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Abstract. In  an ion-atom collision at velocity U such that U >> Z,, the nuclear charge of 
the target, the first Born approximation is expected to be valid. However, i f  at the same 
time Z , > > Z , ,  where Z ,  is the projectile nuclear charge, the first Born approximation is 
never valid at non-relativistic velocities since the projectile field cannot be regarded as a 
perturbation. A theory of inelastic processes in such ion-atom collisions is presented and 
applied specifically to the case of excitation of K-shell projectile electrons by the initially 
neutral target atom. The theory is formulated in such a way as to emphasise the polarisation 
of the target by the strong projectile ionic field and to see immediately the departures from 
the first Born approximation. The principal effects are that the target nucleus and electrons 
act coherently in exciting the projectile, rather than incoherently as in the first Born 
approximation, and that collisions in which the target remains in its ground state are greatly 
suppressed compared with the first Born result. 

1. Introduction 

The theory of the collision between partially stripped ions and target atoms is under- 
going rapid development under the impetus of new experimental results made possible 
by technological advances in ion sources and accelerating techniques. Particularly 
noteworthy and  of direct interest here is the use of few-electron highly charged ions 
as projectiles, in which the processes of projectile excitation, projectile ionisation, 
electron capture to the projectile continuum and simultaneous electron excitation and 
capture are readily observed. The theoretical description of such collision processes 
requires an  extension of existing theories to incorporate the effect of the strong field 
of the incident ion and  the dynamical role played by the electron-electron interactions. 
The two aspects are quite separate of course and  the problem of the dynamical treatment 
of projectile-electron-target-electron interaction persists when projectiles of low charge 
are used. 

Any theory of few-body collisions seeks to identify simplifications permissible under 
certain limiting values of the dynamical parameters. For example, when the collision 
velocity is I O W  compared with electronic orbital velocities the molecular or  adiabatic 
description of a collision is used. Here the electron-nucleus and  electron-electron 
interactions can be calculated to a high degree of accuracy for arbitrary nuclear charges 
at each fixed internuclear distance, with the nuclear motion appearing as the perturbing 
element (Briggs 1976). At higher collision velocities the adiabatic assumption, par- 
ticularly as regards the electron-electron interaction, breaks down and alternative 
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approaches involving atomic basis set expansions or explicit high-order many-particle 
scattering theory, as considered in this work, are necessary. 

In the limit of collision velocity much greater than the electron orbital velocities, 
the first Born approximation is appropriate when the effective electron-nuclear forces 
are of the same order of magnitude as the electron-electron force. The exchange 
interaction between projectile and target electrons may be neglected and the transition 
amplitude factors into a part dependent only upon projectile properties and a part 
dependent upon target properties. The collision is characterised by an impulsive 
exchange of momentum between the two systems, as is always the case in the first 
Born approximation. The first Born theory was originally developed for collisions 
between one-electron atoms and ions (Bates and Griffing 1953, 1954, 1955) but the 
extension to many-electron systems is straightforward (Briggs and Taulbjerg 1978, 
Gillespie et a1 1978, Hartley and Walters 1987). 

The first Born theory applies under the condition that the velocity U is such that 
the perturbing part of the electron-nucleus interaction, whose strength is characterised 
by the Sommerfeld parameter v = Z / u ,  where Z is the effective charge from either 
nucleus, is small, i.e. v << 1. When this is true, the electron-electron perturbation of 
relative strength 1 / Z  is even smaller. The non-relativistic theory requires further that 
U<< c, the speed of light. The essential point to be emphasised in this paper is that 
current experiments use projectiles of such high charge Z that Z / v < <  1 cannot be 
reached before the condition U < <  c is violated, that is the non-relativistic first Born 
approximation is never applicable to these collisions, even though the collision velocity 
may be large compared with target electron orbital velocities. The first Born theory 
assumes that the undistorted target wavefunction may be used in the transition matrix 
element. However when Zp/v is not small (where Zp is the projectile effective charge) 
it is clear that severe distortion of the target wavefunction may accompany any inelastic 
scattering event. The object of this paper is to develop a theory of collisions between 
few-electron highly charged projectile ions and  light neutral targets in which the 
distortion of the target is explicitly taken into account. The particular process to be 
considered will be excitation of a single projectile electron where the final state of the 
target is not monitored. The approach used is similar to that employed in the develop- 
ment of the impulse approximation (McDowell 1961, Coleman 1969) or the strong- 
potential Born approximation (Macek and Alston 1982) for charge exchange in ion- 
atom collisions. The similarity lies essentially in the approximation of the full Green 
operator, involving both nucleus-electron potentials, by one involving only one of the 
nucleus-electron potentials. 

