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P. Kirpick” and U. Thumm
J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506-2604
(Received 20 October 1997

We investigated the hybridization of He Li2*, and BE" ionic levels and the creation of surface reso-
nances for nuclear charg&s=2, 3, and 4 near an Al surface. Starting from a two-center basis set expansion
with hydrogenic wave functions on the ion site and jellium wave functions in the metal half space, we calculate
the self-energy for ion-surface system in the fixed-ion approximation. We obtain convergence by using a rather
small set of bound ionic states. This ideally suits this method for the generation of adiabatic basis states that
can be used in time-dependent close-coupling calculations for slow ion-surface collisions. We compare our
resonance energies and widths with other theoretical approaches, discuss electronic density profiles, and ana-
lyze resonances in terms of Stark staf&1050-29478)01109-3

PACS numbgs): 34.50.Dy, 31.15-p, 34.70+e, 61.80.Jh

I. INTRODUCTION the substrate appears as a complex potential, the self-energy.
Borisov et al. [18—2(Q applied the coupled-angular mode
Detailed understanding of the dynamics of ion-metal sur{CAM) method to the broadening of atomic levels near metal
face interactions has been a primordial experimental and thesurfaces for ions up to ©. The CAM method essentially
oretical topic in the last decade. Experimentally, the interacviews atomic resonances as scattering resonances corre-
tion of single ions with metal surfaces has been investigategponding to elastic scattering of conduction-band electrons
in various ways. Charge-state distributions of highly chargedy the ionic potential. A different approach has been under-
ions scattered from a single-crystal surfatg¢and accelera- taken by Nordlandeet al. and Deutscheet al. by means of
tions of an incoming ion due to the image chafge3] have  the complex scaling methd@1—25, which involves a com-
been observed. The existence of hollow-atom states formeglex non-Hermitian Hamiltonian. Deutschet al. [23—25
by resonant electron capture has been confirmed throudlocused on (1=1,2)-surface resonances in H-Al surface in-
high-resolution Auger electron spectroscopy measurementgractions while Nordlandeet al. [21,22 calculated shifts
[4]. These experiments ask fab initio calculations investi- and widths of Rydberg states up te=10 for various ions
gating the neutralization and ionization of ions approaching and surfaces. Furthermore, level positions and widths for H
metal surface. atoms in front of an Al surface have been obtained by Martin
From a theoretical point of view several studies focusingand Politis[26] within a “stabilized” multicenter-Gaussian
on one-electron effects, which are supposed to be dominarixpansion method.
at ion-surface distance3> 5 a.u., can be found in the lit- In this paper we present a large-scale application of the
erature: Early perturbative calculations go back to Gadzukwo-center expansion method with hydrogenic states on the
[5] and Remy[6]. Scattering calculations in first- and ion site and jellium states for the metal half space. We solve
second-order impulse approximation have been performethe close-coupling equations by eliminating the explicit de-
by Thumm and Brigg$7—10]. More recently systematic in- pendence on the jellium states. This elimination leads to a
vestigations of closed-form expressions for the transfer maeomplex non-Hermitian self-energy matrix. The subsequent
trix elements and universal scaling properties for transitiordiagonalization of the self-energy matrix yields the shifted
rates of Rydberg states were derived by W[lld,12 and  energies and widths of ion-surface resonances formed when
Kurpick and Thumm[13]. Besides these perturbative ap- the ion velocity perpendicular to the surface is small com-
proaches, solutions of the time-dependent and timepared to the electron velocity. This adiabatic picture shows a
independent Schdinger equation have been attained at vari-strong hybridization of ionic levels similar to the well-known
ous levels of approximation. Using a two-center expansiorstark mixing of hydrogenic levels. We emphasize that the
together with the self-energy concept, Burgdo etal. resonance widths are associated with either the resonant fill-
[14,15 studied the hybridization of thenE2) manifold for  ing of an ionic level(resonant captujeor with the resonant
hydrogen interacting with an Al surface.”Kaick et al. per-  loss of an ionic electron into the unoccupied part of the metal
formed converged self-energy calculations upnte 6 for  conduction band. Which of these two cases applies depends
hydrogen interacting with an Al surfa¢é6,17. In the self- on the initial occupation of ionic and surface electronic
energy formalism, the expansion coefficients of thestates. At zero temperature and for resonance energies below
substrate-centered basis are formally eliminated such thattae Fermi level of the surface, the resonance widths describe
restricted set of close-coupling equations in the subspace ®ésonant capture into states about a nucleus of chgrim
atomic basis functions is obtained in which the coupling toresonance energies above the Fermi level they correspond to
resonant loss rates.
We have organized this paper of follows. In Sec. Il we
*Present address: SAP-AG, Neurottstrasse 16, 69190 Walldorfresent a short summary of the close-coupling expansion
Germany. with emphasis on the self-energies. The actual evaluation of

