Extreme Ultraviolet Radiation Spectrometer Design and Optimization

Shaun Pacheco

Mentors: Dr. Guillaume Laurent & Wei Cao

Research Project

- Goal 1: Improve the Resolution
- Goal 2: Calibrate the Spectrometer
 - to find wavelengths
 - not intensity profile

Diagram of Apparatus

M1~M4: Plane mirror FM: Focusing mirror DM: Diverging mirror

BS: Beam splitter GS: Gas cell AF: Al filter

RM: Recombination mirror MCP: Microchannel Plate DS: Delay stage TM: Toroidal Mirror

PSD: Positon Sensitive Detector

Diagram of Apparatus

Spherical Mirror

Phosphor Plate

High Harmonic Generation

$$E_{emitted\,photon} = n\hbar\omega_0$$

Where n is an odd integer, ω_0 is the fundamental laser frequency,

Energies Allowed in Experiment

Transmission

Highest Order cut-off determined by

$$E = 3.2U_p + I_p$$

I_p is the ionization potential of the gas

U_p is the mean kinetic energy of the electron

Highest energy seen is 51eV

Aluminum Foil 200 nm thickness

Argon - 200 mTorr for 3 cm followed by 5 mTorr for 1 m

Tong. High-Order Harmonic Generation. http://www.phys.ksu.edu/personal/xmtong/class/chapter02.pdf

Gullikson, Eric. "X-Ray Interactions With Matter." *Lawrence Berkeley National Laboratory. N.p., n.d. Web. 4 Aug. 2010. <henke.lbl.gov/optical constants/>*

Goal 1: Improving the Resolution

"Microchannel Plate Principles of Operation." *HRC. Web. 4 Aug. 2010.* https://example.com/html.

Goal 1: Improving the Resolution

Phosphor plate was moved from 10 mm away to 4 mm

Goal 1: Resolution improved

Old Resolution

New Resolution

Goal 2: Calibrating the Spectrum

Find distance of each spectral line from zero order

Integrate across the spectral lines to get intensities

$$\lambda = \frac{d}{m} \left(\sin \theta_i - \sin \theta_d \right)$$

d is the slit spacing m is the diffraction order θ_i is the incident angle θ_d is the diffracted angle

Calibrated Spectrum

Black Curve is the photoelectron spectrum

Blue Curve is the spectrum from the XUV spectrometer

Energy resolution is comparable to photoelectron spectrum

Photoelectron Energy (eV)

Results and Discussion

Conclusion

- XUV spectrum is now comparable to photoelectron spectrum
- Spectrometer good enough to observe small change in the harmonic wavelength
- Improvements:
 - Calibrate the intensity profile of XUV spectrum

Work Cited

- "High-order Harmonic Generation." Swineburne4 Aug. 2010.
 <www.swinburne.edu.au/engineering/caous/HHG.htm >
- "Microchannel Plate Principles of Operation." HRC. 4 Aug. 2010. <heawww.harvard.edu/HRC/mcp/mcp.html >.
- Gullikson, Eric. "X-Ray Interactions With Matter." *Lawrence Berkeley National Laboratory. Web. 4 Aug. 2010. <henke.lbl.gov/optical_constants>*
- Tong. High-Order Harmonic Generation. http://www.phys.ksu.edu/personal/xmtong/class/chapter02.pdf

Questions?