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We present an analysis of higher-order processes in the capture of an electron from a surface by grazing-incidence trmpact of an
ion moving at velocities greater than the Fermi velocity. In first order the capture probability is known to decrease very rapidly with
increasing projectile velocity. The dominant process is shown to be of second order, in which surface electrons are scattered by the
projectile ion and then recoil off the lattice atomic cores, to emerge from the surface with the same velocity as the ion. This
Thomas-scatiering process is well-known in the study of ion—gas collisions. In the case of a solid target it shows many formal

similarities to the process of LEED.

1. Introduction

The theory of the capture of electrons from atoms by
fast incident ions has developed significantly in the past
twenty years (see for example the reviews by Belkié et
al. [1], Shakeshaft and Spruch [2] and Briggs [3]). The
regions of low and high velocities are distinguished by
whether the initial relative velocity in the centre-of-mass
frame is smaller or greater than the typical orbital
velocities of the electrons to be captured. At low veloc-
ity, capture probabilities are calculated by assuming
that in zeroth order the clectrons move almost adiabati-
cally in the field of both nuclei and a *‘quasi-molecular”
collision complex is formed. At high velocity the target
electrons must acquire the translational velocity and
kinetic energy of the projectile in order to be captured.
This kinematic effect rnanifests itself in the theory by
the appearance of (Galilei transformation or “transla-
tion” factors in transition matrix elements. Beginning
with the classical work of Thomas [4] these effects have
been studied in detail [2,5-7]. It has been shown clearly
that the target electron may acquire the necessary trans-
lational momentum either by virtue of its binding in the
initial or final state (a three-body collision) or by a
sequence of two two-body collisions (Thomas mecha-
nism). In a Born expansion of the capture transition
matrix element, the three-body mechanism oceurs in the
first and higher termns whereas the Thomas double-bi-
nary collision term occurs only in the second and higher
terms of the Born series. At high velocities, since the
probability of high momentum components in the bound
states decreases rapidly, it is the double-binary collision
component of the second Bom term that provides the
dominant contribution to the capture cross-section. Al-
though providing the dominant term it has also become
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clear that, because of the infinite-range Coulomb poten-
tial, the second Borm term alone is not adequate to
describe capture and an infinite-order scattering ap-
proximation is necessary at high velocity. Several such
theories have been advanced over the years [1,8-13].

There is increasing interest in the capture of elec-
trons from solid surfaces by impinging ions [14,15]. At
low ion velocities (now measured with respect to elec-
tron velocities at the Fermi level) the situation is similar
to the atomic case in that electrons tunnel or are shared
between the potential wells of the solid and projectile.
In addition, collision velocities may be sufficiently low
that transiation (Galilei transformation) effects between
the stationary solid and the projectile are negligible.
Rather it is the occurrence of resonances between dy-
namically-shifted projectile and target states that de-
cides the capture probability. At high velocity, as in the
atomic target case, the situation changes dramatically in
that it is the matching of initial and final states in
momentum space, represented by a Galilei shift of the
Fermi mormentum distribution with respect to the mov-
ing projectile, that is decisive in determining capture.
This much has been recognized [14,15]. However, al-
though first-order theories [16-20] and coupled-state
higher-order theories {21] have been advanced, the
surface analogue of the Thomas double-binary mecha-
nism has not been considered exphlicitly. It is our pur-
pose in this paper to remedy this situation by consider-
ing the higher order terms known to be of importance
for atomic targets.

That higher-order processes are significant in cap-
ture from surfaces can be readily seen by considering an
idealized situation. Were the target electrons to be con-
sidered as truly free, i.e. in plane-wave states, then a
single interaction between projectile and electron (first
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Born approximation) could not lead to capture, i.e. two
free particles cannot collide to form a bound state.
However a double-binary collision could. In the latter
case the electron is first struck by the projectile and
acquires its speed (but not its vector velocity!). This fast
electron then recoils off the solid, changing direction so
that it emerges from the surface with the same velocity
vector as the projectile and is readily captured.

Since the target electrons in their initial state are not
truly free, there is of course a contribution to capture
from the first-order Bom mechanism. However, as we
will show, this contribution is proportional ¢ the prob-
ability of target-clectron velocity components of the
same order of magnitude as those of the incident ion.
Hence for an ion at grazing incidence, traveling essen-
tially parallel to an ideal surface, it is the Fermi
momentum components parallel to the surface that are
decisive. Therefore, as appreciated by Andri and co-
workers [14,15], the capture prcbability due to this
mechanism would be expected to decrease rapidly for
parallel velocities greater than the Fermi velocity., One
should note however that this only remains true so long
as the perpendicular velocity is so small that the inci-
dent ion does not penetrate the inner shells of the
surface atomns. Such inner-shell clectrons possess high
momentum components and can be captured in close
cotlisions.

It is perhaps interesting to note that our proposed
higher-order collision mechanism for surface capture
bears much resemblance to the process of low-energy
electron diffraction (LEED) and this analogy will emerge
directly from the theory presented below. In LEED a
beam of electrons impinges on the solid surface and is
scattered coherently by the surface layers considered as
a spatially-distributed- array of scattering centres [22-
24]. In our mechanism the Coulomb field of the imping-
tng ion sets the surface electrons themselves in motion.
Thereafter, however, their scattering by the solid surface
is identical to the LEED process. In the case of capture,
the capture probability is obtained by folding the
momentum distribution of electrons emerging from the
surface with the momentum distribution of bound states
on the moving projectile. It is this folding procedure
and, in addition, the incoherent sum over initial states,
which washes out the coherent diffraction effects ob-
served in LEED spectra.