1050-2947/98/58)/21749)/$15.00 PRA 58 2174 © 1998 The American Physical Society



PRA 58 HYBRIDIZATION OF IONIC LEVELS AT METAL SURFACES 2175

the self-energy is done by decomposing the full Hamiltoniarused Jennings potentig28] and found minor deviations, as
for the ion-surface system into channel Hamiltonians correean be also seen in Sec. Il below.

sponding to unperturbed conduction-band states and discrete The function| W (t)) is expanded as

hydrogenic states, respectively. Results for the case of vari-

ous ions interacting with an Al surface with emphasis on the _%

dependence of surface resonances on the hydrogerind |q’(t)>_j:1 aj(t) [y(1))

m-quantum number are discussed in Sec. lll. Section IV

gives a summary of our paper in which atomic units are used .

throughout. + K=k dk p(k) bg(t) |¢’IZ>1 2.7
Il. THEORY where the basis functionsy;(t)) are eigenfunctions of the

. . . R stationary Hamiltonian
In this section, we briefly present a derivation of the com- y

plex non-Hermitian self-energy formalism using two mutu- He=T+Vc (2.9
ally nonorthogonal basis sets within the independent particle
model. Details of the formulation and a thorough test on theand are centered at the ion site. The basis functigps are
H-Al system have been published elsewhier@)]. _ eigenfunctions to the step potenti&l;.,with wave vectork
tThe sslf-eBner%)l/fmet?o? f['ﬁt fgp“tedttof'on'smfai? INter-ang energye;. p(Kk ) is the correspondingfree-electroi
ZC |on3 3{ Sufggj)n ere a.t' - starts from he lIMe- jensity of states. We restrict the set of basis functioog)
ependent S¢ ger equation to functions localized in the metal half-space, so that the
i|\if(t))=H(t) W) | 2.1) r_naxmtgm wave number is given bynaxz_\/ZV_O. The func-
tion | ¢;) are eigenfunctions of the Hamiltonian
in which the HamiltoniarH (t) is time dependent due to the
motion of the ion along a prescribed classical trajeciovg
adopt a reference frame in which the metal is at)reBhe
total one-electron HamiltoniaH (t) is taken in the form

Hi=T+ Vgep - (2.9

We decompose the total Hamiltonid@.2) into initial and
final channel Hamiltonians according to

H(H=T+VstVe(), 22 H=H+Vi=H+V;. (2.10
whereT is the kinetic energy. The surface potentig in- Taking the potential step W ,at o, initial and final chan-

cludes both the electronic self-image potentdl(z) and g perturbation potentials follow as
the nuclear image potentimg)(F;D) acting on the electron,

0, Z<ZO

V@ ={ iy i 2.3
s(2) vi(2)+Vv¥(z;D), z=2z,, @3
and
wherezy>0 is determined from the condition
: . _VO_VC, Z<Zo
VU(29) +VE(29;D) =V, (2.4 Vi= VLRV (212

an(rzl]—vo Is the ﬁ”e_ng of.the rllowehr fondﬁctlon-ban?.llmlt In all applications shown subsequently we retain the Cou-
with respect to the ionization threshold. The potenvl is lomb potential in the initial channel perturbati¢2.11) and

the potential of the ion core, cut off at the surface in order t%eglect the image potentials Wy . With respect to the final
allow for the complete screening of the core potential inside.p,5nnel potentiaV/; , we do not include/c in Eq. (2.12).