It should be noted that a theory of projectile excitation using the Schwinger 
variational principle in a time-dependent formalism has been developed by BrendlC 
et a1 (1985). For collisions with 2, >> Zr they find that higher-order scattering processes 
are important. Our theory, although derived from a different point of view, leads to 
the same qualitative conclusion. 

The theory will be developed as follows. In  Q 2 the formal scattering theory for an  
ion-atom collision leading to excitation of the projectile and/or  target will be developed 
for the simplified case of a one-electron projectile and target. In the situation where 
the projectile residual charge is much greater than the target nuclear charge a form of 
the strong-potential Born approximation (Macek and Alston 1982) is developed in 
which the polarisation of the target by the projectile is represented explicitly. The 
resulting T-matrix element for projectile excitation is evaluated approximately in 8 3 
where the ensuing differences from results obtained within the first Born approximation 
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are particularly emphasised. In  6 4  numerical results for total cross sections for 
projectile excitation by helium atoms are presented for incident ions of increasing 
nuclear charge. Atomic units are used throughout. 

2. The T matrix for projectile excitation 

The chosen coordinates in which to describe the collision of a one-electron ion with 
a target one-electron ion or  atom under the condition Zp >> Z ,  are shown in figure 1, 
where P, T, P‘ are the centre of mass of projectile, target and  projectile together with 
the target electron, respectively. The vector r’p gives the position of the target electron 
with respect to P‘. The projectile and target masses are M P  and M T  respectively and  
the electron mass m is numerically equal to unity. Definition of the mass ratios 

allows the transformation between the coordinates to be expressed as 

rf ,=arT-RT R p =  (aP’-1)rT-/3’RT (2 .2)  

and 

r,=P’r’p-Rp R T = ( a P ’ - 1 ) r f , - a R p .  (2 .3)  

The various interparticle vectors appearing in the Coulomb interactions involved are, 
apart from rp and r,, 

p = ( p  - l ) rp+  @‘- l ) r f , - R P  ( 2 . 4 ~ )  

r, - p = (1 - p)rp+  r; 

r p + p = ~ r , + ( ~ ’ - l ) r f , - R p  

( 2 . 4 b )  

( 2 . 4 ~ )  

r , + p  - rT= prp-  r;. ( 2 . 4 d )  

In defining the T-matrix element for excitation of the projectile the initial and  final 
states must be specified. In the initial state the two electrons are infinitely separated 
and the initial state reads 

( R ~ ,  rp, 4@,) = (257-3’2 exp(iK, * R ~ ) ( F P ( ~ ~ ) ( F T ( ~ ~ )  ( 2 . 5 )  

e, 

Figure 1. Coordinates for H-like collision partners. 



836 U Thumm, J S Briggs and 0 Scholler 

where cpp is the initial bound state of the projectile electron and (PT that of the target 
electron. The relative momentum K ,  of projectile ion and target atom is 

where U, is the initial relative velocity of the colliding partners. 
The final state is more difficult. Comparison will be made with experiments in 

which the final state of the target electron is not monitored. Hence a summation will 
be made over a complete set of the unobserved target electron states. Nevertheless 
these states include excited and  continuum states of both target and projectile as final 
physical states. Here, to carry out this summation, the final relative momentum of the 
colliding partners will be taken to be that calculated with the initial target electron 
referred to the target nucleus. Then the final state of the relative motion is written 

where cpfp is the final projectile excited state and cpr is the unspecified final state of the 
target electron over which a summation will be made. The relative momentum of the 
final products is written as 

where vf is the final relative velocity. Strictly speaking, for those final states for which 
the unobserved target electron is bound to the projectile one should define 

but this only introduces errors in the definition of K,- which are of order ( m / M P ) .  
In writing down the final state (2.7), the exchange of electrons has been neglected, 

i.e. the final two-electron state is not antisymmetrised. Although formally easy to 
include, exchange is omitted here to considerably simplify the nevertheless formidable 
subsequent calculation of the T-matrix elements. Its omission is justified on the grounds 
that the two electrons mostly occupy two very different parts of space during the 
collision. The projectile electron is involved in a transition from its tightly bound 1s 
orbital into the lowest lying excited states. As we will require the condition Z,<< Zp 
for the validity of subsequent approximations, the target electron begins in an orbit 
rather diffuse compared with the projectile electron orbits and most of the weight in 
the summation over unobserved states will come from such diffuse states. 

