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Based on a previous Dirac R-matrix calculation [U. Thumm and D. W. Norcross, Phys. Rev.
A 45, 6349 (1992)], we have derived elastic and inelastic angle-differential and elastic momentum-
transfer cross sections for slow electrons (Fxin < 2.8 €V) colliding with neutral Cs atoms. Our
results for the angle-differential cross sections are in good agreement with scaled experimental data
and, depending on the incident electron energy, in qualitative or fair quantitative agreement with
previously published theoretical work. The inelastic angle-differential cross sections for 6p;/2 and
6p3/2 excitation differ by more than a statistical branching ratio due to relativistic effects. For the
momentum-transfer cross sections, we hope to resolve existing discrepancies in the literature and to
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provide more reliable input for transport calculations.
PACS number(s): 34.80.Bm, 31.20.Tz, 31.30.Jv, 34.80.Dp

I. INTRODUCTION

There is a rather substantial body of work on slow
collisions of electrons with alkali-metal atoms, in partic-
ular with cesium [1-16]. While for light target atoms
such as hydrogen, lithium, sodium, and potassium, cal-
culations are usually based on the Schrédinger equation
and may include relativistic effects in a weak relativistic
approximation through spin-orbital angular-momentum-
coupling potentials {7, 9, 10], such an approach is ques-
tionable for heavier elements such as rubidium, cesium,
and francium. For these heavier alkali-metal atoms, rela-
tivistic effects on their electronic structure are apparent,
e.g., through large fine-structure splittings, and are also
expected to be of importance for the detailed interaction
between the heavy atom and the scattering electron. In
particular, the large fine-structure splitting of the heavy
neutral target has a direct counterpart in multiplets of
negative-ion resonances formed during the electron im-
pact, with fine-structure splittings that may by far ex-
ceed the autoionization widths of the individual terms
[12].

For cesium targets and slow incident electrons (by
“slow” we mean kinetic energies of the projectile be-
low the first atomic-ionization threshold), several calcu-
lations are available [1-3, 5-7, 9, 10, 12]. However, only
a few theoretical approaches take relativistic corrections
into account in a nonperturbative way [1,6,12], either by
starting from the Dirac equation [1,12] or by using a ge-
ometrical LS-jj recoupling transformation [6] of an oth-
erwise nonrelativistic theory. On the experimental side,
only a few papers with reliable results have been pub-
lished [4, 8,11, 13] and the agreement of (low-resolution)
absolute total cross sections [4,11] with recent theoretical
predictions [1, 12] is at the 10-20 % level at most mea-
sured incident electron energies and at some energies is
much worse.

Low-lying 6s6p3P°, 6p? 3P¢, and 6p5d 3F° resonances
in the electron-cesium scattering system are of consider-
able interest and are the subject of controversy in the lit-
erature, as we have outlined before [1,12]. In a recently
published relativistic R-matrix calculation [1], we have
identified the 3P¢ and 3P° resonances in partial and total
angle-integrated scattering cross sections. The existence
of a 3F° resonance has been proposed before in an ear-
lier close-coupling calculation [3, 6] and in the measure-
ment of angle-differential cross sections [8]. In the present
paper, we direct our attention to angle-differential and
momentum-transfer cross sections, which both depend
more sensitively on the detailed dynamics of the scatter-
ing process than total angle-integrated cross sections.

Momentum-transfer cross sections for scattered elec-
trons with 0.1 to 1 eV kinetic energy are of particular
technological interest for the development of thermionic
converters [17]. So far, at these low energies, electron-
cesium momentum-transfer cross sections have been ex-
tracted from swarm experiments [14-16] (e.g., through
measured electrical or thermal conductivities) and from
the measured collisional broadening of cesium Rydberg
states [13]. These rather indirect methods of deter-
mining momentum-transfer cross sections are in general
difficult to perform, and it is therefore not surprising
that previously published results [13-16] are contradic-
tory. Our relativistic close-coupling ansatz allows for the
direct calculation of momentum-transfer cross sections,
even for the lowest scattering energies, and thus circum-
vents difficulties associated with the inversion of trans-
port equations and the deconvolution of cross sections
and electron-velocity distributions.