the metal. The potentials Inserting the expansiof2.7) into the Schrdinger equa-
1 tion (2.1) and projecting onto the basis functions, we obtain
Vg)(z)z - 0(2) (2.5 a set of close-coupling equations. The fixed-ion approxima-
z

tion [14—-14 corresponds to the static limit in which the ion
is at rest at a distand® in front of the surface. Accordingly,
the HamiltonianH is independent of time and depends only
7 7 parametrically orD. In this case, the set of close-coupling
V(D)= ——— 0(2)~V{(z;D)= 0(2) equations can be converted, by means of a Laplace transfor-
[r+Degy |z+D| mation in the variabla, into a system of algebraic equations
(28 for the transformed expansion coefficieﬁatj:{s) andbi(s).
are the classical image potentials induced by the active ele(yi the direct couplings among the metal states are neglected,

tron and by the ion core, respectively. As can be seen fronfhe coefficientshy(s) can be eliminated from the algebraic
Eq. (2.6) we approximate the nuclear image potential by itsSystem. Thg resulting linear system of equation for the ionic
value on thez axis, therefore slightly overestimating its in- coefficientsa;(s), corresponding to initial conditions where
fluence. In a previous articlel6] we have compared the the Fermi sea of metal electrons is completely filled and the
surface potential according to E(.3) with the commonly ionic levels are unoccupied, reads

and
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5 o Wig Many-body effects, in particular the Pauli-exclusion prin-
> [is6: =S (9)] aj/(s)zif dk p(k) —= ciple, are not incorporated in the self-energy. As a conse-
i’ k<ke IS— €k quence, its imaginary paftthe resonance widjitan be seen

(2.13 as related to either the resonant capture rate or the rate of
wherek; is the Fermi momentum of the metal, asgs) is ~ "esonant loss into empty condgction-band states. The posi-
the complex(statig self-energy. The self-energy describestion of the resonance energy, i.e., the real part of the self-
the effective interaction that governs the dynamics in theenergy, relative to the Fermi level, determines which states
ionic space in the presence of couplings to the metal stategle inaccessible due to “Pauli blocking” and thus deter-
The initial occupations of conduction-band states that arénines the possible direction of the transfer process. When
filled up to the Fermi level appear on the right-hand side ofexpressings in terms of the real energy variabte by s=
the above equation, but are not included in the self-energy-i w+ 7, the matrix elements of(w) are given by

L (&= o) Ng+Wig] [(&—w) Nj e+ W]
SJJr(a)):GJﬁ”r—FF“r'i‘Pf dkp(k)

k<Kmax w— €

_iwL dk p(k) W Wi dlo—e) (2.14

X

where P denotes the principal part ands a positive infini-  We represent the resonance wave functions as hybrid wave
tesimal guaranteeingSieger} resonance boundary condi- functions that are given as linear combinations of ionic or-
tions. The initial-channel transfer matrix elementg, bitals of a particular magnetic quantum numbeeaccording
overlap matrix elements;;, and the final-channel distortion to

matrix elements=;;, are defined as

N
Wj|2:<'r/fj|Vi|¢lZ>, (2.15 |¢#(D)>:j21 aﬂ,j(D)Wj)- (2.21)
Ni<= (¥l b, (2.16
and IIl. NUMERICAL RESULTS AND DISCUSSION
Fijr=(|Vil o) (2.17 We have calculated level positions, level widths, and elec-

tronic charge densities of ion-surface states that form if a

For a detailed study of these matrix elements, we refer t@ucleus of charg&=2, 3, and 4 is placed at a given distance
Refs. [11-13. The (off-shell) principal-part term in Eq. in front of an Al surface. The Al surface is characterized by
(2.14) describes indirect couplings between ionic states dughe potential depthv,=0.585 a.u. and the work function

to virtual transitions into the conduction band, while tbe- ~ W=0.15 a.u. Resonance states with larger binding energies,
shel) term proportional ta 7 (“width term” ) describes real between—V, and—W, may be filled by resonant tunneling.
transitions into the conduction band and gives rise to théAt large ion-surface distances the asymptatic 2 andn
resonance broadening of the dressed ionic levels. By subse=3 manifolds of H&, then=3 to n=>5 manifolds of LF*,
quently diagonalizing the self-energy matii2.14 we ob- and then=4 to n=7 manifolds of Bé* are in resonance
tain complex eigenvaluesZ)M(D), and eigenvectors With the filled part of the Al conduction band. As can be seen
|$,(D)), whereu collectively denotes the quantum num- from our Hamiltonian(2.2), the ion-surface system exhibits a

bers characterizing the states. The complex eigenvalugylindrical symmetry with respect to tieaxis perpendicular
~ . . : to the surface. Therefore tilequantum number is conserved
w,(D) relate to the energetic shiftg, (D) and widths