With this definition of initial and final states the T-matrix element for projectile 
excitation reads 

T/; =(a/ ITI@O I Y ( 1 +  G+V)I@,), (2.10) 

where G'( E )  = ( E  - H + i6)- '  and H is the full Hamiltonian of the four interacting 
particles with total energy E. The perturbing potential V, is that part of the full 
Coulomb interaction which is not diagonalised in the initial and final states, i.e. 

Y = H - H ,  (2.1 1) 

H , = K ( R T , r p , r i - ) +  vp,(rp)+VTt(rT). (2.12) 

where 



Projectile excitation in strong1.y asymmetric ion- atom collisions 837 

Here Kis  the total kinetic energy of the system of two electrons and two nuclei, Vp, 
is the Coulomb interaction between projectile nucleus P and projectile electron p and 
V,, that between target nucleus T and target electron t. The residual interaction V,  is 
then composed of four elements, i.e. 

= v p t +  VT,? v p t +  VTp. (2.13) 

In the following, the internuclear repulsion V,, will be corisistently neglected, i.e. 
rectilinear trajectories will be assumed for initial and final relative motion of the 
collision fragments. At the velocities considered here the trajectories contributing most 
to the total cross section correspond to only small-angle deflection. 

The T-matrix element (2.10) can be written 

T,i = ( @ r I V , l W  (2.14) 

where U': is the exact scattering state 

lY:) = (1  + G+V,)l@,). (2.15) 

Here V: will be approximated by simplifying the potefltial V, occurring both explicitly 
and in the Green operator G' = ( E  - H,- VI+ i i 3 - I  in (2.15). This simplification will 
be appropriate to the situation Z, >> Z,. 

Since the major new effect to be incorporated in the theory here is the polarisation 
of the target ground state, mostly occurring at internuclear distances larger than the 
projectile ground-state orbital radius, the combined effect of the projectile ion on  the 
target electron will be incorporated into a single effective ionic potential, i.e. 

QR = v,, + v,, 
1 - -- - zp + 

lrT-Pl IP+rP-rTI  

(2.16) 

The total Hamiltonian can now be divided in two ways, one in which the target 
electron feels the effect of the projectile ion potential PPI and one in which it feels 
predominantly the target nuclear potential V,, , i.e. 

H = ( K +  V p p + ~ p t ) + V T t + V T p  

(2.17) 

f f = ( K +  v p p i  v,,)+ Qpt+ VTp 
* 

= H i  + Vp, + VT,. (2.18) 

At this stage a strong-potential approximation will be invoked in assuming that the 
projectile electron, to be excited, propagates predominantly during the collision under 
the influence of the projectile potential Vpp. Then VT, can be dropped from (2.15), 
(2.17) and  (2.18). It will still be retained in the transition matrix element (2.14), of 
course, amounting to a first-order strong-potential Born (SPB)  approximation in the 
potentials V,, and VTp. Now the exact scattering state (2.15) is approximated by 

lYT'spB') = ( 1  + G;QR)l@,) (2.19) 
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where 

G G = [ E - H p + i 8 ] - ’ .  (2.20) 

One sees that this strong-potential approximation considers the major distortion of 
the target initial state to be represented by virtual states of the projectile, i.e. by 
exchange polarisation. The direct polarisation, represented by virtual excitation into 
target excited states is considered to be less important in the situation in which 2, >> 2, 
and is neglected. 

