A framework for the dynamics of student reasoning in an interview
Salomon F. Itza-Ortiz, Alicia R. Allbaugh, Paula V. Engelhardt, Kara E. Gray, Zdeslav Hrepic, N. Sanjay Rebello and Dean A. Zollman
Physics Department, Kansas State University, Manhattan KS, 66506-2601, USA

Abstract
We propose a framework to characterize student reasoning during an interview. Our framework is based on data collected by five researchers with different goals. The research participants were enrolled in various physics courses at Kansas State University. Our framework has five elements: (1) External Inputs (e.g. questions, verbal, graphic and other cues) from the interviewer and interview environment; (2) Tools (e.g. memorized and familiar formulae, laws and definitions, prior experiences) that the student uses; (3) Workbench encompassing mental processes (e.g. induction, accommodation) that incorporate the aforementioned inputs and tools; (4) Answer given by the student and (5) reasoning paths connecting these elements. We have used a coding scheme to map out the reasoning paths in our framework. We discuss the applications and implications of our framework.

Introduction
Interviews have long been used in physics education research. However, they are often influenced by the researcher’s agenda and the assumption that knowledge remains static while it is probed. The latter is not always true. Sometimes students create answers as they speak; thus we need to be cognizant of the factors that may influence a student’s responses. This paper addresses the following questions:
• How do students construct their reasoning during an interview?
• What factors mediate students’ sense-making processes during an interview?

Relevant literature
Student knowledge has been described across a spectrum of grain size. Near one end of the spectrum, Driver (1995), Glaserfeld (1989) and others describe knowledge in terms of mental models. Learners test these models in light of new experiences, to modify or reorganize them. Near the other end of the spectrum, diSessa (1988) believes in knowledge in pieces or “p-prims”. Minstrell (1992) has divided concepts into units called “facets.” Hammer (2000) describes “resources” as the smallest usable pieces of knowledge. Our framework, which describes knowledge change in an interview is not anchored at any particular grain size, rather we consider all grain sizes equivalently.

Our framework describes knowledge change or cognitive dynamics in an interview. Piaget (1975) describes this change in terms of assimilation (adapting our experiences to fit our knowledge) and accommodation (modifying our knowledge to account for our experiences). More recently researchers have talked about conceptual change in terms of conceptual combination (Ward, 1997) or hybridization (Hrepic, 2002).

Researchers often use a flexible semi-structured interview format. This flexibility can make the format susceptible to a researcher’s bias. Recently, Scherr & Wittman (2002) demonstrated how a researcher’s agenda “filters” out some of what the student is saying in an interview. Our framework enables a researcher to look past and point to some of these “filters”.

Evolution of a framework
Researchers in the KSU physics education research group often shared anecdotal experiences of their interviewees making up or changing responses in an interview. Therefore we decided to re-examine our previous research data from the perspective of the dynamics of student reasoning in an interview. We emphasize that these data were from five researchers working independently on different projects with different goals. The students were from diverse backgrounds (non-science majors, engineering/physics majors) in different introductory physics courses. Through deliberations we identified four common elements that encapsulated the dynamics of reasoning in an interview.

Elements of the framework
Our framework is shown in Figure 1. The interconnecting arrows represent all possible reasoning paths followed by students as they articulate their response to an interviewer’s question.

External Inputs denoted by {I} is the input provided by the interviewer such as protocol questions, follow-up or clarification.
questions, hints or cues, both verbal and non-verbal. It also includes other materials e.g. text, pictures, demos, videos, etc. that the student is allowed to use.

Tools denoted by \{T\} include the knowledge structures that a student uses in her or his reasoning. Tools can be either pre-existing or created. Existing tools include a student’s prior experience, memorized information, facts, data, formulae, definitions, rules, procedures etc. It also includes knowledge structures of different grain sizes, ranging from p-prims or facets to mental models or theories. Created tools are dynamically constructed knowledge and experiences at an earlier instance in the interview, such as answers to previous questions or other knowledge etc. acquired through previous questions.

