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Basic matrix elements for level shifts and widths of hydrogenic levels in ion-surface interactions
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We present extensive studies of basic one-electron matrix elements involved in ion-metal surface scattering
theory. Our method allows for the convenient generation of matrix elements for high principal quantum
numbers of hydrogenic projectile states and thus provides basic building blocks for theab initio description of
the interaction of highly charged ions with surfaces. The matrix elements related to the energy shifts can be
evaluated for an arbitrary one-dimensional potential therefore allowing for flexibility in the choice of model-
perturbation potentials. The transfer matrix elements between hydrogenic levels and conduction-band states
have been formerly evaluated for the special case of eigenfunctions to the step-function potential. We extend
these calculations to wave functions generated from an arbitrary one-dimensional surface potential and show
applications to various surface potentials and hydrogenic levels.@S1050-2947~96!02408-0#

PACS number~s!: 34.50.Dy, 31.15.2p, 34.70.1e, 61.80.Jh
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I. INTRODUCTION

Over the last few decades considerable interest both t
retically and experimentally has been brought to the stud
ion-surface scattering processes~for reviews see@1–3#!.
Early investigations of direct resonance capture at large
surface distances and Auger transitions near the surfac
back to Hagstrum and Becker@4#. Recent developments o
ultrahigh vacuum facilities and the possibility to manufactu
extremely flat surfaces allows experimental investigation
the interaction of the ion with the surface in a more co
trolled manner@5#.

From a theoretical point of view several quite differe
approaches have been undertaken. Level shifts and
broadening of ionic levels induced by the ion-surface int
action have been estimated in first-order approximation
several groups@6–10#.

Nonperturbative calculations have been carried out
Burgdörfer and co-workers@2,11,12#, Nordlander and Tully
@13#, Brako and Newns@1#, and Teillet-Billy and Gauyacq
@14#. Burgdörfer and co-workers used a multichannel theo
to investigate the resonant charge transfer. Level shifts
lifetime broadenings were calculated by diagonalizing a s
energy matrix within then52 manifold. Nordlander and
Tully used the complex-rotation technique and large ba
sets of generalized Laguerre polynomials up ton540 to di-
agonalize the time-independent Schro¨dinger equation. A
similar technique has been recently used by Deutscheret al.
@12,15# to study atomic resonances near an Al surface. Br
and Newns investigated resonant tunneling of electrons
tween bound ionic or atomic states and the conduction b
by means of a model Hamiltonian using the crude assu
tion that the energy dependence and time dependence
rate in the transition matrix elements. Teillet-Billy and Gau
acq developed the coupled-angular-mode method
applied it to evaluate the position and width of the states o
negative ion interacting with a metal surface.

More recently and driven by the experimental investig
tion of highly charged ions impinging on surfaces, the the
retical description of resonant electron capture into hig
excited Rydberg states has become a challenging task. B
541050-2947/96/54~2!/1487~13!/$10.00
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dörfer et al. @16# have used the classical overbarrier model
investigate both Auger yields and the formation of transi
hollow atoms due to resonant charge transfer into Rydb
states.

On a quantum mechanical level no large scaleab initio
calculation of the full many-electron problem has been p
formed up to now. An important step toward such a quant
mechanical picture was made by Wille@17–22#, who per-
formed a systematic evaluation of one-electron matrix e
ments between hydrogenic wave functions and eigenfu
tions of the step-function potential. He derived exact clos
form expressions for both the overlap and Coulomb ma
element and studied their scaling behavior for large quan
numbers@21#.

This work focuses on the analytical and numerical cal
lation of two types of matrix elements. These basic mat
elements provide the elementary building blocks of a n
perturbative, close-coupling approach to ion-surface inter
tions. At the same time, they allow perturbative approxim
tions to energy shifts and decay rates of resonance stat
front of a metal surface. The first class of matrix eleme
gives the first-order energy shift of hydrogenic levels due
the interaction with a surface. Even though our approac
restricted to hydrogenic levels, we are able to represent
ion-surface interaction by any model-perturbation poten
that is translationally invariant in the surface plane. The s
ond class of matrix elements includes both the overlap
~the possibly modified! Coulomb interaction integrals be
tween hydrogenic projectile states and surface states. T
matrix elements have been carefully analyzed by Wille@17–
22#. We have generalized the derivation in@17# by allowing
for more flexibility in the analytical form of both metal
electron wave function and interaction potential. As spec
cases, we are able to exactly reproduce the results of
@17#. The analytic evaluation of the matrix elements is do
by means ofMATHEMATICA @23#.