The plan of the paper is as follows. In section 2 the
formal theory of scattering of grazing incidence ion
beams leading te surface-electron capture is presented
in which the ion beam is treated classically. In section
2.1 systematics of the exact transition matrix element
are discussed and related to its first and second order
approximation. In section 2.2 the trausition amplitude
in the first Born approximation is evaluated. The depen-
dence on the projectile incidence angle and velocity is
discussed and numerical results are given for different

systems. In section 2.3 the second order contribution is
considered. The new double binary mechanism is identi-
fied and related to the Thomas process and the process
of electron diffraction. Section 3 contains our conclu-
sions.

Atomic units with e {electron charge), m (electron
mass) and A equal to unity are used unless otherwise
stated.

2. Theory of electron capture
2.1, The impulse approximarion and LEED

In formulating the amplitude for electron capture it
will be assumed that the incident ion moves on a
prescribed classical trajectory R(r) with respect to an
arbitrary origin located in the surface. The exact transi-
tion amplitude for a single electron, initially bound in
the solid, to transfer to a bound state of the projectile is
given by [25]

F= =i (B () 1900 d. (1)

Here &;(:)=o.{r) exp(—i¢;¢) is the initial wavefunc-
tion of the electron with co-ordinate r with respect to
the fixed origin and binding energy ¢,. The potential
Fe(t) = —Z,/|r~ R(t}| is the time-dependent
Coulomb potential of the projectile ion and ¥(¢) is an
exact scattering state of the captured electron, repre-
sented formally by

‘Iff'(r)=d>r(t)—ij;mU(t, YV () di’ (2)

That is, ¥, (¢) is the exact scattering state propagating
backwards in time from the final electronic bound state
of the projectile

S (1) = (r') exp{ ~iegr —~izo’t +iv-r}, (3)
where »’ =r— R(t), ¢, is the binding energy and v = R
is the instantaneous velocity of the projectile. The ad-
ditional exponential factors in (3) describe the transia-
tional momentum and kinetic energy of an electron
moving bound to the projectile ion. The potential ¥y
represents the (time-independent) potential of the solid
target and this will be specified in more detail later. The
operator U(¢, 1') is the full time-development operator
of an electron moving under the influence of both
potentials Vp(t) and Vy: This operator satisfies the
integral equation

Ule, t')y=Ug(t, ¢")
-ifoT(r, IR (YU, 7Yy de”,
(4)
where
Up(t, ') =exp{ ~iHp{t~1")} (%)
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with Hp =K+ Vy, where K is the electron kinetic
energy operator. The expression (2) is exact within the
one-¢lectron classical-trajectory approximation. The key
additional approximation, which exposes the connec-
tion to the LEED phenomenon, is to assume that dur-
ing the collision the dominant scattering mechanism is
that of the electron with the cores of the heavy atoms
comprising the solid. This corresponds to the neglect of
the second term on the RHS of (4} ie. to the replace-
ment of the full propagator U(r, ¢') by the target
propagater Ur(r, +"). This replacement in (2) allows the
capture amplitude (1) to be written in the form

- —if " k@ () 1e() + [ d
xfmdr’(tpf(:’)

The first term is the first Born approximation and the
second represents a single scattering off the projectile
followed by infinite-order scattering off the solid target.
In the case of an atomic target, this approximation is
well-known under the name of impulse approximation
(IA) or strong potential Born approximation (SPB).
Sincé the target potential is considered dominant in the
scattering process, the 1A is only likely to be valid when
the collision is fast (compared with the Fermi velocity)
and the projectile charge is low. Tt will certainly not be
valid to describe capture by highly-stripped slow ions.

The connection to the scattering amplitude for low-
energy electron diffraction is exposed by writing (6) in
the form

f= —if_mmdr{(tbf(t) [

+ifwdr'(¢[(t')lVTUT(f'? 5)}%(‘) |2 (4))
(7

and introducing a complete set of plane-wave states
(eigenstates of the electron kinetic energy operator X)
at fixed time, i.e.

/= -if_a;drqu’ dq{(‘lf'r(f) Tg(e))<q(t)]

VrUr (e, )V (2) | @:(1)). (6)

+ifmdr'<¢f(1')|q(t')>(q(r’)]VTUT(r” !)}
X1g (e (1) [Ve(2) | 2:(2)). (8)

The scatiered wave
1x (0 = 19(0) =if drUr(e, Ie1a (1)) (9)

embedded in (8) is the scattered wave which would be
produced by a plane-wave beam of free clectrons im-
pinging on the solid surface, as in a LEED experiment.
Hence the physical interpretation of the capture process
described by (8) is obtained by reading the matrix

e}ement from right to left. An initial stationary distribu-
tion of target electrons, represented by the initial target
wave function @;, is scattered into a distribution of
momentum states |¢”). Each component ¢° scatters off
the targer an infinite number of times to emerge in the
scattered wave Xq(?). The final capture amplitude is
obtained by folding the distributien of electrons emerg-
ing from the scattering (LEED) process with the
mormentum space wave function {(D(¢’)|q(¢')) of the
final projectile bound state at each instant in time.

If no intermediate scattering occurs, i.c. the potential
V7 in (8) is switched off, one has the first Born term

For = —if:dz

* [aq(®c(1)19())(q(e)1Ve (1) 10;(4))
_ij‘iodt(qbf(:)|V,,(z);q§i(,)>, (10)

since (g{q")=8P(g— ¢").