We organized this paper as follows. Section II gives
a brief summary of the Dirac R-matrix calculation that
underlies this work. Our results for angle-differential and
momentum-transfer cross sections are presented and dis-
cussed in Sec. III. We also briefly revisit, in the light
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of recent measurements [11], our earlier reports [1, 12]
on total integrated cross sections. Section IV contains a
summary and conclusions. In the Appendix, we derive
the spin-dependent scattering amplitude as a function of
the K matrices, which constitutes the link between the
results presented in this paper and those previously pub-
lished [1]. Unless otherwise stated, we use atomic units
of length (ao), area (ma2), and polarlzabxhty (ad), with
the Bohr radius ap = 5.292 x 10~ m

II. METHOD OF CALCULATION

We have recently applied the Dirac R-matrix method
to the calculation of negative-ion binding energies and
elastic and inelastic total-scattering cross sections for
electrons colliding with neutral cesium at kinetic energies
up to 2.8 €V [1,12]. The calculation is built upon a two-
electron model for the electron-cesium scattering system.
In this model, the two active electrons (the scattered elec-
tron and the valence electron of the target) interact with
the noble-gas-like core of the target through semiempiri-
cal Thomas-Fermi-type and core-polarization potentials.
The adjustable parameters in these ¢- and j-dependent
potentials are determined by fitting [18] calculated ener-
gies of neutral cesium to the most reliable available exper-
imental energies. The interaction between the two active
electrons contains the usual Coulomb interaction and an
additional core-polarization potential, the so-called di-
electronic term, which we adjust to the measured electron
affinity of Cs. The scattering calculation includes close
coupling between the 6s; /3 25'1/2, 6p1/2 2P1/2, 6p3/2 2P3/2,
5d3/2 2D3/2, and 5ds,3 2D5/2 states of the target. We use
24 continuum orbitals in each scattering channel and in-
clude a Buttle correction to correct for incompleteness in
the basis of continuum orbitals. The continuum orbitals
satisfy relativistic R-matrix boundary conditions and are
jj coupled to bound valence orbitals, which leads to a
set of two-electron wave functions in each J™ scattering
symmetry (J and 7 are the total angular momentum and
parity of the scattering system).

In addition to these functions, we also include a vari-
able number of two-electron bound states in order to
obtain a basis of two-electron wave functions with re-
spect to which we diagonalize the total Hamiltonian of
the two-electron model system. This diagonalization in-
cludes electron exchange and all one-electron relativis-
tic effects. It is restricted in space to the inner region
of the R-matrix calculation, given by a sphere of radius
R = 40ag. We match the inner-region solutions to so-
lutions outside R that include channel coupling due to
long-range induced dipole and quadrupole interactions
and obtain, separately for each pair (J,7), K matrices,
scattering phase shifts, and partial cross sections. All
details of this calculation are described in our previous
publication [1].

In this paper we use the fundamental dynamical data
of the scattering calculation just outlined as given by
the energy-dependent K matrices. For this purpose we
have developed a computer code that reads the K ma-
trices and combines them into scattering amplitudes. In

the Appendix we analytically derive the scattering am-
plitude from the jj-coupled K matrices by using a se-
quence of spherical-wave decompositions and recoupling
operations. Even though the spirit of this procedure has
been outlined before (e.g., see [19, 20]), to the best of
our knowledge it has not yet been published for the jj-
coupling case of relevance here. In terms of the scattering
amplitude f for the scattering of electrons with initial
momentum kg, initial spin orientation mg, final momen-
tum k, and final spin orientation m from targets in the
initial state v, = ng, £o, J, mj}, and the final state y = n,
4, j, m (n, £ j, and m? are the usual quantum num-
bers that identify bound orbitals of the Dirac equation
for an attractive central potential; in order to facilitate
the distinction between valence and continuum orbitals,
we underline quantum numbers that designate valence
orbitals), the spin-dependent differential cross section is
given by

do k 2
o) (km7‘—kom010) =k—0|f(km1“‘komolo)l

(1)
By averaging over the initial and by summing over the
final spin orientations of projectile and target, the spin-
independent differential cross section follows as

7 (k110 ,)

1 do

mog,md

(2)
with %o = o Lo, Jo and ¥ =mn, £, J.

For . spm-mdependent electrons and spin-independent
targets, the scattering system is rotationally invariant
with respect to the direction kg of the incident electrons.
Total integrated and momentum-transfer cross sections
are therefore given by

Fior (K 7 Ko 7, =27rf07rd9sine-(% (k7 —ko%,)
®3)

Omom (k 7+ ko io) = 27r/0 dfsin 6(1 — cos 6)

d
X=5 (k’Y‘*ko’YO) ,
where # denotes the scattering angle. In the limit of van-
ishing scattering energy (ko — 0), the differential cross
section becomes isotropic and omom = Ctot-

We used the Dirac R-matrix method to obtain K ma-
trices for energies between 5x107% and 2.8 eV and for the
20 lowest scattering symmetries (J =0, ..., 9 and both
parities). We found that this number of scattering sym-
metries is sufficient to produce total cross sections (elastic
and inelastic) [1], momentum-transfer cross sections, and
inelastic differential cross sections that are converged for
kinetic energies of the incident electrons not exceeding
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2.8 eV. Within the same range of energies we observed
that the elastic differential cross sections are almost, but
not fully, converged. In order to obtain fully converged
elastic differential cross sections, we also included scat-
tering symmetries with 10 < J < 50 (or partial waves
up to £ = 51), by using the effective range formula of
O’Malley, Spruch, and Rosenberg [21] for the elastic K-
matrix elements,

e 7] k.?
(2¢; + 3)(24; + 1)(2¢; — 1)

where k; and ¢; are the translational and orbital angular
momentum of the scattered electron in channel i. We
determined the atomic dipole polarizability a4 by solving
(4) for ag with Kj;; taken from the highest partial waves
included in our Dirac R-matrix calculation. For J < 9
or £ < 10 we found convergence to aq = 400a3 as J or £
increases and used this value in (4) for all higher (J > 10)
symmetries.

