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Abstract We simulated the population dynamics of target and projectile levels during the 
interaction of slow, highly charged ions and Ca. Our investigation is based on a semiclassical 
over-barrier description of long-range charge exchange and a spherical model for the Ca cluster. 
It includes the transient formation of hollow atoms and relaxation of the projectile due to Auger 
cascades. As a first application, we consider slow A?* projectiles and give estimates for 
the occupation changes of a l l  coupled target and projectile levels, charge-state evolutions and 
energy-resolved spectra of emilled Anger elecfrons Our results are in Satisfactory agreement 
with recent experimental data. 

1. Introductiou 

The possibility of making large hollow carbon cages was pointed out in 1966 (Jones 1966), 
and the existence of c60 (buckyball or buckminsterfullerene) was first suggested in 1970 
(Osawa 1970, 1971). In experiments done in 1985 by Kroto etal(1985), Cm was discovered 
to be stable and in 1990 c60 was made available in substantial quantities (KrStschmer et ~l 
1990). 

Information on the electronic structure and collective excitation modes of Ca has been 
obtained from various optical absorption and photoionization measurements using solutions, 
solids, gases and supersonic beams of c60, and from electron-impact energy-loss experiments 
on solid and gaseous Cm. An extensive review of CSO research has been published by Kroto 
et a1 (1991) and an update of the experimental research can be found in the introduction of 
the paper by Wang et a1 (1993). 

Very recently, experiments have been carried out by Walch et a1 (1994) that probed the 
interaction between slow highly charged ions (80 keV A$+, 140 keV Xet4+) and gaseous 
Cm targets. They measured the charge-state distribution of the target after the collision 
in coincidence with the final projectile charge state and absolute cross sections for the 
production of specific target charge states. 

Theoretically, the electronic structure of the c60 cluster is well understood from h t -  
principles calculations (Satpathy 1986, Saito and Oshiyama 1991, Weaver et al 1991). 
Predictions based on such calculations are in good agreement with photoemission and 
inverse-photoemission measurements (Weaver et al 1991, Benning et al 1991, Jost et al 
1991). The decomposition of ub initio wavefunctions in a spherical basis shows that almost 
all wavefunctions of the valence band and the bottom of the conduction band of C60 can be 
characterized by angular-momentum eigenstates. According to this decomposition, Martins 
efal  (1991) suggested that the electronic seucture of C60 could be modelled as a spherical 
shell of radius Q = 6.7 a. and width AQ = 5.6 a0 (approximately twice the atomic radius 
of carbon, a. is the atomic unit of length) by using an attractive effective potential. 
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Such a spherical-shell model for C ~ O  was further developed by Puska and Nieminen 
(1993). Their model, which we shall adopt for our simulation, is based on a simplified 
description of the positive charge distribution inside the spherical shell within the jellium 
approximation (which assumes a smeared out positive-charge background) and includes a 
correction beyond the jellium model. This correction adds the effects of the ionic cores 
by using an additional effective square potential of depfh WO inside the shell. The model 
includes two adjustable parameters, the positive background charge density of the standard 
jellium model no and WO which are chosen as r, = (4/31rno)-'/~ = 1.2 a0 and WO = 19 eV. 
The density parameter r, lies somewhat below the range 2 a0 < rg c 6 no of most metals. 
It is worth mentioning that this value for rs is almost reproduced for a spherical shell that 
contains the uniformly smeared out charge of 240 valence electrons: with the values for a 
and Aa from above, we obtain an electron density EO = 7.2 aT3 and is = 1.5 ao. With the 
given values for a, ha ,  r, and WO. Puska and Nieminen used the local density approximation 
in order to self-consistently determine an effective one-electron potential and its spectrum 
of valence-electron states together with the occupations and degeneracies of these states. 

Inspired by the experiments of Walch er ai (1994) and a theoretical and experimental 
study of the neutralization dynamics of highly charged ions approaching a metal surface by 
Burgdorfer er al (1991). we developed a classical simulation for the dynamical interaction 
of slow highly charged ions with spherical clusters. This paper is organized as follows. In 
section 2, we describe the electronic structure of target and projectile. Section 3 specifies 
interaction potentials and the potential barrier between projectile and target. In section 4, 
we outline our simulation of the evolution of level occupations, energy levels and charge 
states of target and projectile, the projectile motion, and the emission of Auger electrons 
during the collision. The basic input for this dynamical study is provided i n  section 5 where 
we obtain elech.onic transition rates within a classical over-barrier model. In section 6, we 
show first numerical results. A summary and our conclusions are contained in section 7. 
Atomic units are used unless otherwise stated. 