3. Evaluation of the T-matrix element 

We decompose the motion of the target nucleus and the target electron in plane waves 
with momenta kT and k with respect to the centres of mass P of the projectile nucleus 
and electron and P’ of the projectile nucleus, the projectile electron and the target 
electron respectively (compare figure 1). With 

I@,) = IK,, cpP, cp:) (rb, Rp/k, kT) = ( 2 ~ ) - ~  exp(ik r;) exp(ik, RP) (3.1) 
we find 

I ~ T ( S P H ) ) = I ~ P )  I d k , d k ( l + ~ ; c P t ) ~ k ,  kT)(k,kTlK,, V Y )  (3.2) 

where the overlap integral is given by 

( k, k&, cp T) = (2 T ) -9/2 d r, dRT exp( -i k - r L - i kT Rp + i K,  * RT) cpT( rT) 

= S(k+P‘k,iK,)GT[ak - (1 - aP’)kT] (3.3) 
and (6: is the initial target state in momentum space. Fourier transforms are performed 
according to 

f ( k )  = ( 2 ~ ) ~ ~ ’ ~  d r f ( r )  exp(--ik. r). (3.4) 

Represented in the appropriate coordinates the remaining factor in (3.2) separates as 

( r ~ ,  4 ,  R P ~ P P J ( ~  + G:cPt)lk, k ~ )  = (2.rr)-7/2vP(r~) exp(ik-, Rp)Wl,,(rL) 

91,F(rL) = ( ~ T ) - ~ ’ ~ ( ~ + G ; ( E ) ? ~ ~ )  exp(ik. rb) 
G;(E) = ( E  - K(rb ) -  Pppt+iS)-’  

(3.5) 

(3.6) 

(3.7) 

where the off-shell wavefunction Ptr is defined by 

(3.8) 

The second term in (3.6) takes account of the exchange polarisation. Omission of this 
term leads us back to the first Born approximation, so that replacement of by its 
plane wave part provides an easy check on the SPB approximation. In (3 .7) ,  K(rL) is 
the kinetic energy operator of the target electron and E p, E? the initial binding energies 
of projectile and target electron, respectively. Note that M and p denote two different 
reduced masses 
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according to whether the target electron is bound to the target or projectile nucleus, 
respectively. With (3.2), (3.3) and (3.5) the scattering wavefunction is given by 

( rp ,  rb, R ~ ~ v : ' ~ ~ ~ ' )  

= (27i)-3/: P - 1 cpP(rp) i dk exp[-P-'(k + K,)Rplyl~,,(rb)@T(P'- 'k + 0 ) .  

(3.10) 

This result can be interpreted as follows. The initial projectile state remains undistorted. 
The initial target state is decomposed in plane waves with momentum k, which, under 
the influence of qpt, are modified to intermediate distorted states described by ylk+.F. 

These wavefunctions are off shell, since in general $k2  # e. Finally, the off-shell 
wavefunctions are averaged over the initial momentum distribution of the target 
electron. The plane wave factor in the integrand describes the rectilinear motion of 
the target nucleus with respect to P'. 

We now use (3.10) to calculate the T-matrix element 

TifsP") = (a+ VTP+ v,,+ V R p p S P B ) )  (3.11) 

using the Fourier transfo:ms 

1 
- ZT ?exp{i[prp- (1 --P')rb- R,]q} 
2T2  4 

1 v = - 1 3 exp[i(Prp- rL)ql 
tp 277' 4* 

(3.12a) 

(3.12b) 

( 3 . 1 2 ~ )  

We first remark that the third term in (3.11) includes the factor 

(971 exPM1 -P)rP*ql /cpP)-O(m/MP) (3.13) 

since P = 1 +O(m/M,)  and (cpPIcpT)=O. Hence the term (3.13) can be neglected to 
within an error of the order m / M p .  The remaining two terms in (3.11) correspond to 
the electron-electron and the target-nucleus-projectile-electron interaction. Trans- 
forming cp: into momentum space, we obtain (Thumm 1985) 

x @ ; * ( k ' )  exp(-ik'.  r,){exp(-iq. rL)-ZTexp[-i(l - P ' ) q *  rL-iq. Rp]} 

x exp[-iP-'(k + K , ) R ~ ] V ~ , ~ ( ~ L ) $ ~ ( P ' - ' ~ +  v )  

x [ $;*( - "K, + p ' - ' K ,  + P ' - l k )  - Z,$f*( - "Kf + p'-IK, + p ' - l k  + q)] 
(3.14) 

where the projectile form factor 
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and the momentum transfer vector 

K E K,  - K, (3.16) 

have been introduced. 

within errors of the order m / M  (3.14) can be rewritten as 
For small momentum transfers K, i.e. K, = K,  = Mu, --cyKf+ ,B-’K,  = K + o and 