K,;j =

ij (4)

III. RESULTS AND DISCUSSION

This section contains our results for the angle-
differential cross section do/dQ? (2) and the momentum-
transfer cross section omom (3). We consider an unpo-
larized monochromatic beam of incident electrons with
kinetic energies between 5 x 10~% and 2.8 eV and unpo-
larized cesium atoms in the 6s1/2 25, /2 ground state as
targets.

A. Elastic angle-differential cross sections

Figure 1 shows the elastic differential cross section as
a function of the energy E of the incident electrons and
the scattering angle 6. Close to the elastic threshold
[Fig. 1(a)] the cross sections are strongly enhanced by
a triplet of 6s6p3P¢ resonances. These resonances have
been discussed before as they appear in the total inte-
grated cross section [1,12]. They are normally ordered
with the lowest term (in energy) corresponding to J = 0,
the next higher term to J = 1, and the highest term to
J = 2. The position E and width I" of each term have
been given in [12] as E = 1.78 ¢V, I' = 0.42 eV (J = 0);
E =556¢eV, =243 eV (J = 1); E = 12.76 eV,
[ =9.32eV (J=2).

Regarded as a function of 8 and for fixed E, the very-
low-energy differential cross section shows a pronounced
cos? #-like behavior due to dominant contributions from
p-wave scattering. In the energy range below 20 meV
forward and backward scattering are favored and about
equally likely. For energies E around 100 meV, the p-
wave character still dominates the differential cross sec-

tion [Fig. 1(b)]. As E is further increased, however, p-
wave scattering quickly loses influence due to the stronger
admixture of higher partial waves. At energies E around
1 eV a local maximum appears at 8 =~ 90° due to increas-
ingly important d-wave scattering. At the same time the
cross section becomes strongly forward peaked, and back-
ward scattering only yields a relatively small contribution
to the total integrated cross section.

The steplike structure at £ ~ 1.4 eV is related to the
two first inelastic thresholds which appear at 1.386 eV
(6s — 6p;/2 excitation) and 1.455 eV (6s — 6p3/; exci-
tation). A multiplet of narrow 6pZ 3P resonances located
at about 120 meV below the first inelastic threshold [1,
12] is not resolved in this figure. The widths of the J = 0,
1, and 2 terms of these resonances are 9 ueV, 150 ueV,
and 1.33 meV, respectively, and are much smaller than
the energy resolution of about 18 meV (corresponding to
150 equally spaced energy-mesh points) in Fig. 1(b).

In Fig. 2 we compare our results with the nonrelativis-
tic two-state close-coupling calculation of Karule [5] for
scattering energies of 0.1 to 0.6 eV. Despite striking dif-
ferences in the conceptual and numerical treatment of
the scattering problem, the two calculations agree fairly
well in this region of low energies. At slightly higher en-
ergies, measured differential cross sections become avail-
able. Figure 3 shows the relative experimental cross sec-
tion of Gehenn and Reichert [8], normalized to our results
at 6 =~ 90°, together with the two calculations of Fig. 2.
The agreement between the three sets of results is fairly
good, except for the angular region around 8 = 135° (cor-
responding to one of the local minima in d-wave domi-
nated scattering) at £ = 0.8, 1.0, and 1.2 eV. In this
angular region the count rate is about two orders of mag-
nitude smaller than in forward direction and the semilog-
arithmic plot overemphasizes the discrepancies between
the results of Refs. [5] and [8] and our calculation. Nei-
ther the finite energy resolution of AE = 90 meV, nor the
angular resolution of A8 = 8°, nor the method of energy
calibration in the experiment of Gehenn and Reichert
appear suitable as an explanation for the mismatch at
0 = 135° of our results and the experiment in Figs. 3(a)-
3(c). At E = 1.4 eV [Fig. 3(d)] the agreement between
both theories and experiment is exceptionally good, even
in the angular region around € = 135°. This is also true
for the comparison of experiment and theory at energies
above the 6p3/7 excitation threshold [Figs. 4(a)-4(c)]. We
notice that our elastic differential cross sections agree
particularly well with the experiment for energies above
the first [Fig. 3(d)] and higher [Fig. 4(a)-4(c)] inelastic
thresholds.