2. Electronic structure of target and projectile 

2.1. Target 

We describe the electronic structure of C a  on the basis of the energy levels, degeneracies 
and occupations calculated by Puska and Nieminen (1993) within a one-electron spherical- 
shell model. With respect to target level m, we denote the unperturbed energy by €$", the 
perturbed energy by E ~ ) ( R ) ,  the initial occupation by b i ,  the instantaneous occupation by 
b,(R) and the degeneracy by B,. R is the distance between the target centre-of-mass and 
the projectile. We assume that the 240 valence electrons occupy the lowest energy levels in 
table I ranging from the bottom of the valence band at e,@'@ = Vo = -33.7 eV to the highest 
occupied level, the Fermi level, at E!:') = -7.44 eV. The remaining 120 electrons of C a  
occupy core levels localized near individual carbon nuclei and are of no direct interest to 
us. The s herical model gives level degeneracies equal to 2 ( 2  + 1) such that all levels 
below 6;;' are fully occupied. Level m = 15 is partially occupied with bps = 28 electrons 
and levels above @ are empty. 

During the interaction with a highly charged ion, the target spectrum is Stark shifted 
towards lower energies in the elecbic field of the projectile. After the capture or emission 
of target electrons, positive charge accumulates on the target which results in an additional 
downward shift of the target levels. The latter effect provides a simple quantitative 
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Table 1. Electronic Svuclure of C+d, according to Puska and Nieminen (1993. 1994). Energy 
e:"' in eV, angular momentum 1. level degeneracy E, = 2(21+ I )  and ground.state occupation 
h: of level m 

m 1 I?, ILu'I E, b: 

20 I 0.66 6 0 
19 0 1.36 2 0 
18 10 
17 t 
16 5 
15 9 
14 4 
13 3 
12 8 
I I  2 
IO 1 
9 0  
8 7  
7 6  
6 5  
5 4  
4 3  
3 2  
2 1  

2.18 
2.27 
6.04 
7.44 
9.31 

12.01 
12.33 
14.10 
15.52 
16.25 
16.80 
20.83 
24.37 
27.40 
29.88 
31.78 
33a6 

42 0 
26 0 
22 0 
38 28 
I8 18 
14 14 
34 34 
IO 10 
6 6  
2 2 

30 30 
26 26 
22 22 
18 18 
14 14 
IO I O  
6 6 

1 0 33.70 2 2 

explanation for the increase in ionization energy for the sequential removal of target electrons 
(Smith 1961): the work for removing k target electrons from a spherical conductor of 
radius a is Wk = kQ + k2/2C where Q is the workfunction and C = a the capacitance. 
Accordingly, the kth ionization energy is 

(1) 

with the first ionization energy 11 = Q+ (2a)-' = -&". The additional shift corresponds 
to the energy required to move an electron from just above the surface of the shell to 
infinity and amounts to U-' Iz: 4 eV. Due to the high degeneracy of the highest occupied 
state (m = 15), all ionization potentials 1, with k < by5 can be derived from the unperturbed 
energy 6;;') by using (1). Physically, the reshiction k < by5 is irrelevant in view of strong 
experimental evidence that Cm fragments after the removal of not more than seven electrons 
(Walch ef af 1994). 

The total charge of the target is obtained from the set {bm(R)} of occupation numbers 

Ik  = wk - Wk-1 = 11 + (k - 1)/a 

and the energy of the shifted target levels is given by 

E ~ ) ( R )  = €2') - q(P'(R)/R - q(')(R)/n.  

2.2. Projectile 

We assume hydrogenic projectile levels and denote energy levels, occupation numbers and 
degeneracies by c,?(R), n.(R) and A,  = 212'. We refer to initial unperturbed electronic 
energies and occupations by cip'o) and a," and to the initial charge by q@"). 
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During the interaction with the target, the energetic positions of the projectile levels 
change due to image charge effects, Stark shifts and the dynamical change in inner and outer 
screening induced by varying populations. Level shifts provoked by induced image charges 
of projectile electrons and nucleus are discussed in more detail below. For highly charged 
ions incident on metallic clusters, these energy shifts are positive due to an overwhelming 
negative image charge of the projectile nucleus. As soon as the charge-exchange process 
starts (at some critical distance to be specified below), the target becomes charged and Stark 
shifts strongly dominate image shifts. 