In order to isolate the different physical nature of
the first Born (10) and impulse (7) approximations to
the capture amplitude and their different dependence
on the experimental parameters, the two will be dis-
cussed separately. In fact the major dynamical features
of multiple scattering (IA) will be discussed by consider-
ing only a single scattering off the lattice atoms i.e. in
second Born approximation,

2.2. The first Born approximation

In the first Born approximation (10), capture is
considered to take place by a single interaction between
the target electron and the projectile nucleus. The elec-
tron transfers between undistorted initial and final
states, whose energy is constant. Although such a de-
scription is omly valid, if at all, at high velocities this
first order term is the basic form of the interaction
considered in previous perturbative theories [18-20] of
eleciron capture not involving Auger or autc-ionization
processes. However, at lower velocity account has been
taken [21] of the important energy shifts of the atomic
levels which take place when an ion approaches a
surfaces. The only energy shifts arising in the first order
Born approximation are those due to the electron trans-
lation factors, In this paper attention will be con-
centrated on these kinematic effects in fast collistons.

In order to perform the time integral in (20) it is

necessary to specify the ion trajectory R(z). As we wish

to emphasize the physical effects of the interaction, the
most suitable form for our purpose is the *broken line”
trajectory depicted in fig. 1. Such a trajectory allows the
time integrals to be performed analyticaliy but is never-
theless a sufficiently realistic approximation to the true
trajectory that no fundamentally new effects would be
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expected to arise from the use of a more exact descrip-
tion of the classical motion. For a co-ordinate systern
with the x-y plane in the surface and the positive
z-axis along the surface normal towards the vacuum, the
broken line trajectory is parametrized by

R(1)=bé. +v 1. (11)
v(ty=vé, tv, =0, (12)

where + {—) correspond to >0 (£ <0), ie. to the
outgoing (incoming) part of the trajectory, respectively.
The projectile velocity parallel to the surface is denoted
by ©,={s,. 0, 0). The velocity perpendicular to the
surface for the outgoing (incoming) path is v, (—uo,),
respectively. The distance b depends on v, and is
treated as a parameter of the theory. For the special
case v, =0, eq. (11) gives a straight line trajectory with
impact parameter b. The vector b= (0, 0, &) is used to
simplify notation.

With Fourier transforms and plane waves introduced
according to

$(q)y=(2%)"" [drexp(~ig-r}e(r) (13)

-3 . .
(rig(e)y=(2m) " exp{ig-r—itg’s}, (14)
the momentum distribution of the Galilei-shifted final
state in {10) is
(q(e)12(1))

= ¢ (g~v(1)) exp{ ~i{g—~0v(2)) R(2)

—i{e,+ 10 —1g%)e ), (15)
where g is defined with respect to the solid frame of
reference. ¢, is the final projectile state momentum
wavefunction.

Introducing a second complete set of plane waves

between Vp(t) and | @;{¢t)) and using (15) we obtain
from (1)

For = —rifj;dfqu (D () 1g(e))
NCIORAOIVIONEIGIT A
= -i(27) 7" [dq dp #F (g - 0(1))
xexp{i(p~0(1)) 5} Ve(q—p)é,(p)
xf:odt exp{i{ p-v(2) +Ae~40*)2},  (16)

where

Ae=e,—e¢; (17
and 7

. 2 A

ola=p) - P 18)

Z
V- A
A vk
V“ ex

Fig. 1. Coordinate system and broken straight line trajectory,

for the special case 4 > 0, where the projectile nucleus does not

intersect the electronic surface (identical to the z = ( plane).

The projectile velocity on the incoming and outgoing straight
tine segment is ¢_ and v, respectively.

is the Fourier transform of the projectile Coulomb
potential.

For a straight line trajectory parallel to the surface
(v, =0, o=y,) the time iniegral in (16) is proportional
to a §-function incorporating energy conservation. Then
the transition amplityde becomes identical to the ex-
pression well known from the semiclassical description
of gas-phase collisions [26,27]

fo=—i(2m)"* [dq dp 6t (q~»)

xexp{ip b} 17;;(4 ~-p)ei(p)

X§( p + Ae — 40P ). (19)
The § function expresses the condition
pa=to- 2, (20)

such that for v > Ae only momentum components of
the initial state with p, = % contribute to (19). Since
the initial state momentum distribution is in general
concentrated in a finite region of momenturn space, the
first order scattering amplitude decreases rapidly for
large v. We shall see below that this is also true for a
broken line trajectory in conmection with jellium initial
state wavefunctions. ‘

For a broken line trajectory we split the time integral
in (16) and consider the contrbution of the outgoing
and incoming trajectory, fa; and fg,, separately,

fm=fa+fa (21)
féi = i(%)_w“li_{r}]qu dp 7 (g~ vy)
XVe(g—p)bi(p)
x[p-ui-!—Ac—%uziin]—l
xexp{i(p~v.) b}, (22)

where y is a positive infinitesimal.