In previous publications [1, 12] we compared total

FIG. 1. Angle-differential cross section
[in units of maZ/sr (waZ = 0.8798 x 1072°

il . . .
i m?)] for elastic scattering as a function of the

incident electron’s kinetic energy E (in eV)
and the scattering angle 6 (in degrees). (a)
E = 0-20 meV; (b) E =0.1-2.7 V.
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angle-integrated cross sections, derived from our Dirac
R-matrix ansatz, with the theoretical results of Scott
et al. [10]. The work of Scott et al. is based on the
Schrédinger equation and takes relativistic one-particle
interactions into account perturbatively. It differs fur-
ther from our calculation in the precise choice of the core
potentials. Otherwise, the two calculations are similar in
spirit in that both include five close-coupled target states,
a comparable number of continuum orbitals per channel,
and relativistic effects. We found before [12] that our
angle-integrated cross sections agree rather poorly with
the results of Scott et al. [10]. It is therefore not surpris-
ing that the angle-differential cross sections only agree
within an order of magnitude (Fig. 5), even though they
display similar features at different scattering energies.

Our differential cross sections in Fig. 5 display struc-
tures at scattering energies close to the 6p; inelastic
thresholds [compare also Fig. 1(b)]. Gehenn and Rei-
chert [8] interpreted structure seen in their measured elas-
tic differential cross section at £ = 1.49+0.02 eV as the
3F° resonance predicted earlier [3, 6] at 1.6-1.7 eV. We
find excellent agreement with the shape of their measured
cross section at 1.49 eV, while confirming our earlier pre-
diction [1] that the 3F° resonance lies at a higher energy
(1.62 eV, J averaged). Moreover, we do not find evi-
dence for 3F° resonances in the elastic cross section, in
accord with our previous [1] finding that this resonance
is predominantly formed by 6p;5d;s configurations and
thus appears preferentially in inelastic channels.
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As in Fig. 3. (a) E=1.6¢eV; (b) E=18¢€V; (c) E=2.0¢eV; (d) E=2.5 eV, no experimental data available.

B. Inelastic angle-differential cross sections

The inelastic differential cross sections for 6s — 6p; /3
[Fig. 6(a)] and 6s — 6p3/2 excitation [Fig. 6(b)] display
a striking structure near the inelastic thresholds. This
structure is due to the above-mentioned 3F° resonance
at the J-averaged energy E = 1.62 eV. As in the case
of elastic scattering, the inelastic cross sections become
strongly forward peaked as the scattering energy exceeds
the close-to-threshold region. We emphasize that without
relativistic interactions, the plots in Figs. 6(a) and 6(b)
would look alike, and the corresponding inelastic cross
sections would differ by a statistical branching ratio of
exactly two (there are twice as many magnetic sublevels
in the 6p3/, state as there are in the 6p;/; state). Note
that the statistical branching ratio is “factored out” in
the two subplots in Fig. 6; the two z axes differ by a factor
of 2. Comparison of the two subplots in Fig. 6 elucidates
relativistic interactions through (i) fine-structure split ex-
citation thresholds and (ii) deviation from the statistical
branching ratio, which is particularly striking for forward
scattering at the highest shown energies, as well as for the
angular distributions at energies close to thresholds and
structures associated with the 3F° resonance.

In Fig. 7 we show the inelastic differential cross sec-
tions for 6s — 6p; excitation for two energies (E = 1.632
and 2.04 eV) in comparison with the results of Scott et al.
[10]. As mentioned before, the two calculations show sig-
nificant differences in the total angle-integrated cross sec-
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FIG. 5. Angle-differential cross sections (in units of maZ/sr) for elastic scattering as a function of the incident electron’s

energy: ————
6 = 10°; (b) 6 = 50°; (c) 6 = 90°; (d) 6 = 150°.

FIG. 6. Angle-differential cross section (in units of
mad /st) for inelastic scattering for electrons incident with less
than 2.7-eV kinetic energy. (a) 6s — 6p;/2 excitation; (b)
6s — 6p3,2 excitation. The perpendicular axis differ by a fac-
tor of 2 such that for a purely statistical branching ratio and
no fine-structure splitting (a) and (b) would look identical.

, present Dirac R-matrix calculation; — - — - — -, calculation of Scott et al. [9]. (a) Scattering angle

tions [12] and also for the angle-differential cross sections.
Nevertheless, they agree within an order of magnitude,
and, at £ = 2.04 eV, share some qualitative features.
Again the nonstatistical branching ratio for excitation of
the two fine-structure split cesium levels can be very eas-
ily seen by comparing Figs. 7(a) with 7(b), and 7(c) with
7(d).