T"(D) according to and differentm manifolds can be investigated separately. We
m will mainly investigate them=0 manifold but show thain
#0 manifolds have a very similar behavior. In a previous
paper[16] the convergence of our method, with respect to
~ the size of the ionic basis set was studied in detail and the
I',(D)=-21Im w,(D). (2.19  nth manifold was found to be converged if the-1 andn
+1 manifolds are included in the basis set. This rule holds as
The nonlinear eigenvalue problef@.13 is approximately |ong as the very strong interaction of ionic states with the
solved by evaluating the matrix elemeidg, (w) at metal surface, which sets in at ion-surface distances below
the classical orbit radiug )=n?/Z, leads to a strong promo-
tion across all highen manifolds. The self-energy method
therefore allows us to obtain accurate energies and widths of

E.(D)=Rew,(D), (2.18

6j+6j’
w=—"" (2.20
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FIG. 1. Energies of them=0 resonances states of the
asymptotic 6=2) to (n=5) manifolds for a nuclear chargée=2
near an Al surface. The labeds-g refer to the widths shown in Fig.
2. The dashed lines show results by Borisiwal. [20].

FIG. 2. Widths of then=0 resonances states of the asymptotic
(n=3) and fi=4) manifolds for a nuclear charge=2 near an Al
surface. The labela—g refer to the energies shown in Fig. 1. The
dashed lines show results by Boriset al. for the n=4;m=0

) ) ~ manifold[20].
resonance states while using a small set of bound ionic or-
bitals. physical accuracy of the potentials used in the Hamiltonian
(2.2). Within a givenn manifold resonance states have very
A.Z=2 + Al distinct widths and states of the samemanifold generally

tend to have the same exponential slope at large ion-surface
distances. Exceptions to this rule are obvious for the reso-
. . - : nance state denoted with Due to adiabatic couplings, the
states emanating from the asymptotie2 to n=5 mani- ! L ) : i
exponential slope of its width changes in the ion-surface dis-

Y o . : . .
folds of He ._The |on_|c basis _set in the calcula_non was built tance range of 18 to 20 a.u. The dashed lines show results by
up by then=1 to n=8 manifolds, therefore including 36 Borisov et al. [20] for the n=4:m=0 manifold. Their

states. At large ion-surface distances all states exhibit a

) ; . . Wwidths for most ion-surface distances tend to be a factor of
monotonic upward shift due to the nuclear image potential . L

, . . . . 2-4 larger than our results. This behavior is also observed
At close ion-surface distances the interaction of the ioni

states with the metal surface through the final-channel pote(r‘Ipr the state with low width in th& =3—Al system as dis-

' . . cussed below. Although not as pronounced as in our calcu-
tial matrix elementysee Eq.(2.17] leads to an energetic lations, the results by Borisost al. also exhibit a shoulder
downward shift of those resonance states that strongly over- ' y .
. and change of slope for the width of the resonance state
lap with the surface as, for example, resonascEhe dashed
: ) : : denoted a%.
lines show results by Borisost al. obtained using the CAM . .
. An appropriate way to analyze the behavior of resonance
method[20]. The agreement is good down to abdut3 . . X
IR T : . _states is to express the resonance wave function as a linear
a.u. for the state whose probability distribution mainly points L
o ) combination of Stark states
towards the vacuum while discrepancies occur belbw6
a.u. for the state that is primarily oriented towards the metal
surface. These discrepancies are due to the different choices |6m(D) =2 Cniem(D)énkm: (3.9
of the nuclear image potential near the surface. Boretoal. nk

keep the full nuclear image potential downze 0 while in here th bolic Stark stat . i bi
our calculations the nuclear image potential is turned off/NEre the parabaiic Stark states are given as linéar comoina-

. : : f spherical hydrogenic orbitals and the coefficients are
when the sum of the nuclear image potential and electroni ons o -
self-image potential add up to the value -ei,. This hap- %lqe Clebsch-Gordan coefficier{z9]

Figure 1 shows for the case of a nuclear chatge? near
an Al surface converged resonance energies ofmai0

pens forz>0 [see Eq.34) in Ref.[16]], and weakens the n—-1

influence of the nuclear image potential on the atomic reso- €)= 2 (n=1)/2 (n=1)/2 |1 | i)

nances. nkm & (mtk)/2  (m=k)/2 |m) T
Figure 2 shows the widths of the asymptatie 3 andn (3.2