// . b. 7 X
.

g
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The g-integral in (22) can be evaluated in closed
form for an arbitrary hydrogenic final state {28]. For a
hydrogenic ground state it reads

[dadta—rv)Ps{(q-p)
1

= -4fr 2}t —
IP—Ut12+ZS

(23)
We now specify the initial state, assuming that cap-
ture takes place out of a delocalized band state. In the
jellium approximation the band electrons are consid-
ered as essentially free within the metal volume V, but
bound to the metal half-space by a potential step

Vy=ep+ W (24)

situated at the surface. For zero temperature the band
states are occupied up to the Fermi level eg. The
minimum energy necessary to lonize a target electron is
given by the work function #. In momentum space ail
occupied states ¢, labeled by the momentum &, lie in
the Fermi sphere of radius kg =2¢; with the con-
stant free-electron density of states

p=V/ 413, (25)

where a factor 2 for the spin degrees of freedom is
included. In co-ordinate space the jellium wavefunc-
tions are given by

1 .
= —expiik,-n
o (r) 77 p{ik;- 7}
exp{ik,z} + Rexp{—ik,z} z<0
Texp{—vz} z>0
' '(26)
with

Y= 20 - k7 (27)

and the reflection- and transmussion coefficients
_k —1y 2k,

Tk Fiy’ Tk, iy

(28)

The corresponding momenturn space wave functions are

5,‘(1!) =6{2)(k||_P||)ﬁk,(Pz)- (29)
with
ﬁk_.(P:)
2w, 1 R T
B ?l{p,—kz+15 o P+ k,+i8 pz—i'y}’
(30)

where the positive, infinitesimal convergence factor 8 is
used for the part of the wavefunction inside the solid to
account for the infinite extension of the metal along the
negative z-axis.

With (23) and (29) the transition amplitude (22) for
capture into a hydrogenic ground state becomes

V2 .
foi=F -Z¥% exp{—iv.-b) [dp exp{ip.b)

X[kil"-’uip.-h +A4e— %Uziiﬂ]_l

x[(pFo, )+ F2] e (). (31)
where

2 r_
Flski’+Zi,  ki=k,-o,. (32)

For b > 0, Le. if the projectile nucleus does not penetrate
the electrenic surface defined by the jellium edge (the
z = (-plane), the remaining integral over p, is evaluated
by closing the contour in the upper compiex half-plane
and calculating the residues of the single poles at p, =
tv, +iF and p,=1y. The result can be summarized
in the form,

fi = ~22iZ¥* (Res(to, +iF)+Res(iy)™ },

(33)
where )
Res(+u, +iF)
= m%;;iilfﬁh(”:i v,)exp{—Fb} {34)
Res(iy)™= —\/_EVEiT($uJ_ +i1'y)u_L ta
1
ol - 2 2
(Fo, +iy) +F
xexp{ Fiv, b—vb} (35)
and
a=h0e+ky v — ot (36)

Similarly, for b <0, ie. if the projectile trajectory inter-
sects the electronic surface twice, contour integration
results in calculating the residues of the single poles at
pz=kz_iav 2= _kz—is’ =y, —iF and p, =
+o, Fa/v,_ —in in the lower half plane. With the free
particle dispersion relation

€= — Ty + 5k €0)
a can be rewritten as

2
‘1=5r+V0_%kﬂ "llkzz_%u‘i- (38)

Therefore the transition amplitude appears as a func-
tion of the length of the shifted parallel momentum k;
(32) of the target electron and k,, i.e. as a function of
two parameters only instead of the three components of
k which characterize the initial wave function. The first
order transition probability

PBI=-/;<sdek P)fm(k)lz (39)
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Ky

Fig. 2. Projection of the v -shifted and unshifted Fermi sphere on the surface {k, — &, plane). The angles Denin{ ) and G, {47)
define the range of the k_ integration after transformation to the shifted parallel momentum k; [see egs. (39) to (41)).

is then obtained by two additional integrations, i.e.

ke ’
szpf _/ dk; ky
~kptk S RUK )

x[‘#max(h]) —‘pmin(ki’!)]’ (40)
where the functions ¢, and ¢.;, are defined by fig. 2,
and

R(k,)= ki —k? +uy. (41)

The two integrals over the band momenta must ‘be
performed numerically. ’

It is instructive to consider the limiting case of a
siraight line trajectory in (31). For v =10 the two
contributions fgf contain the factor +(a +ig)”! re-
spectively. However, since

+1 +F

=L 4
g - ind(a), {42)

NS

Y

the principal part contributions cancel in the sum (21).
Hence, in this limit, the amplitude 7y, contains a facter
8(a), which appears outside the p_ integral. It follows
that only those metal electrons with moementa such that
a =10 can be captured. This condition is the surface
analogue of that arising in the straight line trajectory in
gas-phase collisions {eq. (20)). For jellium initial states,
the condition is explicitly

be{ky, k,)

=1y '
<= Tb . . (43)

k

With (37), the condition (43) can be written as
b=+ Vo + ko — tot. (44)

Since k has an upper limit kg, one sees that as v
increases there comes a velocity at which (44) cannot be
satisfied, Therefore the first Born, parallel-trajectory
amplitude suddenly decreases to zero above a certain
projectile velocity v.

o

10 b

10‘3
T 10y
3

-3
1

10

I T T
2 15 18 21 2.4

7y

Fig. 3. (a) Neutralization probability due to K-shell capture for protons colliding with an aluminium surface. Result in first order [eq.

(40Y] for the perpendicular velocities:

v, =0k ------ =02 -+e--- =03; -—-—- = (0.6 (in a.r). () As (a) but for a

turigsten surface.

R b s oma e aed kit At o) Nt T St
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For grazing incidence collisions the first order ampli-
tude still decreases rapidly for large v,- However, the
decrease is slower with increasing perpendicular velocity
v, . The reason for this is again best seen in (31). For
v, >0 the first denominator does not lead to the re-
striction {43), since the principal parts for +4 do not
cancel. Rather, the principal part contribution is folded
with the z-component of the initial state momentum
distribution. Since jellium wave functions decay ex-
ponentially outside the solid, the momentum distribu-
tion &, ( p,) contains contributions from all p,. Capture
therefore becomes possible even if (43) does not hold,
due to the pick up of the appropriaie perpendicular
momentum p,. The transmitted part of i&,, [third term
in (30}] is concentrated at p, = 0. From the structure of
(31) one sees that the small p, components are increas-
ingly importaat in deciding the capture amplitude as v,
increases.