A projectile with nuclear charge qnuc and occupation numbers (a.(R)J has the total 
charge 

Including the possibility for inner and outer screening, the effective charge for a projectile 
level of principal quantum number n is 

ZF'(R) = qnw - z & . n ~ z ( R )  (4) 
"' 

with the matrix of screening parameters S. The energy of the shifted projectile levels, 
including image shift Vim and Stark shift, is 

3. Interaction potentials and saddle geometry 

On its way towards the initially neutral target, the projectile first experiences the dynamical 
response of the target electron gas. This collective response of mainly conduction electrons 
of the target constitutes a many-body problem that can be represented by the timedependent 
superposition of collective excitation modes, plasmons, of the target. At sufficiently large 
distances R. and for small projectile velocities. the collective response is well represented 
by a velocity-independent classical image potential. 

In what follows, we choose the z-axis of the target-centred coordinate system along R 
such that the projectile nucleus is located at R = (0, 0, R). We denote position vectors 
of the active electron in the target frame of reference by x and in the projectile frame by 
x ' = x - R  

The LDA calculation of Puska and Nieminen (1993) yields a static polarizability of the 
C a  cluster of LY = 618 which can be related to the classical result for a conducting sphere 
of radius Ci by Ci = @ = 8.52. Therefore, with respect to image potentials, we use the 
radius Ci instead of a. ?he classical image potential at a location x. due to the image field 
generated by a charge q at a location R that interacts with a conducting sphere, is (Jackson 
1975) 



Slow collisions of highly charged ions with Cao 3519 

where the coordinate origin coincides with the centre of the sphere. 

the projectile of charge q and by its self-image potential 
During charge exchange, the active electron is affected by both the image potential of 

leading to the total image potential 

vi, = v2) + 
which, for large R,  behaves as 

The asymptotic R-4 behaviour of the leading term reflects the dominant induced-dipole 
character of the image potential at large projectile4arget distances R. The rapid decrease 
in R explains the above-mentioned irrelevance of the image potential for charged targets. 

Within the over-barrier model, we assume that the active electron moves along the 
z-axis. Along this axis the total image potential can be written as 

where the q-independent term represents the electronic self-image potential. The total 
potential that acts on an active electron during charge transfer is 

where q and Q are the total charges of projectile and target acting on the electron in 
lransition. For electrons leaving the target q = q @ ) ( R )  and Q = &R) + 1 where q @ ) ( R )  
and q'*)(R) are the charges immediately before the active electron left the target. Similarly, 
if the active electron originates in the projectile, we use q = q(P)(R) + 1 and Q = q@)(R) .  

According to the classical over-barrier model,, the active electron has to overcome the 
potential well between projectile and target in order to be captured by the projectile or 
recaptured by the target. The location and height of the potential barrier is determined 
by the total potential (5) acting on the active electron. We designate the location of the 
saddle, i.e. the location of the maximum of V ( q .  Q ,  R,  z ) ,  by z&? Q ,  R) .  The height 
of the potential barrier is then given by VB(q, Q ,  R )  = V ( q ,  Q ,  R ,  z ~ ) .  In our numerical 
applications, we found that ZB changes very little if we omit the image potentials. Without 
image potentials, and for a target of point charge Q # 0, the location of the maximum of 
V ( 4 ,  Q, R ,  z) and the barrier height can be approximated analytically as 
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Application of the over-barrier model to long-range change exchange between highly 
charged ions and C a  requires modifications of the above expressions for ZB and VB. Clearly, 
zB is limited to the spatial interval between the target surface located at a + AaJ2 and R .  
In order to include the case Q = 0, for which (6) does not apply, we determine the saddle 
location according to 

Let us now consider an electron with enough energy E > VB to cross the potential 
barrier. The size of the classically-allowed transition region at z = ZB strongly depends on 
the energy difference 6 - VB and is monotonically increasing in this excess energy. The 
width xg of this region along a direction (here taken as the x-axis) perpendicular to the 
z-axis can be easily calculated numerically from the total potential (5). At this point, the 
simplifying assumption of the electron moving along the z-axis has to be dropped and, 
instead of the total potential (5 )  valid for electron positions z = (0, 0, z ) ,  the corresponding 
z = ( x ,  0, 2)-dependent expression has to be used, leading to the condition for XB 