C. Momentum-transfer cross sections

We derive angle-integrated cross sections ogt and
momentum-transfer cross sections opmom for spin-
independent elastic scattering by numerical integration
of the angle-differential elastic cross section do/dQ ac-
cording to Eq. (3). As a test, we also calculated oy di-
rectly from the K matrices (for details see Ref. [1]), i.e.,
without referring to the recoupling operation described
in the Appendix. Agreement of the two calculations of
oot gives evidence for the correct analysis and program-
ming of the recoupling operations necessary to express
do /dQ in terms of K matrices. It proves that the lowest
moment of do/dQ) with respect to an expansion in Leg-
endre polynomials of cos 6 is reproduced correctly by the
recoupling calculation.

Our results for omem in comparison with oot are shown
in Fig. 8. Figure 8(a) contains the cross sections for
scattering energies E from extremely close to the elastic
threshold up to E = 0.1 eV. To the best of our knowl-
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FIG. 7. Angle-differential cross sections (in units of ma?/sr) for inelastic scattering for excitation of both 6p; fine-structure
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calculation of Scott et al. [10].

6s — 6p1/2 excitation, E = 2.04 eV; (d) 6s — 6ps/2 excitation, E

edge this is the first direct calculation of omom and oot
in this very-low-energy region. Since scattering is ulti-
mately isotropic as £ — 0, 0mom and oior become iden-
tical for the lowest energies shown. The dominant fea-
ture in Fig. 8(a) is the multiplet of 6s6p3P$ resonances,
which are normally ordered with the J = 0 component
corresponding to the peak with the lowest energy and
the J = 2 component corresponding to the peak with
the highest energy [1,12]. The same cross sections as in
Fig. 8(a) are shown in Fig. 8(b) for 0.1 eV < F < 2.8
eV. For these energies the elastic differential cross section
is forward peaked [cf. Fig. 1(b)] such that omom < Tot.
Structures related to a multiplet of 3P$ resonances 1,
12] below the 6p; /2 threshold and the detailed behavior
of the cross sections at the 6p; thresholds are not re-
solved. Nevertheless, the opening of inelastic channels is
clearly visible as the steplike structure in omem and oot
at E~14¢eV.

In Fig. 9 we compare our results for omom in the energy
range of Fig. 8(a) and 8(b) with data from the literature
[2,13-16]. Fabrikant [13] used effective-range theory to
extrapolate (below E = 0.1 eV) theoretical phase shifts
calculated (for £ > 0.1 eV) by Karule [3]. Since the un-
corrected extrapolation of Karule’s data leads to the pre-
diction of a bound 3P° state of Cs~ and to disagreement
with experimental data, Fabrikant readjusted the polariz-
ability of cesium as well as effective-range parameters us-
ing experimental data for the broadening and shift of ce-

=2.04eV.

sium Rydberg levels perturbed by cesium atoms. Above
about 15 meV his momentum-transfer cross section is
monotonically decreasing in E, in qualitative agreement
with our result. Also in agreement with our calculation,
Fabrikant’s cross section shows no evidence for the strik-
ing structures displayed in the remaining curves in Fig. 9.
The physical origin of the maximum at £ ~ 15 meV
in Fabrikant’s work is subject to some speculation due
to uncertainties in his adjusted effective-range extrapo-
lation. If this maximum is not an artifact of the extrap-
olation method, the agreement of its position with the
J = 2 term of the 3P° resonance in our calculation sug-
gests that it also originates in this resonance (either in
the J = 2 term or including all 3P° terms), in accordance
with Fabrikant’s assumption of a 3P° resonance.

Fabrikant identifies the minimum at £ ~ 5 meV in
his curve as a Ramsauer-Townsend minimum, whereas
we obtained the Ramsauer-Townsend minimum at ~ 50
meV [1]. Again excluding artifacts of his extrapolation
method, the comparison of Fabrikant’s and our curve sug-
gests that the minimum Fabrikant obtained is related to
the onset of the resonances at £ ~ 1 meV in our curve
(the exact position of which is h1dden by the multiplet of
3P resonances).

Stefanov [15], Nighan and Postma [14], and Postma
[16] derived momentum-transfer cross sections by fitting
transport coefficients obtained from various experiments,
such as electron-cyclotron resonance measurements and
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measurements of electrical and thermal conductivities of
electrons in cesium vapors. The extraction of cross sec-
tions from these experimental data is very difficult and,
in principle, amounts to inverting a transport equation
(the Boltzmann equation for the transport of electrons in
cesium vapor) and unfolding the product of the electron-
velocity distribution and the cross section. Stefanov’s re-
sult for omom shows a pronounced minimum at F = 0.26
€V in clear contrast to the work of Fabrikant [13] and to
our calcualtion (Fig. 9). With respect to total cross sec-
tions measured by Visconti, Slevin, and Rubin [4] which,
in the same energy interval, decrease monotonically in F,
Visconti speculates that the monotonic behavior of ot
is not necessarily incompatible with oscillating structures
in omom due to either the higher sensitivity of omem to
large-angle scattering or due to the relatively large en-
ergy spread of the electron beam in his experiment. In
agreement with Fabrikant’s results, however, our calcula-
tion suggests that this is not true. Furthermore, the total
cross sections of Visconti et al. are six to 20 times larger
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FIG. 8. Total integrated cross section ( ) and

momentum-transfer cross section (— - — - — - ) (in units
of 7u3) from the present Dirac R-matrix calculation. (a)
E = 5 x 1075 eV-0.1 eV; (b) 0.1-2.8 eV, elastic contribu-
tion only.
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FIG.9. Momentum-transfer cross section (in units of ma3)
for eiastic scattering: , Dirac R-matrix calculation;