Our paper is structured as follows. In Sec. II, we presen
general formalism using channel Hamiltonians which allo
us to define the one-electron matrix elements studied late
Sec. III we give a derivation of one-electron matrix eleme
involving hydrogenic orbitals and the full metal potential
1487 © 1996 The American Physical Society
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1488 54P. KÜRPICK AND U. THUMM
they are used in first-order energy shift calculations a
evaluations of the self-energy matrix, which includes no
perturbative level shifts and widths@25#. In Secs. IV we de-
rive expressions for the evaluation of one-electron ma
elements involving a hydrogenic wave function and
conduction-band metal state. In Sec. III and IV we sh
numerical applications for various surface potentials. For
sake of clearness, we have shifted the details involved in
analytical evaluation of the matrix elements to two app
dixes. Section V contains our conclusions and an outloo
applications of these matrix elements in large scale tim
dependent close-coupling calculations. Atomic units~a.u.!
are used throughout this paper.

II. CLOSE-COUPLING FORMALISM
FOR ION-SURFACE SCATTERING

Within the independent-particle model the tim
dependent single-particle Schro¨dinger equation for the ion
surface system can be written as

H~rW,t !x~rW,t !5 i
d

dt
x~rW,t !, ~2.1!

where the HamiltonianH(rW,t) is given by

H~rW,t !52
1

2
¹21VC~rW,t !1Vsurf~rW !1Vimage

N ~rW,t !.

~2.2!

VC denotes either the bare Coulomb potential of the nucl
for the case of a proton or a state-dependent effective po
tial for the case of a many-electron ion. In the absence of
projectile, the unperturbed substrate is represented by a
fective potentialVsurf which includes the electronic self
image potentialVimage

e . Vimage
N is the image charge potentia

induced by the projectile nucleus.
To solve the time-dependent equation~2.1!, we expand

the time-dependent single-particle wave function into t
sets of wave functions,

x~rW,t !5(
j

aj~ t !c j~r 8W ,t !1E r~kW !bkW~ t !fkW~rW !dkW ,

r 8W5rW2RW . ~2.3!

Unless otherwise stated, primed coordinates refer to the
centered coordinate system and unprimed coordinates
to the surface-centered coordinate system depicted in Fi

This basis set is built up by hydrogenic wave functio
c j which are eigenfunctions of the stationary Schro¨dinger
equation

S 2
1

2
¹21VC~r 8W ! Dcnlm~r 8W !5«nlmcnlm~r 8W !.

For translationally invariant surfaces the conduction-ba
wave functions are approximated as eigenfunctions of
stationary Schro¨dinger equation

S 2
1

2
¹21Vsurf~z! DfkW~rW !5«kfkW~rW !,
d
-

x

e
e
-

to
-

s
n-
e
ef-

n-
fer
1.

d
e

with

fkW~rW !5
1

AV
exp~ ikW i•rW i!g~z!.

We restrict ourselves to translationally invariant surfac
for which the conduction-band states are plane waves in b
the x and y direction. Throughout the paper the normaliz
tion is chosen so that 1/AV51.

In order to display how and where one-electron mat
elements are relevant for theab initio treatment of ion-
surface interactions at small perpendicular velocities,
now rewrite our initial Hamiltonian~2.2! in terms of en-
trance and exit channel Hamiltonians@11,24#, Hi andH f , as

H5Hi1Vi5H f1Vf ,

with

Hi52
1

2
¹21Vsurf, Vi5VC1Vimage

N ,

and

H f52
1

2
¹21VC , Vf5Vsurf1Vimage

N .

Inserting ~2.3! into the time-dependent single-partic
Schrödinger equation~2.1! and neglecting intraband cou
pling leads to the close-coupling equations@11#

HAA~ t !5E dkW r~kW !M ~kW !bkW~ t !, A~ t ![$aj~ t !%

~2.4!

S i
d

dt
2«kDbkW~ t !5M†~kW !A~ t !, ~2.5!

with

FIG. 1. Ion-metal surface system and coordinates used.
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54 1489BASIC MATRIX ELEMENTS FOR LEVEL SHIFTS AND . . .
H j j 8
A

5S i
d

dt
2« j D d j j 82^c j uVf uc j 8&

and

M j~kW !5^c j ufkW&S «kW2 i
d

dtD1^c j uVi ufkW&,

M j
†~kW !5^fkWuc j&S «kW2 i

d

dtD1^fkWuVi uc j&.

Depending on the choice of the surface potential the corr
sponding density of statesr(kW ) has to be used. For the spe-
cial case of a bare step potential and including a factor 2 f
the spin degeneracy,r(kW ) has the constant value
r5V/(4 p3), or r51/(4p3) for our normalization of the
conduction-band states.

