to be applicable to the case of
metallic films, a first-order calculation of level
widths (i.e., of the imaginary parts of the diagonal
elements of the self-energy matrix) appears to be
well suited to reveal the important novel features
of the atom-film interaction.

For a jellum film of thickness L, we construct
the unperturbed electronic potential Fyn(z) by
employing the Jennings potential [42] (with one
and the same set of parameters) to describe the
interfaces on either side of the film [36,37]. With
z=10 at the midpoint of the film, the electronic
potential reads

Vﬁlm (z)

_ { ~Vo/{AexplB(jzi — L/2}] + 1}, Iz <L/2
~{1 = exp[~n(lzl = L/2}/[4(2] - L/2)], |zl > L/2

(13)

where 4 =4F/n—-1, and B=2/4. For
|z — oo, this potential merges in the classical self-
image potential of the electron. The total elec-
tronic wave functions of the film are written as

¢z,(F) = exp(iky - F)¢i(2), (14

where &, and 7, are the components of wave vector
and position vector, respectively, in the film plane.
The functions ¢,(z) (with labels i=1,2,... ar-
ranged in order of increasing energy eigenvalue ;)
are the bound-state eigenfunctions of the z-de-
pendent part of the film Hamiltonian. The energies
associated with the states ¢z, are given by

hy = 5+ e (15)
In Fig. 5, the dependence of the energies ¢; on the
film thickness L for a thin Al{111} film is shown
over an L-range corresponding approximately to a
range of 2-14 monolayers.

The hydrogenic states of the unperturbed
atomic system are described in terms of wave

3 4 H
0.0 A E——

.
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70879
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energy {a.n.)
: =3
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10 I5 20 25 30 a0 45 58 55 60

33
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i
Fig. 5. Energy levels of a thin AI{111) film described by the
potential {13) plotted as a function of film thickness L. The
dotted horizontal lines indicate the unperturbed levels of the
hydrogen atom for » = 1,2,3. The heavy solid lines emphasize
those pieces of the film level curves that belong to the first film
level below a given hydrogen level.

functions ¥,,, () in the parabolic (Stark) repre-
sentation, in which the hybridization of the atomic
orbitals induced by the long-range image charge
interactions in the atom-metal system are, to some
extent, taken into account [18,19,49]). The first-
order width T'y..(D) of a level with quantum
numbers #, k,m, associated with an atom located
at a distance D from the adjacent jellium edge of
the metallic film, is given by

Tuin(D) = 2m3 / A& 0 ) | W (D)0 (e — e,1)
= Zlmmm,ff:l" (D)ize(ﬁn —€), {16)

where kéﬂ = +/2(e, — €}, and ¢, = —Z?/2n” is the
unperturbed energy of the hydrogenic level (we
have disregarded here the lowest-order level shift
(2Z — 1)/4D). The transition matrix element is
wrilten as

Wrimz (D) = (b DVE (D) b5, (17)

where the perturbing potential ¥ is the Coulomb
potential of the atomic core, cut-off at the “free”
surface of the film at z = L/2 [50]. We have ne-
glected the core image potential in the potentials
defining the unperturbed atomic and film states as
well as in the perturbing potential in Eq. (17).
However, through the use of hydrogenic wave
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functions in parabolic representation, its effect is
partly taken into account in the atomic states.

In the form (16) the level width appears as a
sum over a finite number of terms, each corre-
sponding to the transition of an electron or hole
{(depending on the position of the atomic level ¢,
relative to the (L-dependent) Fermi level er of the
film) into a film state with energy ¢ <¢, in the
growth direction and (real) wave vector kﬁ’) of the
free in-plane motion, such that the resonance
condition €ki = € 1s fulfilled.

In Fig. 6, the level widths I,.,(D) for a hy-
drogen atom (Z = 1) located at distances D = 2»°
{these D-values are equal to the threshold dis-
tances for classical transitions [S0]) in front of an
Al(111) film are displayed as a function of film
thickness L for m =0 and » = 1,2, The curves in
the diagrams of the upper part of Fig. 6 exhibit the
saw-tooth-like “‘gross structure” in the L-depen-
dence, which arises from the thresholds for tran-
sittons into film levels (cf. Eq. (16)) at the L-values

(n,k) =(1,0), D=2 a.u.

monolayers
73 ¢ 35678900123

{n,k) = (2,-1), D=8 au.

monglayers

234056 7 8901112143 214

L; where the film level curves ¢; in Fig. 5 intersect
the horizontal line for a given atomic level ¢, and
which, therefore, directly reflects the quantization
of the film level spectrum in the z-direction. We
have generated the gross structure curves by using
the calculated widths only in the immediate vi-
cinity of the points L;, and by smoothly interpo-
lating the curves {on a log-lin plot) between these
points. The gross structure curves are in obvious
correspondence to the saw-tooth patterns in Fig. 5,
which were constructed by emphasizing those
pieces of the film level curves that belong to the
first level below a given atomic level.