1 
TjSPB) = 3 1 $ dk  e ;( -q )$  l-b3F( K + k - U +  q ) @ y ( k ) [ @ : * ( K  + k) 

- ZT@:’(K + k + q ) ] .  (3.17) 

To the order ( m / M )  the expression (3.17) is exact. However the execution of the 
six-dimensional integral presents formidable numerical problems. In  order to render 
this integral tractable and, more importantly, to illuminate the precise relationship to 
the first Born approximation we will make two approximations. The first is to put the 
distorted wave on shell, i.e. to treat the target electron as if it were initially free. 
This involves the replacement of 91-u,F( Y )  by the on-shell wavefunction 

T’:(r)=(2.rr)-’”exp(ik’. r ) G k ( r )  (3.18) 

( k ’ 5  k-U) 

where we have defined 

G k s ( r ) = N ( v )  lF’l(-iv, 1; i (k’ r -k’ .  v ) )  

with 

N (  v )  = e x p ( - 7 ~ ~ / 2 ) r (  1 + i v )  

and 

V =  - ( Z p -  I) /k’.  

This on-shell approximation allows (3.17) to be replaced by 

(3.19) 

(3.20) 

(3.21) 

1 
TifPR1=- 1 dqq-’&Pf(-q) 1 dk@T(k) 

( 2 ~ ) - ~ ’ ~ 6 ~ _ ” ( K  + q ) [ @ r * ( K +  k)  - Z $ f * ( K  + k +  q ) ] .  

2 n 2  
(3.22) 

We note that the term 6 is the only velocity-dependent part of (3.22) and represents 
the velocity-dependent polarisation of the target wavefunction. The first Born approxi- 
mation removes this velocity dependence by replacing G k  ( Y )  in (3.18) by unity, which 
gives 6 k - u ( K  + q )  = ( 2 7 ~ ) ~ ’ ~ 6 ( K  + q )  independent of U and k. Then (3.22) reduces to 

(3.23) 

as given by Briggs and Taulbjerg (1978). To evaluate (3.22) further we make a peaking 
approximation whose validity rests upon the fact that Zp >> Z, and we restrict ourselves 
to velocities v >> Z, .  Then one recognises that @T(k) is strongly peaked near k = 0 in 
momentum space and hence one can approximate 6k-U by its value taken at 
k = 0. This allows the k integral in (3.22) to be rewritten to give 

1 & I ;  ( K  1 ( 4 ( K  1 - Z d , ,  1 ~ ‘ B l l  -- K - 2  

2 7T2 
I f  - 

T(SPB) = ~ dq  q - 2 & ; ( - q ) 6 - L , ( K  + q ) [ & ; ( K )  - ZT&;(K + q ) ] .  (3.24) 
2 7T2 

I t  
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The second step of the peaking approximation is to recognise that & , ( K + 9 )  is 
peaked near K + 9 = 0 (in the first Born approximation it is a S function) and to replace 
9 by -K in the rest of the integrand, except the term E;(K  + 9 )  which also has a peak 
at K = -9, when f =  i. This approximation allows the T-matrix element to be written 

(3.25) 

TjsPB) = 3 K-’[ F pf( K )  G-,(O) E;( K )  - Z T E  $( K )  

In fact the peaking in the first term, arising from the electron-electron interaction, can 
be relaxed somewhat in that only the factor q P 2  is withdrawn from the integral with 
the result that E ; ( K ) G - , ( O )  is replaced by 

,?;(U, K)=(qofPIG-,(r) exp(-iK. r)lqp). (3.26) 

For subsequent calculation this more accurate form will be used. Finally we recognise 
that 

1 d 9 6 - , ( K + q ) ~ > ( K + 9 )  =(vFlG-,(r)bT) (3.27) 

and  is independent of K. Hence the 7’-matrix element (3.24) is also approximated by 
the form 

(3.28) 

This form illustrates clearly that when we put G-,(r )  = 1 we recover the first Born 
approximation, consistent with (3.18). 

In most cases projectile excitation has been measured without specifying the final 
target state (Schiebel et a1 1977, Tawara et a1 1978, 1979, Terasawa et a1 1983, Wohrer 
et al 1986). We therefore sum in closure approximation over the complete set of final 
target states. We write the total cross section for projectile excitation a,/. as a sum of 
the singly inelastic part a,fo, where the target remains in its ground state, and  a doubly 
inelastic contribution Ef #,,adf which includes simultaneous excitation of target and  
projectile: 

(3.29a) 

i 1 
dq &( K + q )  E:(  K + s)]. 