VB(4, Q ,  R ,  ZB, XB) = f -  

Finally, the geometrical cross section of the saddle for the electron in transition is 

4. Dynamics 

In this section. we discuss the classical rate equations that determine the time evolution 
of occupation numbers for projectile and target levels. These equations will be integrated 
numerically together with Newton's equations for the motion of the centre-of-mass of the 
scattering system and the rate equations for the emission of Auger electrons into specified 
energy bins. 

4.1. Projectile motion 

At large projectile-target distances R and long before charge exchange becomes possible, 
the projectile is merely slightly repelled by the image potential it induces in the target. 
As R decreases below a critical value for the onset of electron capture R;, the projectile 
motion becomes predominantly determined by the Coulomb interaction between both, now 
charged, collision partners and continues to move on a dynamic Coulomb trajectory. 

For a projectile incident with impact parameter b and velocity vo along the z-axis, the 
initial conditions (at time to) for its position and velocity are 

R(to) = b + voro v(zo) = vo. 

Integration of Newton's equation, 

d 
-v p-' F 
dt 
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with the reduced mass p of the target and projectile and the force 

yields R(t) and ~ ( t )  at any time f. The self-image potential energy of the projectile of 
charge q(P'(R) (cf section 3)  is 

4.2. Occupation dynamics of projectile and target levels 

In OUT semiclassical model, we picture resonant charge exchange as the classical motion 
of one active electron from an initial quantum state to a final quantum state. Electronic 
transitions are further assumed to be so fast that R practically does not change during the 
transition time (adiabatic approximation). 

In order to use quantum and classical concepts at the same time, we need to subdivide the 
classical electronic energy continuum into energy bins. Thus, in formulating the condition 
for resonant charge exchange between projectile level n and target level m, we require that 
a shifted target level of energy E,$(R) lies within the energy bin [E,?(R)] associated with 
the shifted projectile level n of energy E ~ ) ( R )  

6:)(R) E [E,?(R)I 

= [ i ( c i p ) ( R )  - C:!~(R)),  I ( E Z , ( R )  - E A ~ ) ( R ) ) ] .  (9) 

As the projectile approaches the target, the first resonant transfer of an electron becomes 
possible when the potential barrier VB energetically moves below the highest occupied target 
level, E$(R) .  The distance R; at which this may happen is obtained numerically from the 
(necessary) condition 

EI:)(RF) = Vs(4, 42, R;) 

where q = q ( P . O )  and Q = 1. The generalization ofthis condition leads to decreasing critical 
radii R; > R; > R; . . . for the sequential capture of electrons on the incoming trajectory. 
An approximate expression for R;, obtained analytically by using (7). is 

For the known initial occupations of target and projectile, a," and b i ,  we obtain the 
occupation numbers at any time t > to by integrating the rate equations (for convenience 
we omit the variable t )  
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All rates r and occupation numbers implicitly depend on R(f )  and the above equations have 
to be solved simultaneously with Newton's equation for the projectile motion (cf previous 
section). Expressions for the resonant neutralization rate ( r R N ) ,  resonant loss rate (FRL) and 
projectile Auger ionization rate (rn,n,) are given in section 5. 0 is the unit step function, 
i.e. 0 = 0 for x < 0 and 0 = 1 for x > 0. With the factor Q(A, -an) ,  we allow resonant 
neutralization only if the final state is not fully occupied. 

We only consider fast Auger transitions for which the two active electrons are initially in 
the same state n. We further assume that the total number of Auger transitions is proportional 
to the number of possible combinations of two electrons in the initial shell. The statistical 
weight for the initial state of an Auger transition is then given by 

1 2  Wi," = ?(U, - a,)O(a. - 2). 

With respect to the number of accessible final states, a reasonable statistical weight would 
be 

Wf,n = (An - an)O(An - an) 

which puts equal weight on all final states in shell n. In conjunction with the transition rates 
specified in section 5.3, Burgdorfer et al (1991) proposed the empirical-weight function 

= (1 - 1.5~")-' 

which we shall adopt and which, as our previous expression, contains the same basic and 
qualitatively correct physical assumption that the Auger terms in (11) are monotonically 
(not necessarily linearly) increasing in the number of vacant bound final states. 