=4 manifolds. The designatice—c refers to the energies of

the n=3 manifold shown in Fig. 1 while the designation The comparison of nonperturbative widths obtained by the
d—g marks the levels of the asymptotic=4 manifold. To CAM method with first-order widths calculated for parabolic
exhibit how convergence is achieved within a small set ofStark states by Borisov and Wil[d.9] showed that, at large
ionic basis functions, we have also plotted in Fig. 2 the widthion-surface distances, Stark states are good approximations
of the resonance state obtained while using a basis set to the resonance wave functions. Given our axis of quantiza-
spanned by the=1 ton=6 stateg21 basis functionsand tion perpendicular to the surface, the largest positive electric
the n=1 to n=5 states(15 basis functions The conver- quantum numbek corresponds to a Stark state pointing to-
gence is rapidly achieved and the accuracy far better than theards the surface therefore exhibiting a large width, whereas
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FIG. 3. Square amplitudes of the parabolic Stark state contribu- F!G. 5. Widths of then=5:m=0 resonances states for a

tions to the resonance state denotec &s Figs. 1 and 2.

the largest negative electric quantum numkeorresponds

to a Stark state pointing towards the vacuum and has a smd]
width. Figure 3 shows the six largest square amplitudes ac-

cording to Eq.(3.1) for the resonance state denotededs
Figs. 1 and 2. The resonance statéends for large ion-
surface distances towards time=4, k=1 parabolic state.

nuclear charg&=3 near an Al surface. The symbols show results
obtained by Borisov and Wille using the CAM methftB]. The
dash-dotted lines are first-order calculations in the paral®tark

psis denoted by their electric quantum number by Borisov and
Wille [19]. The labelsa—e refer to the energies shown in Fig. 4.

the CAM results and our self-energy calculations originate
from the approximation to the nuclear image potential in our

Comparing Figs. 2 and 3, one sees that the width changes itgpproach, which leads to an overestimation of its strength
slope at approximately 20 a.u. where the resonance etateand therefore to a somewhat stronger upward shift of all

shows the strongest admixture of therge-width n=4, k
=3 parabolic state.

B.Z=3 + Al

Our results for a chargé=3 near an Al surface can be
compared with nonperturbative calculations by Boristal.
[20] and perturbative calculations by Borisov and Wjll&].
Figure 4 shows the converged energy shiftato£ 0 reso-
nance states emerging out of the asymptatie5 to n=7
manifold while using an ionic basis set spanned by nthe

=3 to n=9 manifolds. The dashed lines in Fig. 5 show

results by Borisowet al. [20] for the n=5;m=0 manifold

levels.

Figure 5 presents the converged widths of resonance
states formed near an Al surface out of the asymptotic
=5 manifold of LP* states. The symbols in Fig. 5 refer to
the non-perturbative CAM results obtained by Borisov and
Wille [19]. Although these authors use the more refined Jen-
nings potential[28] to represent the metal surface, our
widths tend to agree very well with the CAM results for the
three states exhibiting the largest widths. The general trend
in the agreement between the CAM results and our results
can be understood by looking at the wave function of the
resonance states. Those resonances having a rather large
width strongly overlap with the surface potential barrier and

obtained using the CAM method. The discrepancies betweefhgrefore average over large portions of space. In contrast,

0.00
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X
> -0.08 R NN
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012 | Z=3 + Al e a5
m=0
014 | -=--- CAM-method
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FIG. 4. Energies of them=0 resonances states of the
asymptoticn=>5 to n=7 manifolds for a nuclear charge=3 near
an Al surface. The dashed lines show results by Borisoal. for
the n=5;m=0 manifold[20]. The labelsa—e refer to the widths
shown in Fig. 5.

those states having a small width exhibit a very weak overlap
with the surface and are therefore more sensitive to details of
the surface potential. Since Borisov and W{lle9] used the
Jennings potential in their CAM calculations, their widths
tend to be larger because the surface potential is smeared out
along thez axis perpendicular to the surface. This leads to
metal states in which more probability dendigaksinto the
vacuum as compared to our jellium potenfiste Eq. 2.3

