ball1.gif OVRO

Leitch et al. use 15 and 32 GHz data from the ground-based OVRO (Owens Valley Radio Observatory) experiment in Owens Valley, in conjunction with foreground contamination data, to constrain CMBR anisotropy.

The FWHM of the beam, assumed to be gaussian, is $\sigma_{\rm FWHM} =
7.37^\prime$. The zero-lag window function of the three-beam experiment is

W_\ell = e^{-\sigma_{\rm G}{}^2 (\ell + 0.5)^2}
[1.5 - 2 P...
...m cos}(\Phi_0)) + 0.5 P_\ell ({\rm cos}(2\Phi_0))] ,

where $\sigma_{\rm G} = \sigma_{\rm FWHM}/\sqrt{8 {\rm ln} 2}$, $P_\ell$ is a Legendre polynomial of order $\ell$, and $\Phi_0 = 22.16^\prime$ is half of the peak-to-peak chop angle.

The first column in the window function file is $\ell$, which runs from 2 to 4000. The second column is $W_\ell$.

Table: OVRO zero-lag Window Function Parameters
$\ell_{e^{-0.5}}$ $\ell_{\rm e}$ $\ell_{\rm m}$ $\ell_{e^{-0.5}}$ $\sqrt{I(W_\ell)}$
360 595.6 537 753 1.41

The quoted bandtemperature values are from Leitch et al., and include 4.3% added in quadrature to the statistical 1 $\sigma$ error bars to account for the OVRO 1 $\sigma$ calibration uncertainty.

Fig.: OVRO zero-lag window function. (Postscript version here.) win_OVRO.gif


ball23.gifLink to the experiment webpage.

E.M. Leitch, A.C.S. Readhead, T.J. Pearson, S.T. Myers, S. Gulkis, and C.R. Lawrence, ``A Measurement of Anisotropy in the Cosmic Microwave Background on $7^\prime-22^\prime$ Scales", Astrophys. J. 532, 37 (2000).

Bharat Ratra and Tarun Souradeep
Department of Physics, Kansas State University
Last updated: 2000-08-31