4.3. Auger electron emission 

The energy of an Auger electron emitted at time f from level ni while a second projectile 
electron transfers from nj to a lower level nf  is, within our independent electron picture, 
given by 

cA(f) = 2c$'(R(t)) - $ ( R @ ) ) .  

By collecting the emitted Auger electrons in energy bins IQ] = [(k - I)Ac, k h c ] ,  
k = 1,2, . . . , we obtain a rate equation for the number Ck(f) of electrons emitted in each 
energy bin before time f 

As is of the order of the experimental energy resolution. 

5. 'Ransition rates 

We now derive expressions for the electronic transition rates. The rates for resonant capture 
and loss are obtained within a one-electron picture of the electron-transfer process. 
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5.1. Resonant capture 

In analogy to a free electron gas, a valence electron with energy €2‘) can be assigned the 
velocity G, given by iji = 2(6,$@ - E “ * ’ ) ) ,  1 The interaction with the projectile ion leads to 
the Stark shift of target levels and the formation of a potential barrier V&, Q .  R ) .  If the 
valence electron is energetic enough to overcome the potential barrier, its velocity U,, by 
the time it has reached the saddle, is 

Um(R)’ = 2(€2) (R)  - vB(q,  Q ,  RI). 

We assume that electrons are transferred along the axis joining the centres of mass of 
projectile and target. Taking energy dissipation along the directions perpendicular to this 
‘internuclear axis’ into account, the velocity component relevant for capture is reduced to 
im = mu,. The average density of target electrons in level m confined inside the 
spherical shell of volume V is 

The current density for resonant over-barrier capture from a Stark-shifted target level m into 
the energy bin [E;’)(R)] of the projectile now follows as 

j n ( ~ )  = [ &/Jm(R)%t(R) if €$)(RI E [EAp)(R)I 
0 otherwise. 

Finally, the current of resonantly captured target electrons, i.e. the instantaneous rate for 
resonant capture, is obtained as the product of current density and geometrical cross section 
(8) 

rRN(R) = 1 j n ( R ) u d d p ) ( R ) ,  Q.  R ,  E:)(R)) 
~ ~ “ ( R ) € I r ~ ’ ( R ) I  

where Q = q(‘)(R)+ 1 and the sum extends over all target levels that are in resonance with 
the nth projectile-energy bin. 

5.2. Resonant loss 

Resonant loss is the transfer of a projectile electron bound with energy @ ( R )  into a vacant 
target level of energy c$)(R) E [c;’)(R)]. hojectile electrons in level n approach the surface 
at a rate that is approximately given by the classical frequency of revolution in a Coulomb 
orbit 

Z,?(R)’ 
u , (R)  = - 

b n 3  ’ 

The radial expectation value for these electrons, averaged over all orbital angular momenta, 
is 
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We assume that resonant loss occurs only if the active electron reaches the saddle located 
at zB, i.e. if 0 6 R - ZB 6 (r"). For an electron confined in a sphere of radius ( r J ,  the 
overlap of this sphere with a plane through ZB and perpendicular to the 'internuclear axis' 
defines a circle of radius 

and area on = r r ~ , ( R ) ~ .  The active electron hits the saddle with a probability that can be 
estimated as 

such that the rate for resonant loss out of projectile level n is 

rRL(R) = %(R)F(R,  €Ap)(R)) @(E,!)(R) - VB(4. Q, R))@(& - bm(R)) 
&R)~lf?)cR)l 

The sum includes all target levels that are in resonance with the nth projectileenergy bin, 
not fully occupied and energetically above the classical barrier. 

5 3 .  Auger transitions 

In modelling the relaxation of projectiles in multiple excited states, we follow the work 
of Burgdorfer et al (1991) where an estimate for the fastest Auger transitions, with two 
equivalent active electrons in the initial state, was obtained by fitting various Isn$ + 
l s n p s  rates calculated from the 'Cowan code' (Cowan 1981). This fit leads to 

5.06 x 10-3 
(ni - nj)3,46 

rn,+, = 

and is improved by a correction factor, approximately equal to 0.5, chosen to include 
configurations of non-equivalent active electrons in the initial state. 