Workbench denoted by \{W\} includes mental processes used by the student. These processes activate dormant knowledge in \{T\}, such as executing a known rule or procedure. These processes often reorganize and restructure knowledge (e.g. assimilation, accommodation.) or synthesize different pieces of knowledge (e.g. conceptual combination, hybridization). \{W\} includes transferring and applying prior knowledge and experiences in new situations such as analogical, inductive or deductive reasoning as well as decision making. The latter can occur when a student decides that a given analogy or explanation is applicable to the situation at hand or when the student has to choose an answer from more than one option.

Answers denoted by \{A\} are the conclusion of a reasoning process, but could be articulated first by the student. Answers could also be an intermediate stopping point. This type of situation occurs during metacognition (Flavell, 1979). Answers can be decisive i.e. a single conclusion or indecisive, e.g. two or more answers, “don’t know” or a request for more information. In the latter case \{A\} is in fact a question.

Some caveats

The descriptions of various elements in our framework are not exhaustive e.g. \{W\} can include processes (e.g. abduction (Josephson, 1994)) that we have not mentioned. It is possible that a student’s statement cannot be uniquely categorized as a particular type of tool. For instance, a \{T\}, say prior experience (e.g. pushing a grocery cart), could also be a p-prim (motion implies force). Similarly in \{W\} two processes can be inseparable e.g. abduction includes decision making. The boundaries between various elements in our framework can often be difficult to distinguish. e.g. the procedure “If ‘X’ then ‘Y’” is either a \{T\} or a \{W\}. Elements can sometimes be implicit e.g. the answer \{A\} “It speeds up because a net force acts on it” implicitly uses \{T\}, Newton’s II law, without explicitly stating it.

We acknowledge that our framework, may not characterize a student’s reasoning definitively. In some instances, it is plausible that two researchers analyzing the same transcript using our framework may arrive at slightly different descriptions of a students’ reasoning path. Therefore our framework is susceptible to a researcher’s bias in ways similar to other methods of qualitative research analysis.

An Application of the Framework – Analyzing Students’ Reasoning Paths

Our framework can unearth some interesting reasoning paths used by students and their components. An example (Fig. 2) from our interview data demonstrates the details of cognitive conflict demonstrated by a student during an interview. Cognitive conflict or dissonance (Festinger, 1957) can help students learn science (Hewson, 1984). Piaget’s (Piaget, 1975) cognitive disequilibrium occurs during assimilation and accommodation (both \{W\}), when a learner’s internal knowledge \{T\} conflicts with her/his external experience in a discrepant event \{I\}.

When asked to predict how the brightness of two bulbs in parallel will compare to a single bulb \{I_1\}, the student answers based on a p-prim (more is less) \{T_1\}, and elaborates \{W_1\} their answer - less bright \{A_1\}. The interviewer completes the circuit so that the bulbs light and asks what happened \{I_2\}. The student answers that they stayed the same \{A_2\}, reasoning that the energy must be the same going to each bulb \{W_2\}. The tool, which is implicit, is denoted by ‘t’.

Fig. 2: Conflict resolution reasoning path
Advantages of using the framework

The process of identifying various elements of the framework in an interview transcript forces a researcher to carefully consider what the student is saying, without overlooking words or phrases which may have been filtered out by the research agenda. The framework urges the researcher to look for evidence of each of these four elements. Therefore, using this framework alerts the researcher to the absence of one or more of these elements, especially \{T\} and \{W\}, thereby avoiding an exclusive focus on \{A\}. By interconnecting the elements, the researcher can carefully trace the effect of various inputs and cues. For instance, the \{T\} that a student uses when presented with a particular input \{I\}, may have been lost if the focus had been only on \{W\} or \{A\}.

The framework can help the researcher design questions that elicit cognitive tools \{T\} and processes \{W\}. During the interview, the framework can help the interviewer ask follow-up questions \{I\} that explicate students’ reasoning. The framework can also help the researcher glean overall trends in a student’s reasoning across several questions, or to analyze a transcript at multiple grain sizes. The example below shows a transcript analyzed at two grain sizes (Figure 3). We can use a broad brush to see global trends in the data and large grain size knowledge elements (e.g. mental models). We can also use a finer brush to see details that emerge from the data such as small grain size knowledge elements, (e.g. resources) or transfer, selection of various tools and the back and forth deciding between different answers.