In fig. 3 the velocity dependent behaviour of the first
order neutralization amplitude is shown for the cases of
aluminium and tungsten surfaces. In both examples
capture into the ground state is assumed. Due to the
relative broad conduction band of aluminium, the hy-
drogen ground state is in resonance with the band as
long as the kinematic shift does not *move’ the discrete
level out of resonance (compare fig. 4a). Therefore at
constant and small v the discrete level is in or close to
resonance and the transition probability decreases at
relatively large ¢, as v, increases in agreement with a
simple collision time consideration (fig. 3a). At constant
and large v the discrete level is far out of resonance
and the v, -dependence of Py, changes qualitatively.
Now capture only becomes possible through the higher
momentum components of it , as explained above, and
the probability decays faster as a function of v, as v
decreases. This simply means that the idealized situa-
tion of a straight line trajectory (with an abrupt cutoff
in capture probability as a function of »,) is ap-
proached as v, — 0.

For the second system, p+ W, even at v =0 the
discrete level is out of resonance with the much nar-
rower conduction band of W (fig. 4b). Therefore, in
general, the neutralization probability is smaller than
for the Al surface (fig. 3b). At small v, Py, first
increases with increasing v, corresponding to the re-
quirement of higher perpendicular momentum compo-
nents. At v, = 0.45 kinematic resonance by the v, -level
shift occurs. Then, at still larger values of v, , Py
begins to decrease as in the previous example.

2.3. The second Born approximation

The 1A capture amplitude in {6) or (8) describes a
single scattering of a target electron off the projectile
followed by an infinite-order scattering off the target
represented by the cores of the lattice atom.s In princi-

fa) 5]
A E
; ]
-015
37 ['/" -016 777
E/-/ ,EF{ta
£ =043 " ‘

-0.5 ——

, ) -040
/ 2’ (s —
-0s8

Fig. 4. (a) Energy level diagram for the aluminium conduction
band and the ground state of hydrogen. (b} Same as {a) but for
tungsten.

ple then, this second scattering process involves a coher-
ent sum of all possible sequences of scatterings {»n,},
where n; denotes an n-times scattering process from the
lattice cores labeled . The totality of such scatterings is
represented by the expansion of the operator Uplp in
(%), Le. .

Up(2, r’)VT=exp{-i(K+ Z Vm)(:—:’)}):, Vair
’ S

where the sum over / is a sum over all lattice core
potentials ¥, (considered identical). An approximation
which has been much used in LEED theory (the kine-
matic approximation [22,24]), is to ignore contributions
in (45) from scattering processes involving more than
one lattice site at a time. Then the expansion in (45)
reduces to

Up(t, 1)) V= Zem{—*—i(f“ VX1 —= 1t 3}V,
(a6)

With this approximation the corresponding incoming
scattered electron wave in (9) is that arising from a
coherent sum of scatterings at each lattice site taken
separately.

Even with the simplification (46), the evaluation of
the 1A expression (8) is still a formidable task, since a
6-dimensional integral must be performed over momen-
tum distributions in initial and final states. Since our
aim here is to point out the major qualitative effects of
scattering off the lattice cores, the further approxima-
tion will be made of treating this scattering in first order
only, i.e. (45} is replaced by

Up(t, YW= Uy (t, ')V
=exp{ —iK(:, 1')}2%1- (47)

This approximation represents a first Born: approxima-
tion for the LEED-type lattice scattering and therefore
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a second Born approximation for the overall electron
capture amplitude. This second Born amplitude may be
written as

fra=fm /2 (48)
where fg, 15 the first order amplitude discussed in
section 2.1 and f, is the double scattering contribution

f2=fiod;'/:mdt%@f(t')iVTUg(f’, DVe(2)19;(2)).
(49)

Since
(e 1) g(e)y =1q(¢")), (50)
introduction of a complete set of plane waves gives
fu= faaf” acf"ar(@()rria(e)

xXLq(e) [ Vp(t) 1 2i(1)). (51)

Note that the scattering out of the initial state, by
the projectile potential at time 7, into the intermediate
free state |g(¢)) is separated in time from the subse-
quent scattering from this virtual state by the action of
the target potential. Using the initial and final state
momentum distributions and the broken straight line
trajectory (11) and (12) as in section 2.1 allows f, to be
written in the form,

fi=(@n)7 fdg aq’ dp Vx(a'— a)Ve(a - p)di(p)
xexp{i(p—4q)- 8}
xf:d: ex.p{i(p— 7) -v(r)+i(i; ~<i)z}
Xf‘mdr’é?‘(q'-v(!’))
xexp{i(q’ —o())-R(¢')}

g
chp{i(e[+%uz—- —2——):'}. (52)

{a) {0)

P

Fig. 5. Momentum diagram (laboratory frame) for the Thomas

double scattering mechanism: (a) for capture of a jellium

electron into a bound projectile state {compare eg. (54)]; (b)

simplified process corresponding to an initial and final state
peaking approximation.