As we will neglect intraband couplings due to the term
^fkWuVi ufkW8&, we are left with two types of basic matrix ele-
ments namely, the final channel distortion~FCD! matrix el-
ements,̂ c j uVf uc j 8&, coupling hydrogenic states through the
potential Vf , and the initial channel transfer~ICT! matrix
elements ^c j uVi ufkW& coupling hydrogenic states to
conduction-band states by means of the initial channel di
tortion potentialVi . In this paper, no attempt will be made to
solve the coupled equations~2.4! and ~2.5!. We will restrict
ourselves to the discussion of the properties of the basic m
trix elements needed in such a calculation. We plan to u
matrix elements in a future work@25# toward the solution of
~2.4! and ~2.5!.

III. FINAL CHANNEL DISTORTION MATRIX ELEMENT

The diagonal matrix elements of the FCD matrix are th
first-order perturbative corrections to the level shifts an
have been calculated by several authors for the 1s and 2s
states @6,7,9,24#. No systematic analysis, especially for
higher quantum numbers and various surface potentials, h
been performed up to now.

The evaluation of the FCD matrix element

FIG. 2. Potentials used for the FCD matrix elements and IC
matrix elements.
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Mn,l ,m,n8,l 8,m8
FCD

~ZN ,D !5^cn,l ,m~r 8W !uVf~z!ucn8,l 8,m8~r 8W !&
~3.1!

can be carried out by means of Fourier transformations
use of the residue theorem~see Appendix A!. ZN is the ef-
fective nuclear charge of the projectile.D is the ion-surface
distance and equal to thez component ofRW . As we have
restricted ourselves to final channel distortion potentialsVf
which depend only on the coordinate perpendicular to
surface and hydrogenic states, the FCD matrix elements o
the selection rule for the magnetic quantum numb
m2m850. Furthermore, the FCD matrix elements are re
We will now discuss the FCD matrix elements for vario
model potentials collectively plotted in Fig. 2. Details
these potentials are discussed in the subsequent section

A. Step potential

We first study level shifts given by the diagonal eleme
of the FCD matrix~3.1!, in the step potential

Vf5H 2V0, z,0

0, z>0 ~3.2!

neglecting long-range image potential effects. As an
ample, we took the case of hydrogen impinging on an
surface therefore choosing the depth of the potentialV0 as
0.58 a.u. This system will be our test system throughout
rest of the paper. Figures 3~a! and 3~b! show the correspond
ing first-order shiftsD«5^cnlmuVf ucnlm& for the n54 and
n55 manifolds. The shifts have been plotted versus the i
surface distance divided by the classical orbital rad
^r n&5n2/ZN . As there is no repulsive part in the potentia
all levels are lowered in energy. For each manifold the
solute value of the averaged energy shift increases most
idly at aboutD/^r n&51.5, . . . ,2.This clearly implies a scal-
ing with the mean radiuŝr n&. In previous studies@21# level
shifts have been scaled in a similar way with the class
threshold distance 2^r n& instead of ^r n&. As our axis of
quantization is thez axis perpendicular to the surface, th
low m-quantum number statesp0 , d0 , f 0 , etc. have a high
probability density towards the surface and are theref
most easily influenced by the surface. In contrast, the h
m-quantum number statesp1 , d2 , f 3 , g4 , etc. are much less
perturbed due to smaller overlap resulting in comparativ
small shifts. The offset between these two extreme case
about 1 in units ofD/^r n& and therefore also correlates wit
the mean radius as depicted in the inset in Fig. 3~b!. For
highern ~not shown! these scaling properties are more pr
nounced due to the increasingly classical behavior of hyd
genic states.

B. Step potential and electron image potential

In a second step, we combine the electron image poten
and the step potential to the steady total final channel po
tial

T
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1490 54P. KÜRPICK AND U. THUMM
Vf55
2V0 , z,

1

4V0

2
1

4 z
, z>

1

4V0

~3.3!

which gives the classical electron self-image potential a
large distances from the surface and matches the conductio
band potential at the image plane atz51/4V0 , therefore
avoiding the unphysical singularity of the classical self
image potential atz50 ~cf. Fig. 2!.

Figure 4 shows the resulting energy shifts for then55
manifold. As the final channel potentialVf now includes the
long-range attractive electron image potential, energy shif
become more substantial at larger ion-surface distances th
for the step potential. Besides this difference, the approx
mate ^r n&-scaling property with respect to the ion-surface
distance found for the step potential is still valid. Further
more, the ordering of level shifts with respect to the
m-quantum number is the same,p0 , d0 , f 0 , andg0 states
being perturbed first when the ion approaches the surfac

FIG. 3. FCD matrix element for thep-Al ( V050.58 a.u.! system
for then54 and 5 manifolds.Vf is given by the bare step potential.
The inset in~b! gives a schematic view of the ion-surface system
and the corresponding low and highm-quantum number states.
t
n-

-

ts
an
i-

-

e.

The main difference to the bare step potential applies to th
1s state~not shown! which is now more drastically disturbed
than all other manifolds.