6. Numerical results for Ars+ on Ca 

For the numerical propagation of the coupled rate equations of section 4, we increased the 
number of mesh points until convergence was obtained. In order to cone01 the numerical 
precision, we made sure that the total charge remained unchanged. With ,",,(I) being the 
total number of Auger electrons emitted before time f, charge conservation is guaranteed 
if, after every time step, 

q'P'(t) f q(')(f)  - N A ( t )  q'"' 

holds. 

no screening by outer electrons, i.e. Sn,=, = 1 for n' < n and Sn,n~ = 0 for n' > n. 
We determined the screening matrix S in (4) by assuming full screening by inner and 
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6.1. Ei'olution of charge states, occupations and electmn emission 

In order to study the evolution of charge states, occupation numbers and the emission 
of Auger electrons during the collision, we considered projectile trajectories with impact 
parameter b = 15. As projectile velocity, we chose U = 0.28 corresponding to 80 keV Ar*+ 
ions used in the recent experiment by Walch et al (1994). Figure 1 shows the evolution 
of projectile and target charge states during the collision, together with the number of 
emitted projectile Auger electrons. The distance RI, on the abscissa is the projection of 
the projectile-target distance R on the direction of the incoming projectile. Thus, for the 
incoming trajectoly RII < 0, for the outgoing trajectory RI, > 0 and RII = 0 at the point of 
closest approach. As the projectile approaches the C60 cluster, charge exchange starts at the 
critical distance RI = (R;' - b')'/' % 21 (R;  % 26). Subsequently, the projectile captures 
additional electrons and reaches its lowest charge state near the point of closest approach 
on the outgoing trajectory. Shortly thereafter, resonant charge exchange stops and the target 
charge remains unchanged while the projectile charge increases due to Auger relaxation. 
The results discussed in this subsection are for RII c 150. At larger distances R I I ,  i.e. further 
down-stream, the projectile continues to relax by emitting Auger electrons. 

6 2  
& '  
m 

L ,, 0 

orojecti le charge 

emit ted electrons 
......... target charge 

- 5  

" 4  

3 "  c 

......................................................................... 

........ 

Figure 1. Charge-smte evolution and Auger emission for 80 keV (corresponding to a speed 
U = 0.28) A18+ ions colliding with C, with impact parameter b = 15. The distance RI, is 
the projection of the target-projectile distance onto the incident-beam direction; at the point of 
closest approach RI, = 0. 

A more detailed picture of the neutralization dynamics is given in figure 2 where changes 
in occupation numbers (i.e. the instantaneous occupation minus the initial occupation of a 
particular level) are shown as a function of Rll and for those projectile levels n (figure 2(a)) 
and target levels m (figure 2(b)) that are coupled. With respect to the target (figure 2(b)), the 
highest occupied level m = 15 participates by far the most actively in the charge-exchange 
process and loses several electrons to the incoming projectile. Note that some resonant loss 
to the highest target levels occurs. For the projectile (figure 2(a)), levels n = 6 and 7 get 
resonantly fed by target level m = 15 on the incoming trajectory. Auger relaxation of the 
projectile on the outgoing trajectory leads to the depletion of projectile levels n = 6 and 
7 and increases the population in projectile levels n = 3 and 4. In the shown Rll interval 
this depletion is not completed and the projectile keeps electrons in highly-excited states. It 
therefore continues to relax by emitting electrons as it moves further away from the target. 

Occupation changes induced by resonant processes can also be understood by looking at 
the strongly-coupled energy levels and the potential barrier as a function of RI,.  As shown 
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Feure 2. Evolution of Ule changes of projectile (a) and "get (b) occupation numbers during 
the collision. Collision system and parameters as in figure 1. Projectile states are labelled by n, 
target states by m. 

in figure 3, projectile level n = 6 crosses target level m = 15. The crossing occurs above 
the potential barrier for capture and near the point of closest approach. This results in a 
large current of target electrons from level m = 15 that are classically allowed to transfer 
to projectile level n = 6. 

The time-dependent emission of Auger electrons is shown in figure 4 where the Auger 
yield, differential in energy, is plotted against RII and the energy of the emitted electron. 
The emitted electrons are collected in energy bins of width 4.4 eV. Note that the displayed 
electron yield is normalized to a single projectile. Auger electrons are emitted in two 
spectral regions, one extending from threshold to about IO eV due to Auger transitions 
that populate level n = 4 and one in the range between about 40-50 eV corresponding to 
transitions into n = 3. Within each structure, the slowest electrons are emitted first and the 
most energetic electrons are emitted at larger distances from the target. 