Postma (taken from [15]).

than the momentum-transfer cross sections of Stefanov,
whereas the comparison of omem and oot in our calcula-
tion for energies between 100 meV and 1 €V [cf. Fig. 8(b)]
indicates that oot exceeds omom by not more than a fac-
tor of about 4. It is interesting to note that the results
of Nighan and Postma [14] contradict those of Stefanov
[15] in the sense that Nighan and Postma predict a max-
imum for oyom Where Stefanov’s cross section has a local
minimum (Fig. 9). Here it is worth mentioning that the
method used by Nighan and Postma to extract omom
from electron drift-velocity data is not unique and does
not permit one to locate maxima or minima precisely
[15]. Nighan and Postma therefore chose the maximum
of 0mom in accordance with the calculation of Crown and
Russek [2] which is based on a perturbatively determined
potential for the electron-cesium interaction and not ex-
pected to guarantee accurate results for the considered
low-scattering energies.

D. Total integrated cross sections

Very recently, Jaduszliwer and Chan [11] reported
the measurement of total integrated cross sections for
electron-cesium scattering between E = 2 and 18 eV. In
Fig. 10 we show our previously published [1, 12] compi-
lation of calculated and measured total integrated cross

sections supplemented by the new experimental values
[11] at 2 and 3 V.

IV. SUMMARY AND CONCLUSIONS

In this work we used the fundamental dynamical data
of a previously described Dirac R-matrix calculation
[1, 12] in order to derive elastic and inelastic angle-
differential cross sections for the scattering of slow un-
polarized electrons off neutral unpolarized cesium atoms.
Starting from energy-dependent K matrices that include
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FIG. 10. Total integrated cross section (in units of 7a3
and including elastic and inelastic contributions) for low-
energy e -Cs scattering. Theory: present Dirac R-matrix
calculation (Ref. [1]) ( ); Ref. [6] (— - — - — - );
Ref. [9] (— - — -); Ref. [3] (o). Experiment: Ref. [4] (X);
Ref. [11] (M). The 6pi1/2,3/2 and 5d3/2,5/2 thresholds are
marked by the small triangles.

all the dynamical information of the electron-cesium scat-
tering system, we used standard recoupling and partial-
wave expansion methods to analytically derive the spin-
dependent (with respect to both target and projectile)
scattering amplitude. The scattering amplitude makes
a variety of observables easily accessible. In a first
attempt to use the Dirac R-matrix method to obtain
angle-dependent scattering information we utilized these
scattering amplitudes to derive spin-independent angle-
differential and momentum-transfer cross sections. We
compared our angle-differential cross sections with ex-
perimental and theoretical data from the literature and
found in most cases, and in particular for the only avail-
able elastic experimental data of Gehenn and Reichert
(8], fair or good agreement. With respect to inelastic
scattering, the angle-differential cross sections for 6s —
6p1/2 and 6s — 6p3/2 excitation deviate from a purely
statistical branching ratio and therefore indicate the im-
portance of relativistic effects which are properly taken
into account in our relativistic treatment of the scattering
process. The inelastic cross sections show an interesting
structure which we related to a 6p5d 3F° resonance men-
tioned before by Karule [3], Burke and Mitchell [6], and
Gehenn and Reichert [8].

After numerical integration of the angle-differential
cross section, we obtained total and momentum-transfer
cross sections (0tot and omom). The total cross sections
obtained by this angle integration agree with the result
we previously [1, 12] derived in a different way (directly
from the K matrices and without using the sequence of
recoupling transformations and partial-wave expansions
outlined in the Appendix), thus providing additional evi-
dence that the analytical derivation of the scattering am-
plitude (cf. the Appendix) and its numerical implemen-
tation are correct. Our results for omom cover the energy

range (0.1-1 eV) of primary interest for plasma appli-
cations such as, e.g., for the development of thermionic
converters [17], and, for the first time include the imme-
diate vicinity of the elastic threshold. The direct calcu-
lation within a close-coupling approach of omom at these
low energies is expected to be of higher accuracy and
more reliable than indirect methods [13-16] that refer
to the measurement of thermal and electrical conduc-
tivities in swarm experiments [14-16] and to the colli-
sional broadening of cesium Rydberg levels [13]. Due to
the rather indirect and complicated extraction of omom
from transport coefficients obtained from electron-cesium
swarm experiments [14-16], it is not surprising that the
extracted omom are contradictory and disagree with our
results. Of particular interest in our results is the strong
enhancement of omem at very low energies due to a mul-
tiplet of 3P3 resonances, which we identified before in
Otot [1,12] and for which evidence exists in the extrapo-
lated semiempirical momentum-transfer cross sections of
Fabrikant [13].