C. Ab initio density-functional potential

The former case of the step potential plus the electron
self-image potential should be a crude approximation to an
ab initio surface potential derived from a more sophisticate
density functional approach. To study these differences, w
used the potential derived by Jennings, Jones, and Wein
@26#. Jennings, Jones, and Weinert used a full-potential lin
earized augmented-plane-wave~FLAPW! method to com-
pute effective electronic surface potentials for various meta
such as Al, Ni, Cu, and Ag. To actually get a one-
dimensional potential they averaged theab initio potential
over the surface plane and fitted analytic functions in orde
to obtain the closed-form expression

Vf55
2V0

Aexp@B~z2z0!#11
, z<z0

2
1

4 ~z2z0!
@12exp@2l~z2z0!## , z.z0

~3.4!

with

A5211
4 V0

l
, B5

2V0

A

for the surface potential@27#.
The Jennings potential~3.4! smoothly interpolates be-

tween the conduction-band potentialV0 inside the bulk and
the electron self-image potential far outside the surface~cf.
Fig. 2!. The smearing out is governed by the parameterl.
Additionally, the Jennings potential includes the paramete
z0 which defines the image reference plane. In accordan
with Ref. @26# we usedl51.0 a.u. andz052.65 a.u.

Figure 5 shows the resulting energy shifts for the Jenning
potential. Comparing Figs. 4 and 5 one realizes that th
changes between the crude potential built up by the ste

FIG. 4. Same as Fig. 3~b! for the step potential plus electron
self-image potential.
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54 1491BASIC MATRIX ELEMENTS FOR LEVEL SHIFTS AND . . .
potential and the electron self-image and the more sophi
cated Jennings potential are small. As expected, this st
ment holds especially at large ion-surface distances, wh
the two potentials become identical.

D. Step potential, electron, and nuclear image potential

Finally, we consider the case where the repulsive nucl
image potential is taken into account in the final chann
potentialVf . The total potentialVf now depends on the ion-
surface distanceD ~cf. Fig. 2! and is given as@9,24#

Vf5H 2V0 , z,1R0

Vimage5Vimage
e 1Vimage

N , z>1R0
~3.5!

with

R052
1

2 S D1
ZN

V0
2

1

4 V0
D

1
1

2
AS D1

ZN

V0
2

1

4V0
D 2

1
1

V0
D

and

Vimage
e 52

1

4z
, Vimage

N 5
ZN

De
NI '

ZN

D1z
. ~3.6!

The classical electron self-image potential unphysically d
verges at the surface. We therefore chose the potential to
2V0 for z values belowR0 where the sum of both image
potentials matches the bulk value2V0 . In addition, we ap-
proximated the nuclear image potential by its value on t
surface normal through the projectile nucleus@cf. Fig. 1 and
Eq. ~3.6!#. It should be noted that up to now there has be
no easy-to-use potential derived fromab initio calculations
available for this case of a positive ion in front of a met
surface. Nordlander and Tully@13# derived a nuclear image
potential based on the assumption that an ion in front o
metal surface induces a surface charge which changes
the electrostatic field outside the surface and the exchan

FIG. 5. Same as Fig. 3~b! for the Jennings potential. The Jen
nings parameters arel51.00 a.u.,z052.65 a.u.
ti-
te-
re

ar
l

i-
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e

n
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a
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correlation potential. These calculations lead to a nuclear i
age potential which is constant around the pointz50. A
similar approach was recently used by Deutscheret al. in
studies on the adiabatic evolution of the hydrogenic 1s state
near an aluminum surface@15#.

Figure 6 shows the energy shifts using the potential~3.5!.
For states with a lowm-quantum number the energy shif
reveals a positive maximum at about 2.0 in units ofD/^r n&
whereas for highm-quantum numbers this saddle point is a
about 1.0. Below these limits all energy shifts drop down
negative values, except for the 1s level shift.

To give a better impression of the scaling behavior, Fig.
shows the energy shifts for alln51 –5 manifolds on a dec-
adic scale. As for the other three final channel perturbati
potentials discussed previously, the 1s state does not follow
the scaling property of the higher states and is positive for
displayed values of the ion-surface distanceD. For all other
manifolds one clearly sees the approximate^r n&-scaling be-

FIG. 7. FCD matrix elements up ton55 shown on a decadic
scale for the case of the step potential plus both electron self-im
potential and nuclear image potential. Within eachn manifold we
only show the most easily disturbedp0 state and the least disturbed
(m5 l 5n21) state.

FIG. 6. Same as Fig. 3~b! for the step potential plus both elec
tron self-image potential and nuclear image potential.
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1492 54P. KÜRPICK AND U. THUMM
havior with respect toD and the shift bŷ r n& in the onset for
low and highm-quantum number states.