In order to address the sensitivity of the charge states on the resonant transition rate 
rRN, we multiplied r R N  by a constant adjustable factor CRN. Table 2 shows the charge 
of the target q(t)(Rll = 150) = q@)(co) after we replaced r R N  by C R N r R N .  surprisingly, 
q(')(w) is relatively weakly sensitive to changes in cm and depends weakly on the exact 
magnitude of r R N .  
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Figure 3. Energy levels of target stales m = 1 3 . .  . 16 and projectile slates n = 6 and 7, together 
with the barrier for classical over-barrier capture. Collision System and "meters as in fimres 1 
and 2. 

Figure 4. Emission of projectile Auger electrons during the collision into energy bins of width 
4.4 eV. Collision system and parameters as in the previous figures 

Table 2. Scaling factor clul for rw and final charge state of the target for 80 keV A?+ on 
C ~ O  with b = IS. 

CRN 0.1 0.5 1.0 1.5 5.0 
dC)(m) 3.71 4.47 4.61 4.66 4.72 

6.2. Impact-parameter dependence of charge states, occupation numbers and Auger spectra 

In figure 5 ,  we show the final charge states of projectile and target, together with the 
number of emitted Auger electrons. The results shown are calculated for integer impact 
parameters b and are spline interpolated. All results in this subsection include the down- 
stream Auger relaxation for RI, > 150 mentioned in the previous section. Note, however, 
that complete Auger relaxation is included only with respect to the fastest Auger transitions 
discussed in section 5.3. Within our classical model no electronic interaction is possible 
if the projectile trajectory does not intersect with a sphere of radius R: around the target. 
Therefore no charge exchange occurs for impact parameters larger than about 26. According 
to our simulation, Auger electrons are emitted for not too distant collisions (b c 18). For 
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more distant collisions (18 < b < R:) resonant charge exchange still occurs; however, 
no emission of Auger electrons is predicted (in fast Auger transitions). This feature is 
also recognized in figure 6(a) where the occupations of the lowest shown projectile levels 
increase for b < 18. The reason for no Auger emission at larger values of b is that we 
require at least two electrons in each shell for a fast Auger transition to become possible. 
With respect to the target (figure 6(b)), level m = 15 is most active at all displayed impact 
parameters. Resonant loss into levels 16 < m < 20 occurs at the smallest shown impact 
parameters, but is comparatively small. 

L 

c .......... projectile charge 

.... emitted electrons 

5 .  
4 
3 
2 
1 .  
0 
1 2  1 4  1 6  I 8  20 22 2 4  26 28 

......... ...... target c horge 
.... ..... .... ....... .... .... ..... ...... ..... --.- '2 -.. .--.-I.... 

impact parameter in 0.u 

Figure 5. Final charge stltes and numben of emitted Auger electrons for 80 keV A?+ ions 
colliding with Cm as a function of lhe impact parameter. 

In the experiment of Walch ef al (1994). final target charge states q@)(co) between 
1+ and 6+ have been measured in coincidence with projectile ions in final charge states 
q@)(co) = 6 and 7. According to this experiment, there is evidence that the Cm cage 
is destroyed in close collisions with impact parameters b < 14. By assuming a minimal 
impact parameter for non-destructive collisions of b,, = 13, our simulation predicts a 
highest final target charge state of q(')(Rl = 150) = q("(o0) % 5.2 at b,". At larger 
impact parameters, smaller target charge states are predicted (figure 5). With respect to 
the final projectile charge-state distribution in collisions that preserve the carbon cage of 
Cso, OUT simulation predicts values of q'P'(o0) between about 4 and 8. We may assume, 
that down-stream Auger relaxation, due to slow Auger transitions, leads to the emission of 
two additional electrons before the projectile has reached a stable state. This assumption 
is supported by the results shown in figure 6(a) where, for impact parameters leading to 
q@)(w) = 4 and 5 (cf figure 5), about four electrons are in highly-excited states. Even 
though these highly-excited states are relaxed with respect to fast Auger transitions, slow 
Auger transitions, with active electrons initially in different shells, result in the emission of 
about two more electrons. Including slow Auger transitions and with respect to charge-state 
changing collisions, our simulation therefore predicts final charge states between I +  and 
5+ for the target, and the final charge states 6f and 7+ for the projectile, in agreement 
with the experimental results of Walch er al (1994). 