Our framework can be applied in two ways. First, it can be used to understand what students say, by categorizing various words and phrases in the transcript as \{I\}, \{T\}, \{W\} or \{A\}. Second, it can be used to infer what students think. This mode of application is more susceptible to researcher interpretation and bias than the first one. In the example below (see Table 1), a student was asked to explain how sound propagates through the wall. By parsing the student’s response one can identify \{W\}, \{T\} and \{A\} as they chronologically occur in the transcript. A researcher can also infer that the student uses analogical reasoning (Gentner, 2000) involving three \{W\} processes: -- recognizing a target \{T\}, abstracting structural similarities between source and target, and mapping similarities from source to target. The first of these processes is somewhat evident in the transcript. The other two are inferred, based on our theoretical understanding of analogical reasoning. Therefore the reasoning path goes back to \{W\} (for abstracting and mapping) before terminating at \{A\}. Note, that there was no attempt made in the inferential analysis to separate the abstraction and mapping processes in \{W\}. This demonstrates that although the framework can bridge data with theory, use of the framework is ultimately grounded in the data.

<table>
<thead>
<tr>
<th>{I} Asked how sound gets to the other side of a wall.</th>
<th>What we infer the student thinks</th>
</tr>
</thead>
<tbody>
<tr>
<td>{W} “Well, I would say that to me it is somewhat like”</td>
<td>Student recognizes {W} that the situation is analogous to a maze {T} for the sound. She applies the analogy to deduce {W} that air works its way through until it gets to other side of the wall {A}.</td>
</tr>
<tr>
<td>{T} “a maze for the sound”</td>
<td></td>
</tr>
<tr>
<td>{A} “it just kind of works its way through until it gets to the other side.”</td>
<td></td>
</tr>
</tbody>
</table>

Connections with cognitive psychology

It may be evident from the nomenclature of various elements that our framework uses the metaphor of a workshop. The input \{I\} is analogous to the work order given to a worker (e.g. build a chair). The tools \{T\} are
analogous to the tangible implements (e.g. saw) that the worker uses, as well as her/his skills in performing the task. The workbench \(W \) is analogous to the work area (e.g. work table) as well as the fabrication processes. The answer \(A \) provided by the student is analogous to the finished product (e.g. chair) constructed by the worker. Our framework also has underpinnings in cognitive psychology (Driscoll, 2000). The sensory input and response are analogous to \(I \) and \(A \) respectively. The short-term (working) memory and the mental processes occurring therein are analogous to \(W \). The long-term memory and information stored therein are analogous to tools \(T \). Our framework also shares commonalities with a metaphor in cognitive psychology – the computer. Input \(I \) is analogous to input devices (e.g. keyboard). Answer \(A \) is analogous to output devices (e.g. monitor). Tools \(T \) are analogous to stored information (data, software etc.) on the hard drive. Workbench \(W \) is analogous to active processes in a processor or RAM.

Other Issues & Conclusion

Our framework does not address other issues relevant to interviewing, such as a student’s emotional state while participating in the interview. Wittmann and Scherr (2002) have demonstrated that a student’s epistemological stance can mediate and constrain a researcher’s access to a student’s reasoning in an interview. A student’s epistemological beliefs may be characterized as tools \(T \) in our framework, but when we originally constructed our framework from our data, we neglected to include a student’s epistemological resources as \(T \). This issue is worthy of further discussion as we continue to refine the framework. Nevertheless, applying our framework entails an attention to detail that can alert a researcher to statements that may reflect a student’s epistemological stance (e.g. “…because my teacher told me so”). Such statements may have gone unnoticed in the analysis.

In conclusion we believe that our framework, in spite of its limitations described above, provides a useful tool for gleaning the dynamics of student reasoning in an interview.

Acknowledgements

This work was supported in part by the U.S. National Science Foundation under grants REC-0087788 and REC-0133621.

References