E. Large ion-surface distance
high n-quantum number behavior

For the case discussed in Sec. III D above, we have a
investigated the behavior of hydrogenic states with hig
n-quantum numbers at large ion-surface distances. In Fig
we show, focusing on the large ion-surface distance beha
ior, the energy shifts of then53, . . . ,5 manifolds for the
sets of the most (d0 , f 0 , g0) and the least (d2 , f 3 , g4)
disturbed states within each manifold. For ion-surface di
tances larger than about 4̂r n&, energy shift reveals a
1/(n22) scaling. We have also marked the saddle poin
i.e., the positive maximum of the energy shifts. For the lo

FIG. 8. Energy shifts of low and highm-quantum number states
and their corresponding saddle points.

FIG. 9. Square moduli of the overlap matrix elements for th
p-Al system for the 2p0 to 9p0 states. The ion-surface distance wa
divided by the radial expectation value^r n&. The square modulus of
each curve was divided byn3, n being the main quantum number.
so
h
8
v-

-

s,

m-quantum number states its position scales with^r n&,
whereas for highm-quantum number states it exhibits
slight shift toward small values ofD/^r n&.

IV. INITIAL CHANNEL TRANSFER MATRIX ELEMENT

ICT matrix elements having the general form

Mn,l ,m
ICT ~kW ;ZN ,D !5^fkW~rW !uVi ucn,l ,m~r 8W !& ~4.1!

have recently been studied quite extensively@17–22#. Pio-
neer work was performed by Wille@17#, who derived ana-
lytic closed-form expressions for the special case of the ov
lap matrix element (Vi51) and the Coulomb matrix elemen
(Vi52ZN /ur 8W u, the conduction-band states being appro

FIG. 10. Same as Fig. 9 for the 3d0 to 9d0 states.

FIG. 11. Square moduli of the Coulomb matrix elements for t
p-Al system for the 2p0 to 9p0 states. As in Fig. 9 the ion-surfac
distance was divided bŷr n&, whereas the square modulus of ea
curve was multiplied byn.
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54 1493BASIC MATRIX ELEMENTS FOR LEVEL SHIFTS AND . . .
mated as eigenfunctions of the step-function potential. The
analytic expressions, although extremely cumbersome, all
us to calculate the overlap and Coulomb matrix elements
highly excited Rydberg states. These hollow atom states
the primarily populated states of a highly charged ion th
approaches a metal surface.

Besides being the basic building blocks forab initio
close-coupling calculations, the ICT matrix elements are d
rectly related to the perturbative width

Gn,l ,m~ZN ,D !52pE
k<kF

d3k8uMn,l ,m
ICT ~k8W ;ZN ,D !u2

3d~«nlm2«k8!r~k8W !.

Based on the momentum eigenfunctions as originally d
rived by Podolsky and Pauling@28# and guided by the work
of Thumm @24# and Wille @17#, we derived expressions for
the more general case of an arbitrary potentialVi(z) and an
arbitrary wave function componentg(z) along the surface
normal. By using Fourier transformations and contour int
gration, the three-dimensional integral overrW can be reduced
to a one-dimensional integral along the surface normal. F
the sake of clearness, we shifted the details of the evaluat
of the ICT matrix elements to Appendix B. Furthermore, w
will not attempt an extensive discussion of scaling properti
as done by Wille@21# for the special case of the step
potential eigenstates and (l 50) states on the projectile, but
restrict ourselves to obvious scaling properties occurring f
l -quantum numbers up tol 52.

Our numerical results agree to the tenth digit with those
Wille @29#. As an example, Figs. 9–12 show the squa
moduli of the overlap and Coulomb matrix element for th
p and d states up ton59 and an aluminum surface. In all
cases we setki50 and chosekz so as to have the energeti-
cally resonant case which implies that only the (m50) ma-
trix elements are nonzero. Both types of matrix elemen
exhibit for all l -quantum numbers an̂r n&-scaling behavior
with respect to the ion-surface distance which reflects t

FIG. 12. Same as Fig. 11 for the 3d0 to 9d0 states.
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classical behavior of highn-quantum number states. Th
function values of the square moduli of the matrix eleme
scale very differently. The square modulus of the overl
matrix element reveals ann3 scaling whereas the Coulom
matrix element scales with 1/n. The implied 1/n2 scaling of
the ratio

R5
^fkW~rW !uVCucn,l ,m~r 8W !&

^fkW~rW !ucn,l ,m~r 8W !&
5

2ZN
2

n2

1

K fkW~rW !U ¹2

2 Ucn,l ,m~r 8W !L
^fkW~rW !ucn,l ,m~r 8W !&

can be easily understood as the last term on the right s
approximately vanishes for highn-quantum numbers.

Comparison of various surface potentials

We now investigate the sensitivity of the ICT matrix ele
ment and overlap integrals onVi(z) and the wave function
component perpendicular to the surface,g(z). We consis-
tently use wave functionsg(z) that are eigenfunctions to
Vi(z). Except for the step potential, we numerically gene
atedg(z).