TS,PB = ( 1 /27r2 )K2(  E>( U, K )  E>( K )  - ZTE ;( K ) (  (PJI G-,( r)lpT)). 

= (+l/,o + c arf,f 
f # O  

(3.29b) 

( 3 . 2 9 ~ )  

Since the most important contribution to the sum in ( 3 . 2 9 ~ )  is due to low lying excited 
target states, the averaged target excitation energy ACT is chosen as the 1s + 2p excitation 
energy AE:&. In general (3.29) depends strongly on K,,, and  and  the doubly 
inelastic cross section ( 3 . 2 9 ~ )  is sensitive to the chosen value of A i T .  However, for 
I s  +f excitation of heavy projectile ions colliding with light targets, K is principally 
determined by A E ~ ~ , ~ > > A E ~ ,  such that the uncertainty in the choice of AbT does not 
influence the final results significantly. In other words, the closure over final target 
states is nearly exact. 

Using the completeness relation 

c I v X d  = 1 - l c p ~ ) ( ~ ~ l  (3.30) 
f ’ # O  
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the sum in ( 3 . 2 9 ~ )  disappears and (3.296, c )  can now be written in the final form 

(3.31) 

F,, and S,, are generalisations of the coherent and incoherent scattering functions (Kim 
and Inokuti 1968). They are given in terms of form factors and overlap integrals by 

F B ' ( K )  = INT&&(K)-ZT12 ( 3 . 3 2 ~ )  

FTB(v, K )  = /N(v) I2 /hgr , (U,  K)E&(K)-ZT~(U)I '  (3.326) 

and (we now suppress the arguments on the right-hand side) 

SB ' (K)  = NT(1 +"I2) (3.33a) 

syB(u, K )  = lN12{Nh,,12(1 - /&~o12)+Z:(r - l f12) -2NTZ,Re[g~(s- f ) ]s ; f , }  (3.336) 

for the first Born and SPB approximations, respectively. In equations (3.326) and  
(3.336) we have defined 

(3.34) 

and 

In contrast to the SPB scattering functions the scattering functions in the Born approxi- 
mation are v independent. Another new feature in comparison with the first Born 
approximation is that the inelastic scattering function (3.336) depends on the target- 
nucleus-projectile-electron interaction, which follows from the fact that the distorted 
initial target state is not orthogonal to final excited states of the target. The functions 
(3.34) are defined in such a way that their deviation from 1 indicates the strength of 
the polarisation. If they are replaced by 1 the scattering functions reduce to their first 
Born expressions. The factors NT and NP are equal to 1 or 2 according to whether 
the appropriate K shell is singly or doubly occupied initially. 

4. Results 

In view of the approximate evaluation of the SPB T-matrix element in (3.17), leading 
to the tractable form (3.28), no  great accuracy of our calculations is claimed although 
the correct qualitative features of a more exact evaluation are retained. Rather we 
emphasise these qualitative features with the main aim of indicating that for collisions 
involving highly charged ions the first Born approximation is never valid at non- 
relativistic collision velocities. As examples we consider the excitation 1s' IS+ ls2p 'P 
of F7+ and Fe24' ions in collisions with neutral helium. In each case we consider the 
features of the first Born and SPB approximations in the appropriate velocity regions. 
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0 5 10 15  20 2 5  30 
V e l o c i t y  I a u  i 

1 0 - w  
0 5 10 15 20 25  30 

V e l o c i t y  I ou I 

Figure 2. Total cross section for 1s' ' S +  l s2p  ' P  excitation of F'+ colliding with neutral 
He. The individual singly ( ' ' and  doubly (- . -) inelastic contributions are  also shown. 
( a )  First Born approximation. ( b )  S P H  approximation. The  first Born cross section due  
to excitation by the target nucleus alone is also shown in ( b )  for comparison (---). 
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0 5 10 15 20 25  30 
V e l o c i t y  I o u  1 

Figure 3. As figure 2 but for Fez4' projectiles. The experimental value is taken from 
Wohrer ef a /  (1986). 
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The wavefunctions have been taken to be of effective hydrogenic form, with full 
screening for the final and no  screening for the initial projectile state and the Slater 
charge for the target state. The excitation energies are taken from experiment. 