The spectrum of emitted Auger electrons, resulting from fast Auger transitions, is 
displayed in figure I as a function of b. In addition to the two features observed in figure 4, 
a new structure appears between 12 and 34 eV for b < 15. According to figure 6(a), this 
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Figure 6. Final occupation changes of projectile levels n (a)  and target levels m (b) as a function 
of lhe impact parameter. System and parameters as in figure 5 .  

structure is related to the dominant filling of projectile level n = 5 ,  which occurs only at 
b < 15. Subsequent Auger decay increases the populations in levels n = 3 and 4 (for 
b = 13) and n = 3 (for b = 14). In figure 8 we show the Auger yield yk differential in 
energy after integration over impact parameters between b ~ n  and R;  

where ck is the number of electrons collected in the kth energy bin, as shown in figure 7. 
We normalized yk to the area A perpendicular to the incident beam direction that is run 
through By projectiles on charge-state changing trajectories 

A = n(RT2 - bh?). (14) 

6.3. Cross sections 

In the experiment of Walch et a1 (1994) cross sections ai for the production of specific 
charge states ti of Cm have been measured. The critical distances R,: (10) for sequential 
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Figure 7. Projectile Auger-electron yield as a function of impact parameter and emitted electron 
energy. The energy bins have a width of 4.4 eV. System and parameters as in figures 5 and 6. 

0.0oi  
3 10 

1 

ene rgy  in ev 

Flgure 8. Fmjeetile Auger-electmn yield of figure 7. integrated over impact parameter and 
normalized according to equations (13) and (14). 

over-barrier capture can be related to cross sections by 

U, = n(Rf2 - R:+12) 

and to the total geometrical cross section for charge exchange in non-destructive collisions 
= xR;'. 
Theoretical estimates for the critical over-barrier distances can be extracted from the 

impact-parameter-dependent final charge states of the target in figure 5. Table 3 shows a 
comparison of the experimentally determined radii R;mp with theoretical values R&,,cory 
from our simulation together with theoretical cross sechons uii.eeo , calculated according to 
(15). The theoretical value R;,@ory leads to uta, = 6.2 x cm , which agrees well with 
the experimental result of (4.4 f 1.8) x 

7 '  
cm2. 

I. Summary and conclusions 

We have formulated a theory for the simulation of charge transfer and electron emission in 
slow collisions between highly charged ions and spherical clusters. The theory is based on 
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Table 3. Theoretical (R;aeo,J and experimental (R,?& critical over-banier radii for electron 
capture in 80 keV Arsi on Cs" collisions. The theoretical cross sections o;,hwl for the 
production of final target charge states Ci are related to Rthov by equation (15). 

' R L p  R;ae0, Ui.thracy X lo-" Cm2 

I 22.4i4.6 26.5 16 
2 20.0 22.8 9.8 
3 17.8 20.2 7.7 
4 16.0 17.9 5.7 
5 14.5 16.0 7.2 
6 13.9 13.2 - 

classical rate equations for the population dynamics of projectile and target levels and on 
estimates for resonant and Auger transition rates. The resonant transition rates are modelled 
on the basis of a classical over-barrier description of electron transfer in conjunction with 
hydrogenic projectile levels. Our simulation estimates the evolution of occupation numbers 
and projectile Auger electron emission in non-destructive collisions. It allows for the 
prediction of final charge states and energy-resolved Auger spectra. 

In a first numerical application, we considered 80 keV A$+ ions colliding with gaseous 
C a .  Our results for the occupation dynamics of target and projectile levels illustrate 
the dynamical flow of electrons to and from particular levels. In view of only one 
adjustable parameter (b,,,in) in the scattering part of our calculation, the predicted final 
charge-state distribution of target and projectile, the cross section for the production of 
particular target charge states and the total cross section for non-destructive charge-state 
changing collisions agree well with recent experimental data. We plan to further refine 
our simulation by including the radiative relaxation of multiply excited projectiles and slow 
Auger relaxation channels. We hope that more experimental data, including energy-resolved 
emitted electron spectra and scattering angle-differential charge-state distributions, will soon 
become available and facilitate refinement and tests of our simulation. 
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