The results presented in this paper rely on our Dirac
R-matrix code [1] and on a new program that converts K
matrices into spin-dependent scattering amplitudes. We
plan to use these amplitudes to derive other observables,
such as electron spin-polarization parameters (general-
ized STU parameters [22]) and Stokes parameters that
describe the characteristics of light emitted from colli-
sionally excited cesium atoms [23]. We further intend
to perform similar calculations for other alkali-metal-like
targets.
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APPENDIX: DERIVATION
OF THE SCATTERING AMPLITUDE
FROM j;j-COUPLED K MATRICES

In this appendix we derive the spin-dependent ampli-
tude for electron scattering from alkali-metal-like (i.e.,
basically one-electron) targets. We start from jj-coupled
K (or reactance) matrices as they may be provided by
a Dirac R-matrix calculation (for details see Ref. [1]).
The K matrices contain all the dynamical information of
the scattering process and are related to the scattering
matrices S and the T' matrices by

_1+K
T 1-4K
The elements of the K, S, and T matrices are defined
with respect to scattering channels v. In a relativistic

(i.e., jj-coupled) scattering calculation, in which only
two electrons are explicitly taken into account, each chan-

and T, =S,y (A1)

— by -
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nel is specified by the set of quantum numbers

v=ntjljJm, (A2)
where the underlined quantities are the principal quan-
tum number, the orbital angular momentum £, and the
total angular momentum j of the target. The scattered
electron has the orbital angular momentum £ and the to-
tal angular momentum j. The total angular momentum
and parity of the scattering system (containing the two
electrons) are denoted by the good quantum numbers J
and .

The set of quantum numbers (A2) is chosen partly for
computational convenience. For electron scattering, J
and 7 are not directly observable and measurements usu-
ally yield quantities such as cross sections, which include
sums over J and w. Nevertheless the computational ad-
vantage of keeping track of J and 7 is striking, since
the total Hamiltonian is block diagonal in these quan-
tum numbers. Similarly, the computational advantage
of relating channels to £ and j is evident, whereas these
quantities are not directly accessible in defining asymp-
totic scattering states of immediate physical relevance.

On the other hand, the scattering amplitude f is de-
fined with respect to asymptotic scattering states given
by the scattered electron’s momentum kg (a long time)
before and k (a long time) after the interaction with the
target, its spins mg, and m before and after the interac-
tion, and the initial and final states of the target v j and
7, given by

J
o0&

I~

; J
0J oMo

I
=
I3

Yo

o

0
(A3)

IS
I

m =ntjm’ .

[~

l:

The magnetic quantum numbers m{, and m/ are the pro-
jections of j, and j onto the (not yet specified) quantiza-
tion axis. Tge sets of quantum numbers io and 4 denote

|

the initial and final state of the target irrespective of its
spin orientation, i.e., jo =ng £, _J_O and ¥ =n £ j. With
respect to the abstract operator equivalent 7' to the T

matrix defined in (Al), the scattering amplitude is de-
fined by

f(kmy ko m010)=27ri<km1!’f’|kom010> .
(A4)
In order to relate the matrix elements of 7" in the “phys-

ical basis” [k m 7) to the known T-matrix elements,

T, = (v|T'|v'), we have to perform a spherical-wave de-
composition and a series of recoupling transformations.
The representation of T' in (A4) is called the uncoupled
plane-wave representation. In what follows we adopt the
phase convention of Condon and Shortley [24].

(1) Spherical wave decomposition. We decompose the
plane-wave states |ko) and |k) of the scattered electron
according to

k) = /dE S B £mf)(E £ mK),
£2,mt
(B em|k) =i kY2 §(E - Ey) Y7 (k)

with the magnetic quantum number m# corresponding to
£, and with

(rlk) = 27)"%2 &% and Ej; = iK%,
Formally introducing the unit operator
1=/dEZ |E £ mb)(E £m?|
£2,m?t

to the right and left of 7" in (A4), we find the amplitude
in uncoupled spherical representation

Flkemy ko mo 7)) = 2mi (kok) ™2 >~ S~ ¥ty (k) (B £ mP my | T | EBo £ m¥ my %) Y7 (ko)

£,m# ¢t me’

where Eo = 1k2.

(A5)

(2) Coupling of the scattered electron’s angular momentum l and spin s to j. The quantum numbers in the matrix

element in (A5) may be regrouped such that

(Bx tm*my | T| Eo & m* moy,) = (¢mf L m|(Ex £y | T|Eo £ y)|¢ m* § mo).