The time integrals are performed by using the conver-
gence factors e "' and e, 7 — 0", approprate to
the prior form (1), (2) of the transition amplitude.
Performing the time integrals, the above equation can
then be expressed in a form analogous 1o (21) and (22)

L=f+f. (53)

with

fit = '—T—(Zw)_}qu dg’ dp 5?(q'—vt)171-(q’~ q)

_ Y pia-
PEFTS p(q-p)
X (p)exp{i(g"+p—g~v.) b}
)| —1_ 1 , (54)
B™—in  4%* 4+ B*4iq
and
UZ 2
az=gio b G- L (55)
gl
BE=(p~q)-v .+ % —¢,. (36)

2

Reading the integrand in (34) from right to left
beginning with ¢,(p) the two scattering cvents are
represented in momentum space by the diagrams shown
in fig. 5 (27]. In fig. Sa the initial state is considered as a
distribution of plane waves with momentum p. Each
plane wave is scattered by the projectile with momen-
tum transfer ¢ - p and strength V(g — p) into a plane
wave with momentum ¢. In the second scattering, this
plane wave is scattered off the target with momentum
transfer 4°~ ¢ and strength ¥ (¢’ — ¢) and results in
a plane wave with momentum g’. The final state
momentum distribution is peaked at ¢" = o ,.

In the high energy limit

IEI'! «%Uls ]Gf—éilﬁ%ﬂz, (57)

the classical Thomas scattering mechanism is recovered
from (54) by investigating the poies of the propagators
[A*t+in]™! and of the factor [4%+ B* +in]”!. For
initial and final momentum distributions concentrated
around p=0ind ¢’ = v, the propagator peaks at

A*f=0 or g=v, (58)
corresponding to an electron elastically scattered off the

target (fig. 5b). The direction of g is determined by the
peak of the second term in brackets in (54) at

A*T+B*=0 or g-v,.= (59)
Finaily, (58) combined with (59) implies an angle be-
tween g and v, of 60°. Hence, as in the collisions with
gas targets [27), the peak structure in the integrand of

(54) corresponds to the double-binary mechanism, il-
lustrated in fig. 6. For a broken-line trajectory there are

o
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Fig. 6. Double-binary scattering mechanism in the second
order process {see eq. (51)]. (a) The electron scatters off the
projectile through an angle of 60° at time ¢ In the second
binary collision the eleciron scatters off the target at time
¢">1, again through an angle of 60°. Both collisions take
place whilst the projectile is on the incoming trajectory (¢, ¢' <
0). (b) As (a), but for the outgoing trajectory (t, :” > 0). (¢) The
scatiering off the projectile happens at ¢ < 0. The second
scattering takes place at ¢" > ¢.

three distinct cases. In each case an initially stationary
electron is scattered by the projectile at 60° to the
projectile’s direction, thereby acquiring the same speed
as the projectile. In a subsequent elastic collision off the
target lattice, the electron acquires the same velocity as
the projectile. The small energy and momentum changes
of the projectile during the first collision are neglected.

In the limiting case of a straight line trajectory, the
first term contained in the brackets in (54) vanishes in
the coberent sum of the incoming and outgoing path
contributions (33). Analogously, in the second term the
principal parts cancel giving

1 1
AT ATBTig 24+ B), (60)

where the §-function represents energy conservation, as
explained for the corresponding first order expression
(19). In this situation the three cases of Thomas
scattering shown in fig. 6§ become indistinguishable.

The evaluation of f7 in the form (54) involves a
9-dimensional integral in momentum space. Neverthe-
less, the introduction of one additional approximation,
appropriate to the capture into s-states at high velocity,
allows this integral to be performed analytically, The
approximation, much used in the theory of gas-phase
collisions [5,26], is to replace ¢’ in all terms in (34)
except A* by its mean value ¢’ =~ v+ . This replace-
ment may not be made in the factor 4 since, in the limit
$u? > Ae, this term (55) has a pole at g = v when

g’ =v* (61)

and therefore cannot be considered to be a slowly-vary-
ing function of ¢’ around this value. Nevertheless,
when this “peaking” approximation is made, the g’
integral in (54) can be performed analytically and (54)
is reduced to a six-dimensional integral,

£ = F(2m) 7 60(0) fdg dpVi(o. - 4)

1 -
X Trizm rla-2)eilp)

] -1, 1
xexp{i{p - 4)"’}[3‘—47; T aiBtiin]
(62)
with
A=+ 3(vt—¢%) (63)
q2
BiE(p—q)~vi+—2-~—ci. (64)

We continue by specifying the target potential V. It
is assumed to be periodic with respect to any plane
parallel to the surface. Within a muffin tin model it is
expressed as a sum over core or atomic potentials V|
centered around the lattice points (R, ;, R | ;). Note
that the top layer of ion cores is situated at half of a
lattice constant inside the solid with respect to the
electronic surface. Their position is given by R, 5=
—d/2, where d is the separation of layers parallel to
the surface. The indices ;j and / count cores within a
plane parallel to the surface and planes of lattice points
parallel to the surface, respectively. For simplicity the
core potential ¥, is taken to be of the screened Coulomb

type ie.
z
Va(r) = Zexp(~Arr). (65)

For a first investigation we suppose a single cubic
crystal of identical atoms. In this case R ; can be
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chosen as independent of the plane under consideration
and the summation in (45) may be written explicitly as

Vel 2) =L X Valn— Ry, .2 =R ;). (66}
[

In momentum space the twa dimensional periodicity of
V; is expressed by a two dimensional §-function con-
taining the parallel components of the momentum @,