Figure 13 presents the eigenstates for the case ofki50
andkz50.50 for the three surface potentials studied~cf. Fig.
2!. Besides the bare step potential, we studied the step
tential plus the electron self-image potential and the Jenni
potential as defined in Eq.~3.4!. At large ion-surface dis-
tances the Jennings potential matches the classical elec
self-image potential, whereas below 10 a.u. it shows sign
cant deviations from the former. The Jennings poten
reaches its bulk value ofV050.58 only as deep as 5 a.u
inside the surface. This clearly influences the correspond
wave function. Jennings states with energies bel
2V0 /$Aexp@B(z0)#11% are less emanating from the su
face, whereas those having higher energies reach far m
outside the surface than step-potential eigenstates. A c

FIG. 13. Conduction-band wave functions for the case
ki50 andkz50.50 for three of the potentials shown in Fig. 2.



p
-
s
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FIG. 14. Overlap~a! and Cou-
lomb matrix elements~b! of the
4s state for thep-Al system for
the bare step potential, the ste
potential plus the electron self
image potential, and the Jenning
potential.
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look at the wave functions presented in Fig. 13 reveals
although all three wave functions reach the same wavele
inside the bulk, the Jennings wave function has a sligh
bigger wavelength and a larger maximum amplitude at
surface. The Jennings wave function was normalized so a
asymptotically (z→2`) match the step-potential wav
function in amplitude.

The influence of the different potentials upon the over
and Coulomb matrix element can be seen in Fig. 14. As
example, we have calculated the overlap and Coulomb
trix element for the 4s state and selected the conductio
band wave function for the non-resonant casekz50.50 and
ki50. The two types of matrix elements behave very sim
larly for the case of the bare step potential and the step
tential plus the electronic self-image potential. In contras
these two former potentials, the Jennings potential gives
trix elements which are remarkably different. We note th
the strongly enhanced outermost maximum of both ma
elements and overlaps for the Jennings potential needs t
correlated with the normalization of the metal wave fun
tions. In all measurable quantities, this enhancement may
modified as matrix elements and overlaps are weighted w
appropriate density-of-states functions.

V. CONCLUSION

We have presented an extensive study of basic ma
elements for ion-surface interactions. Our method allows
the convenient generation of matrix elements for high pr
ciple quantum numbers of the projectile states and thus
vides basic building blocks for theab initio description of
highly charged ion-surface interactions.

The final channel distortion matrix element involving h
drogenic states of the ion and the initial channel trans
matrix element involving a conduction-band state and a
drogenic state have been studied for various interaction
tentials. Both types of matrix elements scale with respec
the ion-surface distanceD divided by the classical radiu
at
th
y
e
to

p
n
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o
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t
x
be
-
et
th

ix
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r
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o-
to

^r n&. This scaling property holds especially well for hig
n-quantum number states. For the magnitude of the F
matrix elements and the case of the full metal potential
cluding the electronic and nuclear image potential, we
rived additional scaling properties at large ion-surface d
tances.

For the ICT matrix elements the former results of Wil
@17# have been confirmed. In addition, these matrix eleme
have been compared for three types of model surface po
tials. Although the Jennings potential showed small dev
tions from the bare step potential plus the electron self-im
potential for the FCD matrix elements, its deviations a
rather large for the ICT matrix elements. Further investig
tions are needed to study the influence of these dram
changes upon the lifetime broadening and energy sh
Nonperturbative calculations of the self-energy based u
these matrix elements are in progress@25#.
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APPENDIX A: EVALUATION
OF FCD MATRIX ELEMENTS

We derive a one-dimensional integral for the hydroge
one-electron matrix elements involving a potential depe
ing on the electronic coordinate along the axis of quanti
tion ~for the sake of clarity we userW instead ofr 8W ):

Mn,l ,m,n8,l 8,m8
FCD

~ZN ,D !5^cn,l ,m~rW !uV~z!ucn8,l 8,m8~rW !&.

The general matrix element@30#
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Mn,l ,m,n8,l 8,m8
FCD

~ZN ,D !5E drW Rnl* ~r !Ylm* ~u,f!V~z!Rn8 l 8~r !Yl 8m8~u,f!

5
4 ~2l 1 l 8!~ZN /n!3/21 l~ZN /n8!3/21 l 8A~ l 1n!!/n~212 l 1n!!A~ l 81n8!!/n8~212 l 81n8!!

~112 l ! ~112l 8!!