Introducing the unit operator

1= |e55mi)esjm|

J!mj

twice, to the right of (¢ m® 1 m| and to the left of |’ m* 1 m), we see that the amplitude in £s-coupled representation

reads

Flkemy ko mo 7,) = 2mi (kok) ™2 3N S it v (k) (¢ m® L mli mI)N( By €5 mI x| T | Eo £ 5 m’ %)

5,3 8me g m’

. .’ ’ e x  ~
x(3' m? € m* L mo) Y (ko) ,

(A6)



47 ANGLE-DIFFERENTIAL AND MOMENTUM-TRANSFER CROSS. .. 315

with the Clebsch-Gordan coefficients (¢ m? 1 m|j m7), and the magnetic quantum numbers corresponding to j and

j/

. s '
mi=mf+m , m =mf +mg.

(A7)

(3) Coupling of j and j to J. We first regroup the quantum numbers in the matrix element in (A6) such that

(Butjm A T |Bo € j' m’ ) =
Inserting the unit operator

1= |jj JM)jj IM|
J,M

(Gm? jmI|(Bx 57| T |Eo € §' %

Fi' mI" j, md) .

twice, to the right of (j m’ J mJ| and to the left of |5’ mi’ Jo __m_f;), we obtain the amplitude in jj-coupled representation

Flkmy ko moy,) = 2mi (kok)™4/2 33" 575 -ty (k) (emf dmlj mA) (G mI j mI|T M)

J 5,3 emt ¥

x(Ex €37 T |Eo € §' 3y’

x(J M|j' m? j

where we have used the facts that the scattering process
is independent of the orientation of the coordinate system
i.e., the matrix element of T" in (A8) does not depend on
M) and that J and M are good quantum numbers in
writing

(Ex 54 J M| T |Eo £ §' 3, J M')

=610 bmm (B €57 | T |Eo € 5'3,)7 .
Furthermore, the Clebsch-Gordan coefficients imply

=mf+m—mo+m! —mj .

(A9)

! i’
M=m' +m} and m®

Since the parity of the scattering system is conserved, it
is convenient to explicitly separate the contributions from
both parities in (A8). For this purpose we introduce the
function

(61, £2) = (—1)0+F2

|

Flkmy —komy,) = 2mi (kok)™/2 > > > it
4 4

’

g 53’

x Z Y (k) (€ m?

Jy md) (" m7' 1€ m? dmo) YT (ko),  (AS)

such that the initial- and final-state parities in (A8) are
given by II(¢',4,) and II(¢,£). Due to energy conserva-
tion, we do not need to keep track of Fj, which is given
by
Ek:EO—AE(j‘_io)y

where Ace is the atomic excitation energy. Therefore the
matrix element in (A8) may be considered as a function
of Ey and separately for each parity m. As the notation

Ly = 'ye,j 3,83 /(Eo)

= (B 53 T |Eo € §' 3,)7" (A10)
emphasizes we have completed the sequence of recoupling
tranformations. The T-matrix elements in (A10) and
(A11) are now identical and compatible with the channel
designation and basic dynamical results of a relativis-
tic close-coupling calculation as, i.e., the aforementioned
Dirac R-matrix calculation [1]. The jj-coupled ampli-
tude can now be rewritten as

b 11(e,0) O 112 ,8)

% m|j mj>(j m? iﬂjIJM> T

X(J M| §' m § 1 mo) Y7 (ko)

(A11)

do m)(g' mI' | m

where, as in (A10), we could restrict ourselves to initial and final channels, v and v/, with identical J and .
Equation (A11) can be further simplified by choosing the direction ko of the 1ncxdent electron beam as quantization

axes. We then find

20+ 1
4 bme' 0

Yo (ko) =

such that, due to (A9), the m® sum in (A1l) disappears, and
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ml=mog—m+mj —ml .
With
Y7(6,6) = OF (cos6) 6™

the 6 and ¢ dependences can be separated and our final result for the jj-coupled amplitude, rewritten for convenient

numerical implementation, is given by

flkmy — ko mo 5,) = f(k my — ko mo 7,) €™,

with
fkmy—ko ™o %)

oo I+l

=(k—2’z)l’32 > D GmimlI M)

r=+x1 J=0 j=|J-—l|

X Z it O r1(e,0) (£ mt %mlj m7) @;"l(cos 6)

i'+1/2

[T+5,!
X Z (J M|j" mo j, mp)
3=1J=g,|
J+1/2
e=j—1/2
X

ST VEFT br e (6 mol€ 05mo) Tors -

(A12)

o=j'—1/2

In practice, the sum over J has to be truncated at a value Jyax large enough to assure convergence of the quantity

of interest derived from (A12).
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