In Fig. 5 we also plotted first-order widths obtained from
parabolic(Stark stateqd19], which are denoted by the elec-
tric quantum numbek=—4, . .. ,4.These first-order calcu-
lations rely on the same surface potential as our nonpertur-
bative calculations. The widths extracted from these first-
order results tend to be bigger than both nonperturbative
approaches especially for resonance states with a small
width. One should keep in mind that states with small widths
do not contribute significantly to the neutralization process in
any ion-surface encounter. Errors in their widths are there-
fore of little relevance to the overall physical behavior. To
get a better understanding of the deviation of the first-order
Stark results from both nonperturbative results, we have per-
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FIG. 6. Square amplitudes of the parabolic Stark state contribu- F|G. 8. widths of then=5:m=0 resonances states for a

tions to the resonance state denoted &s Figs. 4 and 5. nuclear charg€=4 near an Al surface. The labeis-e refer to the
energies in Fig. 7.

formed, as for the case @-=2, an analysis of our resonance

states in terms of Stark states. As an example Fig. 6 shows C.Z=4 + Al

the four largest square amplitudes of Stark states contribut- Figures 7 and 8 show the energies and widthsnef0

ing to the resonance state denoteccas Figs. 4 and 5. ItS  yagpnance states for the nuclear chatged near an Al sur-
width shows a deviation from the first-order Stark calcula-g3ce The ionic basis set used was spanned bynth8 to

tion while both nonperturbative results agree very well,_ g manifolds. The widths of resonance states denoted by
among each othefig. 5). Although the resonance state  5_g i Fig. 7 are shown in Fig. 8. The individual resonance
tends for large ion-surface distances towards the paraboligaies have strikingly different widths. Comparing the energy
s_tate with quantum numbers= 5., k=—2 it has a contribu- diagram forz=4 + Al (Fig. 7) with the diagram foz=3

tion of then=6, k=—3 parabolic state that grows to about g\, in Fig. 4 reveals that for a givenmanifold around
53% at an ion-surface distance of 4 a.u. The6, k=—3  7_4 he mixing with highern manifolds takes place at

parabolic state is expected to have a rather small widthy5)er jon-surface distances. This is to be expected as the
therefore reducing the overall width, of the resonance state ,aan classical radiug ,)=n2/Z of Be** states is reduced

as compared to the width of the pure Stark state with quanby 3/4 as compared to £
tum numbers1=5, k= —2. Additionally the resonance state So far. we have showﬁ results for=0. In order to in-

¢ has contributions ranging from 0.1 to 8% of the parabolicvestigate them dependence of resonance parameters, we
staten=4, k= —1, which has the second smallest width out o, ,.."in Fig. 9 them=3 resonance energies of the=5 to
of then=4 Stark manifold. Contributions from the parabolic | _ 7 manifc.)lds and in Fig. 10 the widths of the=7

staten=6, k=—1 are ranging from 0.5 to 3%. Our Stark 1,3 manifold for thez=4—Al surface system. The behav-
analysis shows that the resonance states, although tending i, the shifts is similar to the shifts of them=0 states
towards a specific parabolic state at large ion-surface dis(—) :

tances, have a significant admixture of other Stark states
small and intermediate ion-surface distances.

0.00 T T . T . T T T T T

0.05 Z=4 + Al

m=0

040 | n=7 =
—_ <
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& o5 a o
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FIG. 9. Energies of them=3 resonances states of the

FIG. 7. Energies of them=0 resonances states of the asymptoticn=5 ton=7 manifolds for a nuclear charge=4 near
asymptoticn=>5 ton=7 manifolds for a nuclear charge=4 near  an Al surface. The labela—d refer to the widths in Fig. 10 and to
an Al surface. The labela—e refer to the widths in Fig. 8. the density plots shown in Figs. () to 11(d).
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FIG. 10. Widths of then=7;m=3 resonances states for a
nuclear chargZ =4 near an Al surface. The labeds-d and the
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lon-surface distance (a.u.)
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tends to be oriented parallel to the surface, whereasrthe
=0 states tend to have their density pointing alongzhgis
perpendicular to the surface, therefore leading to a stronger
interaction with the surface.