In the intervals between adjacent points L;, the
actoally calculated L-dependence of the level
widths is found to exhibit (except for the atomic
state with the largest value, kp,, =n— 1, of the
quantum number k within each n-manifold) de-
tailed siructure showing maxima and minima, as
exemplified by the case (n,k)=1(2,-1) in the
lower part of Fig. 6. This structure is related to the

(k) ={2,1), D=8 a.u.
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Fig. 6. Upper part: Gross structure of the L-dependence of the level widths I, for a hydrogen atom located at the distances D, = 2#°
in front of an Al(} 11} film, for m = 0 and the indicated values of the quantum numbers n, k. Lower part: Detailed structure of the L-
dependence of the level widths for selected L-intervals. Also shown are the contributions to the widths from the film states i lying

encrgetically closest befow the atomic level (cf. Fig. 5).
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nodal structure of the atomic wave functions and
can be shown [51] to image the dependence of the
corresponding transitions matrix elements on the
wave vector component & parallel to the surface in
the case of a semi-infinite metal.

Assuming the atom to approach the film along
a straight-line trajectory (with constant perpen-
dicular velocity v.), we can calculate atomic occu-
pation probabilities P, (D)} from the level widths
I (D) according to

P (D) = exp{ —Ui f;c dD’F,,k,,,(D’)}. (18)

Transition distances D, can be determined from
the occupation probabilities by solving the equa-
tion  Pow(Dum) = 0.5 (provided the probability
drops from unity to zero in a sufficiently narrow
D-range).

In Fig. 7, the detailed structure of the L-de-
pendence of the transition distances for », = 107
a.u. in the L-intervals of Fig. 6 is shown in a linear
plot. The shapes of the curves closely resemble
those of the level-width curves displayed {in a log-
lin plot) in the lower part of Fig. 6. The reason
behind this is the near-exponential behavior of the
widths in the relevant D-range and the weak de-
pendence of their slopes on L. The important
feature revealed by Fig. 7 is the appearance of
large threshold discontinuities in the tramsition
distances, in particular for (n,k) = (2,1). In gen-
eral, the discontinuities for k = k., are found to

monolayers
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Fig. 7. Detailed structure of the L-dependence of the transition
distances D,y for the examples of Fig. 6 and v. = 107 a.u.

scale approximately as »?, with their absolute
values being close to 2n?, ie., close to twice the
atomic orbital radius or to the classical threshold
distance D,.

The large threshold discontinuities in the de-
pendence of the transition distances on the film
thickness, as they are predicted by our calcula-
tions, are a direct manifestation of the quantiza-
tion of the electronic motion in the growth
direction of the film. Among possible ways to-
wards an experimental verification of our predic-
tions, the study of the kinetic energy gain of highly
charged ions in front of a thin metallic film due to
the image charge attraction appears most prom-
ising. This energy gain is determined {52,12,34,
53,54] by the set of transition distances corre-
sponding to successive resonant transitions into
ionic states with different effective core charges of
the ion, i.e.,, with different principal quantum
numbers, and for semi-infinite metal targets has
been observed in grazing-incidence experiments. In
the case of thin films, the predicted large variation
of the transition distances with film thickness
suggests that a similar vaniation occurs in the ki-
netic energy gain of highly charged ions. A direct
observation of this variation is hampered by the
fact that well-defined (flat) films exist only at dis-
crete L-values corresponding to integer multiples
of the monolayer thickness. However, as the
lengths of the L-periodicity intervals in general do
not coincide with the monolayer thickness (cf.
Figs. 5-7), some experimental evidence can possi-
bly be obtained.

5. Summary and conclusions

We have presented some new theoretical results
on the electron dynamics and on resonant level
broadening in the interaction of slow atoms and
1ons with metal surfaces and thin metallic films.

Within the time-dependent close-coupling ap-
proach, we have introduced a novel method i
which the continuum of metal states is replaced
with a finite number of normalizable wave packets.
In this way, nondiagonal couplings within the
metal subspace, l.e., inelastic one-electron transi-
tions in the conduction band, can be taken into



624 B. Bahrim et al. | Nucl. Instr. and Meth. in Phys. Res. B 164-165 (2000) 614—625

account, This distinguishes our approach from the
time-dependent optical model approach and its
fixed-atom (self-energy) limit. To demonstrate the
feasibility of the wave-packet method, we have
performed an exploratory study of the time evo-
lution of the occupation of hydrogen states in
front of a semi-infinite metal. Extensions of this
study will have to include the full discretization of
the in-plane motion and the detailed examination
of one-particle excitation processes and dissipation
in the metal.

Our first-order study of resonance broadening
of atomic levels near thin metallic films has re-
vealed novel features associated with the size
quantization of the electronic motion in the
growth direction of the film. The strong variation
of the transition distances as a function of film
thickness can possibly have observable conse-
quences in the kinetic energy gain of highly
charged ions in front of metal surfaces. The eval-
uation of the full self-energy for atoms interacting
with thin metallic films will be a step to be done in
the future.
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