I}T(‘I) = %)"N;CXP{_iQ;RL:}
Xzam(g;;— Q[I)I;L\(Q)’ (67)

such that only momenta with parallel component g,
equal to a reciprocal lattice vector g, of the two dimen-
sional surface-Bravais lattice can be transferred (Bragg
condition). In the derivation of (67) the overlap between
core potentials of neighboring muffin tins is neglected.
The Fourier-transform of the core potential is V,, & is
the number of cores in a plane and A4 is the area of
the two dimenstonal unit cell,

With the initial states given by (29), the second order

contribution (62) now becomes

Vim

£ =T U N (T L [dg, dpYi(sy. 2o, —q.)
uc "gn
X Pl 0y 8y — Ky 4 —2) (B2
Ariz0 e\ B Ry TR ) Eel e
xexp{i(p,—¢:)6+i(qg. Fe )R, )}
x ;1, + ! — 1, (68)
B —in  A4+B*+in
where :
A=c,+-}(ui+2t>H‘g"~g|f'*qf), (69)
2
Br={(ky—v +g) v+ 1(v,—g)
2
—€ij:(pz—qz)uL+_2:-‘ (70)

The remaining two integrations in (68) have been
performed analytically by two comtour integrations
(separately for the two cases b > 0 and » <0, as subse-
quent to eq. (31)). In order to perform the g -integra-
tion, we slightly simplified the pole structure by drop-
ping the gl-term in the denominator of the first term in
square brackets. This additional approximation is rea-
sonable, since, for grazing incidence collisions, this term
only provides a relatively small contribution to the
coherent sum of f5 + 73 (as mentioned above this term
does not contribute at all for a straight line irajectory).

For large v, (v > kg) the approximation

(ky—v)) &= —v g (1)

in the argument of ¥ is valid and the k-dependence of
/3% is contained in k, and k,. The integration over the

band momenta can then be performed as in (40) without
further approximations.

The theory presented so far is still incomplete with
respect to the specification of the three parameters ,
Zy, and Ag,

According to (68) the second order contribution to
the scattering amplitude is proportional to N, i.e. to the
size of the surface. In the limit of an infinite surface it
would lead 1o the prediction of an infinitely large ampli-
tude. This problem arises since no account has yet been
taken of the damping effect of the crystal on a beam of
electrons propagating through it. In the theory of LEED
this difficulty is circumvented by relating ¥ to the
number of cores within the part of the surface il-
luminated by the beam of incident electrons [22]. The
origin of this N-dependence in our case is the assump-
tion inherent in (52) that the whole crystal is bathed in
plane waves with momentz ¢ and g’, where |g) is
scattered into |g”) by the coherent action of M cores
per plane. With respect to the number of planes and the
number of scattering centres, ¥, in each plane, we now
refer to the finite mean free path A of electrons in
solids. Electrons relevant to our calculation have a
mean free path of roughiy 5 A [24]. As in the case of
LEED we therefore only need to take into account a
small number of layers, such that for most crystals only
the surface layer and the next layer inside the solid are
relevant. The sum over / in {66) is then restricted to two
terms. An estimate of N is obtained by considering the
number of cores contained in a circle of radius A lying
in the surface. For most metals this leads to ¥ =5 to
10.

With respect to the core potential (65) the screening
of the (large) nuclear charge Z, .. by core and band
electrons is taken into account by the parameters Z.
and Ay. The screening constant, A, represents screen-
ing of the central core charges by the metal electron gas.
In the Thomas-Fermi approximation [29] it is given by

ke

Ar= - (72)
For tungsten (kg=0.69) it amounts to A;:=0381 in
fairly good agreement with the assumption inherent in
the derivation"of (67) of nonoverlapping core potentials:
The inverse of Ay is about one fourth of the lattice
spacing, d= 6. As the effective core charge we use
Z1 =1, assuming complete screening by Z1 . — 1 elec-
trons. Since f, is directly proportional to both Z and
N (and good estimates for both parameters are difficult
to obtain), the product ZN can be regarded, alterna-
tively, as a parameter to be deterrnined by comparison
with experimental results,

We emphasize that the second Born contribution in
distinction to the first Born, depends criticaily upon the
properties of the crystal lattice. In view of the difficulty
of assessing reliably these dependences, the results to be
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presented below can be considered qualitative only.
Indeed it is this qualitative aspect of higher-order
scattering that we wish to emphasize. Nevertheless the
major result of the paper is quantitative, namely, that
above a collision velocity of approximately 3 aau. (225
keV /amu) we would expect the contribution from the
first Born process to be dominated by higher-order
scattering off the lattice atoms. The second major con-
ciusion of our study is that these higher- order contribu-
tions depend decisively upon whether the lattice cores
act coherently or not in scatiering the target electrons
which are set in motion by an initial scattering off the
projectile potential.

The qualitative nature of the second Bom countribu-
tion is best illustrated by considering that a target
electron of given initial momentum k is to be captured.
Such an experiment could be performed in principle,
although extremely difficult in practice. The effects of
coherence on the nature of the double-scattering process
is best seen by considering that initially only a single
scattering centre (or an assembly of spatially uncorre-
lated centres) is present, as in the atomic case. For
simplicity, a straight line trajectory v, =wv parallel to
the surface is assumed. The intermediate momentum ¢
in (62) is to be integrated over and in the collision with
the target a momentum (v— g) is to transferred. The
integral peaks near where the Thomas condition g = v,
g-v=+v’ is satisfied. Since the potential V¢ transfers
momentum accerding to