The hybridization of ionic orbitals according to EQ.21)
is presented in Figs. 14-11(d) in which contour plots of
the electronic probability density in a plane perpendicular to
the surface including the ionic nucleus are shown. Displayed
are the hybrid wave function€.21) for the asymptoticn
=7, m=3 manifold. The ion-surface distance is 15 a.u., and
we adopted a new reference frame with the ionic nucleus at
the origin. The dashed line corresponds to the surface loca-
tion. The labelsa—d refer to the shifts in Fig. 9 and widths
presented in Fig. 10. While resonanadends to point to-
wards the surface, resonantexhibits a charge density ori-
ented towards the vacuum resulting in a decrease of the
width by almost five orders of magnitude. The wave func-
tions corresponding to the casbsand c are of moderate

vertical dashed line refer to the energies in Fig. 9 and density plotgidth and are somewhat symmetric with respect to reflection

shown in Figs. 1(a)—

11(d).

at an axis parallel to the surface and going through the
nucleus.

of resonance states, which tends to set in at smaller ion- In general, the shape of resonance wave functions

surface distances as compared to thre O case. Since our

changes as a function of the ion-surface distance. As an ex-

guantization axis is perpendicular to the surface this behavioample for such an evolution Figs. E-12c) show the pre-

is to be expected as the probability density of higlstates

Z axis (a.u.)

z axis (a.u.)

20

viously discussed wave functions of resonaacexhibiting

20

z axis (a.u.)

X axis (a.u.)

20

z axis (a.u.)
£
%

-10 -

X axis (a.u.)

-20

-20

T
0

X axis (a.u.)

10 20

FIG. 11. (a)—(d) Contour plots of the charge density of the surface resonances in the plane perpendicular to the surface and containing
the ionic nucleus of chargé=4. The ion-surface distance is 15 a.u. and we used the ion-reference frame. The dashed line marks the surface
edge. The label§a)—(d) refer to the energies in Fig. 9 and widths in Fig. 10.
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20

Z axis (a.u.)

FIG. 12. (a)—(d) Contour plots of the charge

-20 -10 0 10 20 density of the surface resonance exhibiting the
X axs (au) largest width out of the asymptotit=7, m=3
20 20 manifold. The distance between the ionic nucleus
D=20 a.u. ¢ of chargeZ=4 ranges from 10.2 to 20 a.u. The

dashed line marks the surface edge.

z axis (a.u.)
z axis (a.u.)

-20 T T T
-20 -10 0 10 20

X axis {a.u.) X axis {a.u.)

the largest width in the asymptotic="7, m=3 manifold, for = resonances formed during the slow encounter of an ion with
ion-surface distances ranging from 10.2 to 20 a.u. It can ba metal surface. Our results include resonance states around
seen that, while approaching the surface, the density tends taiclear chargeZ=2, 3, and 4 near an Al surface. While
bend towards the surface, which leads to a slight increase iprimarily investigating states witm=0, we showed that

the exponential slope of the corresponding width in the ionm+ 0 states exhibit a similar behavior. For the case of He
surface distance range of 12.5 to 15 daf. Fig. 10 and is and LP" interacting with an Al surface a comparison with
related to the onset of the downward level skét Fig. 9.  two very different theoretical approaches yields reasonable
This illustrates that the change in shape of the resonancagreement, and an analysis of the resonance states in terms
wave functions as a function of ion-surface distances leads tof parabolic states shows that strong deviations from a Stark-
the nonadiabatic coupling among the surface resonancelike behavior occur at ion-surface distances smaller than the
which has to be taken into account when solving the time<classical radius. Furthermore, we have related structural

dependent Schdinger equatio27]. changes in the resonance density profile to characteristic
changes in the resonance widths as a function of the ion-
IV. CONCLUSION surface distance.

The self-energy method used in the present work allows
for the very efficient computation of surface resonances. Ex-
cept for small ion-surface distances, the comparatively small
set of bound hydrogenic basis states that need to be taken We thank U. Wille for stimulating discussions. This work
into account in order to generate converged results for levalvas supported by the Deutsche Forschungsgemeinschaft,
shifts and widths is roughly spanned by themanifold of  through a grant for P.K., by the Division of Chemical Sci-
interest and neighboring manifolds. Similar to the molecularences, Basic Energy Sciences, Office of Energy Research,
orbital method in slow ion-atom collisions, the method isU.S. Department of Energy, by NSF Grant No. PHY-
ideally suited for the generation of surface resonances a8604872, and by the Kansas Center for Advanced Scientific
basis functions for the solution of the time-dependent SchroComputing (KSTAR) through the NSF/EPSCOR-KSTAR
dinger equatior{27]. We have calculated accurate surfaceprogram.
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