3E drWr l 1 l 8e2FrV~z!1F1S 11 l2n,212 l,
2 rZN

n D 1F1S 11 l 82n8,212 l 8,
2 rZN

n8 D
3Ylm* ~u,f!Yl 8m8~u,f!,

with

F5
ZN

n
1

ZN

n8

is nonzeroonly if m5m8, by eliminating thef dependence. It satisfiesMn,l ,m,n8,l 8,m8
FCD (ZN ,D)5Mn,l ,2m,n8,l 8,2m8

FCD (ZN ,D).
The matrix element isreal and can be calculated in a straightforward way by means ofMATHEMATICA @23#. The actual
integration is now done in Cartesian coordinates using the fact that cos(u)5z/r . This allows the product of spherica
harmonicsYlm* (u,f)Yl 8m8(u,f) to be written in terms of a polynomial inz/r . The matrix element can therefore be rewritt
as

with

N~n,n8,l ,l 8,ZN!5
4 ~2l 1 l 8!~ZN /n!3/21 l~ZN /n8!3/21 l 8A~ l 1n!!/n~212 l 1n!!A~ l 81n8!!/n8~212 l 81n8!!

~112l !! ~112l 8!!

Expanding the polynomials one gets

Mn,l ,m,n8,l 8,m8
FCD

~ZN ,D !5N~n,n8,l ,l 8,ZN!E dx dy dzV~z!~C2mr 2m1C2m11r 2m111•••1Chr h!e2Fr ,

where the coefficientsC2m ,C2m11 , . . . ,Ch depend onz.
We now use the Fourier transformation

and obtain

Mn,l ,m,n8,l 8,m8
FCD

~ZN ,D !5N~n,n8,l ,l 8,ZN!E dx dy dz V~z!S C2mE F~kW ,2m!exp~ ikW•rW !dkW

1C2m11E F~kW ,2m11!exp~ ikW•rW !dkW1•••1ChE F~kW ,h!exp~ ikW•rW !dkW D .



ign of
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Interchanging the integration overrW andkW we get

This reduces the matrix element to

Mn,l ,m,n8,l 8,m8
FCD

~ZN ,D !5~2p!2N~n,n8,l ,l 8,ZN!E dzV~z!S C2mE dkzF~kz ,2m!exp~ ikzz!

1C2m11E dkzF~kz ,2m11!exp~ ikzz!1•••1ChE dkzF~kz ,h!exp~ ikzz! D .

Now, each of the terms*dkzF(kz
W ,h)exp(ikz

W
•zW) can be evaluated by means of the residue theorem. Depending on the s

z we get

E dkzF~kz ,h!exp~ ikzz!5H 2p i Res„F~kz ,h!exp~ ikzz!;kz5 iF …, z>0

22p i Res„F~kz ,h!exp~ ikzz!;kz52 iF …, z,0.
a
n

-
e

s
s

o
n

al

r
n-
APPENDIX B: EVALUATION
OF ICT MATRIX ELEMENTS

We derive a one-dimensional integral for the transfer m
trix element involving an arbitrary hydrogenic wave functio
and a conduction-band state.V(z) is any potential that de
pends only on thez coordinate perpendicular to the surfac
We follow the notation of Wille@17#.

Mn,l ,m
ICT ~kW ;ZN ,D !5^fkW~rW !uV~z!ucnlm~r 8W !&,

with

r 8W5rW2RW .

1. Definition of the conduction-band wave function

Restricting ourselves to the case of plane-wave state
both thex andy direction, conduction-band wave function
have the general form~using 1/AV51)

fkW~rW !5exp~ ikxx!exp~ ikyy!gkz
~z!.

A density of states that is consistent with the choice
gkz

(z) needs to be taken into account when matrix eleme

are integrated overkW .
-

.

in

f
ts

2. Definition of hydrogenic wave functions
in momentum space

We use the Fourier transform

f̃ ~qW !5c̃nlm~qW !5~2 i ! lR̃nl~q!Y l
m~uq ,fq! ~B1!

of the hydrogenic wave function, including a translation
factor to guarantee Galilei invariance~cf. @31#!,

f ~r 8W !5cnlm~r 8W !,

f ~rW !5
1

~2p!3/2E
2`

`

dqW exp@ i ~qW 1vW !•rW2 iDqz# f̃ ~qW !

as originally derived by Podolsky and Pauling@28# ~see also
@32,17#!. Note that we allow forvW Þ0, whereas in all numeri-
cal examples we considered the static limit (vW 50).

3. Reduction of the three-dimensional integral

We reduce the general three-dimensional integral overW
by exploiting the plane-wave behavior of the conductio
band states with respect to thex andy directions,



54 1497BASIC MATRIX ELEMENTS FOR LEVEL SHIFTS AND . . .
can
where

kx85kx2vx , ky85ky2vy .

4. Evaluation of one-dimensional momentum integration

We introduce the following abbreviations@17#:

F~qz!:5
F1~qz!

~qz
21k1

2 8!n11 5
F1~qz!