Ve(g—-o)~[1vo— g2 +2%] " (73)
or
Pr(g—o)~ [@®+ 3] (74)

at the Thomas peak, independent of v, the Thomas
condition can be satisfied for all incident velocities v.
The singularity in ¢ for each value of v is integrable
and provides a smoothly decreasing capture probability
P(b) as v increases. :

However, in the case of a periodic target potential
V¢ as in (66), the Fourer transformn {(67) contains an
additional §-function. The straight line trajectory pro-
vides also the §-function (60). Then the amplitude (62)
contains the factor (in the light energy limit)

8(g,+q,)8(g —v+q,)8(qo— 1%}
=6(gy+qy)6(gx_%U)G(va—i'uz)' (75)

Then one sees that since Fp can only transmit given
values of momenta parallel to the surface, the second
Born scattering can lead to capture only for distinct
values of the incident velocity, given by

pv=2g,, (76)

where g, is the component of a reciprocal lattice vector
parailel to v, ic. parallel to the surface. We remind

00—

log( 1°, )
i
o
i

-10.0

Fig. 7. Second-order contribution to the differential K-shell
capture probability d P, /d& with k =(0.5,0.1, 0.5) in the col-
lision of a proton with an aluminium surface. The different

curves are for Aoar = 21 - manm- = =4

-

ourselves that under the same assumptions, i.e. high
velocity and straight line motion, the first Born ap-
proximation is identically zero for all v.

For not necessarily very high velocities, the generali-
zation of (76) is

vk g (kg ) + 2+ V)= k2, (TT)

which again follows from (60).

As with the first Born, the effect of the broken-line
trajectory and the momenturn distribution of mitial and
finral states serves to smear out these effects and gives a
finite capture probability for all velocities. Nevertheless,
peaks remain, localized near velocities given by (76) as
seen in fig. 7. This figure also illustrates the extreme
dependence of the high-v, capture probability on the
reciprocal lattice structure. There are n_,, peaks in the
probability according as the sum in (68) is over recipro-
cal lattice veciors

2o
g||=(gx’ gy)=7(nxv ny), (78)
with
Py ™= =M eeos Hinar (79)

For a given n_,, there are (27, + 1} reciprocal
lattice vectors in the sum.

The total probability of electron capture from the
the second-order process alone is given by (cf. eq. (39)),

Py = fksk,d" ol fa(k)12 (80)

When capture only from a given state of momentum &
in the band is considered we compute the differential
probability

= N0 (81)

In fig. 7, this quantity is shown for a square surface
lattice with lattice spacing 4= 7.7 a.u., appropriate for
an aluminium surface. Only the surface layer is taken



482 U. Thumm, J.S. Briggs / Ion newtralization ar surfaces

Fig. 8. As fig. 7 with #_ . =35, but k= (k_ 0.1,0.5), where
k,=01;------ =03; - =035,

Fig. 9. As fig. 8 but for & = (0.5, 0.1, &) with k, =01,
------ = 0.3

into account and a perpendicular velocity of 0.1 a.w is
assumed.

In the exact evaluation of (62), the nature of the
peaks in the second-order capture probability is depen-
dent upon the jellium momentum %&. There are two
effects. The peaks in dP,/dk shift their position
according to the x-component of &, as shown in fig. 8
(cf. eq. (77)). They remain nearly fixed in position but
change their magnitude as &, increases as shown in fig.
9. This latter effect is consistent with an increasing
transmuission coefficient with increasing &, so that for
fixed impact parameter more electron density is encoun-
tered. Both fig. 8 and fig. 9 are for an aluminium
surface.

The shift of the peak has the consequence that an
integral over &k smooths out the structure. Hence the

log( Probability )
1

-6.0 +—~ T T — —
25 3.0 a5 4.0 4.5
v

Fig. 10. First-order Py, and second-order P, contribution o
the K-shell capture probability. Pai------ Py

total capture probability, calculated from eq. (80) and
shown in fig. 10 for an aluminium surface, is relatively
smooth, although some vestiges of the structure do
remain. Most importantly, however, fig. 10 shows that
at the high velocities considered here the second-order
capture probability is roughly two orders of magnitude
larger than the first-order. The capture probability in
fig. 10, integrated over the contributions of ail occupied
band states at zero temperature is for v | = 0.1, n,, = 2,
N =35 and Ay =10.94. The distance of closest approach
b has been calculated within the Lindhard continuous
string model {30}, in connection with a Thomas-Fermi
interatomic potential. This yields a distance of closes:
approach to the top layer of 0.13 au, or b= —~3.72.
The projectile nucleus therefore penetrates deeply into
the electronic surface. All features of figs. 7 1o 10 when
calculated for a tungsten surface are qualitatively the
same as for an aluminium surface. In the former case
however, the dominance of the second-order contribu-
tion over the first-order is more pronounced than in fig,
10, since the first-order contribution diminishes maore
rapidly with o, due to the fact that the unperturbed
proton 1s level is out of resonance with the band states.

3. Conclusions

We have considered the role of the double scattering
process in the capture of electrons from surfaces by ions
at grazing incidence. In this mechanism electrons are
not captured directly (a three body collision) but are
first scattered by the incident ion to acquire a speed
equal to that of the ion. They then scatter elastically off
the solid (a process similar to LEED) to emerge from
the surface with a velocity similar to that of the iom,
thereby facilitating their capture. For quasi-free band
electrons we have shown that this double-scattering
mechanism is the dominant mode of capture when the
ion velocity component parallel to the surface greatly
exceeds the electron Fermi velocity. We remark also
that this mechanism should give important contribu-
tions to the momentum distribution of free electrons
ejected from the surface by fast, grazing incidence ion
beams. "
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