The total cross section for excitation of F7+ ions is shown in figure 2, with the 
separate contributions of singly inelastic and doubly inelastic collisions indicated. At 
low collision velocities high momentum transfer collisions dominate (K,,, + CO as U + 0 
in (3.29b)) corresponding to very close collisions. Under these circumstances the target 
nucleus and electrons scatter essentially independently and  hence, in the Born approxi- 
mation, the relative contribution of singly inelastic (unscreened nuclear charge 2,) to 
doubly inelastic (two free electrons of charge unity) is approximately 2;/2 = 2 in the 
case of helium. This accounts well for the relative magnitudes of the two contributions 
at and below the peak in the cross sections as shown in figure 2 .  In this velocity region 
the singly inelastic contribution is also close to the first Born result for a bare helium 
nucleus. This is because the screening by the ground-state helium electrons plays no  
role for such short-distance collisions. By contrast at  higher collision velocities, v >> Zp, 
corresponding to smaller momentum transfers and larger distance collisions, the 
screening effect becomes dominant (the helium atom behaves as a neutral particle) 
and the excitation cross section decreases rapidly below that due to a bare nucleus 
and also below that due  to the target electrons alone (the doubly inelastic contribution). 
The SPB result (figure 2 b ) ,  incorporating exchange distortion of the target, shows a 
strong deviation from the first Born result. The major change is a drastic reduction in 
the singly inelastic cross section at low velocity. This is quite simply due to the large 
polarising effect of the projectile nuclear charge on the helium ground state which 
makes it highly unlikely that in a close collision the helium atom will penetrate 
undistorted to short distances. In turn this implies that at low velocities the doubly 
inelastic contribution completely dominates the total cross section. However, as the 
collision velocity increases the relative contribution of the singly inelastic cross section 
also increases due to the reduced polarisation effect. The doubly inelastic cross section 
at low velocity is far greater than that in the first Born approximation. In the latter 
this contribution arises solely from the electron-electron interaction. The SPB matrix 
element does not factor in this way and the doubly inelastic contribution is due to a 
coherent sum of the electron and nuclear fields. This further accounts for the fact that 
this contribution alone at low velocities exceeds that from the first Born approximation 
for a bare nucleus. 

All these qualitative features are exaggerated further by an  increase in projectile 
nuclear charge, as shown in figure 3 for the case of collisions of Fe24+ ions with helium. 
In this case the ratio of singly to doubly inelastic collisions is almost exactly 2 :  1 in 
the non-relativistic velocity region in the first Born approximation (figure 3( a ) ) .  

The singly inelastic contribution is in this case identical with that due  to the target 
nucleus alone, indicating that for these short distances of approach the screening by 
target electrons plays no  role. Interestingly the total cross section agrees with the one 
available data point. That this agreement is fortuitous is demonstrated in the SPB 

approximation (figure 3( b ) )  i n  which the singly inelastic contribution contributes a 
negligible amount to the total cross section. This is to be expected since a helium 
atom in its ground state cannot penetrate to the K shell of Fe without itself being 
severely distorted (i.e. excited, ionised or captured). The doubly inelastic cross section 
sums over these processes. Again the doubly inelastic cross section, arising from a 
coherent superposition of the exciting fields of target electrons and  nucleus, lies above 
that of the nucleus alone and is in good agreement with the experimental measurement. 
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5. Conclusions 

We have re-examined the theory of excitation in ion-atom collisions in the situation 
where one of the nuclear fields is so strong that the condition Z /  U << 1 (where Z is the 
nuclear charge and U the collision velocity) cannot be met at non-relativistic velocities. 
This invalidates the first Born approximation. For the particular case of K-shell 
excitation of a highly charged projectile, the strong polarising effect of the projectile 
on a neutral target has been taken into account by a Faddeev expansion of the full 
Green operator for the ion-atom system. This leads to a corrected form of the first 
Born approximation in which the expressions for singly and doubly inelastic scattering 
cross sections contain form factors which differ from their first Born forms by the 
inclusion of terms expressing the polarisation of the target electrons. An evaluation 
of these expressions results in a strongly reduced contribution of singly inelastic 
scattering. The total cross section is dominated by doubly inelastic events in which 
the projectile electron is excited by the coherent operation of the target electrons and 
nucleus. 
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