~qz2 ik18 !n11@qz2~2 ik18 !#n11 ,

F1~qz!:5~2 i ! lPnl~qz!Qlm~qz!,

Pnl~qz!:5Nnl~qz
21k18

2!n2 l 21Cn2 l 21
l 11 S qz

21k28
2

qz
21k18

2D ,

Nnl :5A2n~n2 l 21!!

p~n1 l !!
22~ l 11!l !kn

l 15/2,

kn5
Z

n
[A22«n
Qlm :5Ñlm~qz
21ki8

2! l /2Pl
mS qz

Aqz
21ki8

2D exp~ imfk8!,

Ñlm :5~21!mA~2l 11!~ l 2m!!

4p~ l 1m!!
,

and

tan~fk8!5
ky8

kx8
,

k18 :5Aki8
21kn

2, k28
2 :5ki8

22kn
2 .

Cn2 l 21
l 11 are Gegenbauer polynomials andPl

m are associ-
ated Legendre polynomials. The transfer matrix element
now be rewritten as
Mn,l ,m
ICT ~kW ;ZN ,D !5~2 i ! lA2p exp~ imfk8!NnlÑlmE

2`

`

dz8exp~ ivzz!gkz
* ~z!V~z!E

2`

`

dqz~qz
21k18

2!n2 l 21

3~qz
21ki8

2! l /2Cn2 l 21
l 11 S qz

21k28
2

qz
21k18

2D Pl
mS qz

Aqz
21ki8

2D exp~ iqzz8!

~qz2 ik18 !n11@qz2~2 ik18 !#n11 ,

with

z85z2D.

The actual calculation of the complexqz integral is done analytically by using theMATHEMATICA package@23#. We
therefore rewrite the transfer matrix element in a more compact form which enables bothMATHEMATICA to handle as few
terms as possible and gives easy control of the results. We define

A~n,l ,m,fk8!5~2 i ! lA2p exp~ imfk8!NnlÑlm ,

I~n,l ,m,qz ,z8!5~qz
21k18

2!n2 l 21~qz
21ki8

2! l /2Cn2 l 21
l 11 S qz

21k28
2

qz
21k18

2D Pl
mS qz

Aqz
21ki8

2D
3

exp~ iqzz8!

~qz2 ik18 !n11@qz2~2 ik18 !#n11 . ~B3!

The transfer matrix element can now be written as
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Mn,l ,m
ICT ~kW ;ZN ,D !5A~n,l ,m,fk8!E

2`

`

dz8exp~ ivzz!V~z!5
gkz
* ~z!~22p i !Res„I~n,l ,m,qz ,z8!;qz51 ik18 …, z8,2D

gkz
* ~z!~22p i !Res„I~n,l ,m,qz ,z8!;qz52 ik18 …, 2D<z8,0

gkz
* ~z!~12p i !Res„I~n,l ,m,qz ,z8!;qz51 ik18 …, z8>0

~B4!
lv
n

op

ro
wherez85z2D.

5. Calculation of transfer matrix elements
involving the product of the Coulomb potential

and an arbitrary screening function

For the special case of the transfer matrix element invo
ing an arbitrary hydrogenic wave function, a conductio
band state, the radial Coulomb potential, and an anisotr
screening functionh(z),

Mn,l ,m
ICT ~kW ;ZN ,D !5^fkW~rW !uVC~r 8!h~z!ucnlm~r 8W !&,

with

r 8W5rW2RW

can be calculated by using the same procedure.
Instead of using the Fourier transform of the bare hyd

genic wave function as defined in Eq.~B1!, we now use the
Fourier transform

f̃ ~qW !5c̃nlm~qW !52
1

2
~q21kn

2!~2 i ! lR̃nl~q!Yl
m~uq ,fq!

of
li

the
-
-
ic

-

f ~r 8W !52
Z

r 8
cnlm~r 8W !, f ~r !5

1

~2p!3/2E
2`

`

dqW

3exp@ i ~qW 1vW !•rW 82 iDqz# f̃ ~qW !.

The derivation is unchanged down to Eq.~B2!. Now we
use the abbreviations@17#

F~qz!:5
F2~qz!

~qz
21k812!n 5

F2~qz!

~qz2 ik18 !n@qz2~2 ik18 !#n ,

F2~qz!:52
1

2
~2 i ! lPnl~qz!Qlm~qz!.

As a resultI(n,l ,m,qz ,z8) is changed to@cf. ~B3!#

I~n,l ,m,qz ,z8!52
1

2
~qz

21k18
2!n2 l 21~qz

21ki8
2! l /2Cn2 l 21

l 11

3S qz
21k28

2

qz
21k18

2D Pl
mS qz

Aqz
21ki8

2D
3

exp~ iqzz8!

~qz2 ik18 !n@qz2~2 ik18 !#n

andV(z) becomesh(z) in Eq. ~B4!.
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