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Abstract

We show that Guinier analysis of the scattered light intensity from a sphere of radius R and refractive index m yields a
radius of gyration that is in general larger than the true, geometric value. Moreover, the ratio of these two quantities is a
roughly universal function of the phase shift parameter p=2kR|m — 1| where k=2mw/A, with A being the optical
wavelength. These universal curves are oscillatory and very similar to, but 180° out of phase with, the behavior of the total
scattering efficiency. Reasons for these behaviors are proposed and their significance for optical particle sizing are discussed.

© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

Guinier analysis of scattering data allows for the
determination of the radius of gyration R, of an
arbitrarily shaped particle [1]. This combined with
the simplicity of the analysis has led to its widespread
use in X-ray [2], neutron [3], and light scattering
applications [4]. For light scattering a particularly
attractive feature of the Guinier analysis is that siz-
ing of particulates can be achieved without knowl-
edge of the particle refractive index.

The Guinier formula is based on a second-order
expansion of the structure factor of the particle. The
structure factor is the square of the Fourier transform
of the density distribution of the particle, hence
application of the Guinier analysis implicitly as-
sumes that the particle is uniformly illuminated
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throughout its volume. According to Mie theory this
latter condition is known not to hold for spheres of
appreciable size or refractive index [5]. This, and the
fact that analysis of light scattering from spheres is
useful in many applications, brings us to the purpose
of this paper, which is to ask: what is the range of
validity for the Guinier analysis for light scattering
from spheres; and in what manner, if at all, does 1t
break down?

2. The Guinier equation

If p(¥) is the density distribution of the particle,
then the first approximation that is made on the path
to the Guinier equation is that each differential ele-
ment of the particle experiences the same total inci-
dent field i.e., the particle is uniformly illuminated.
Then the scattering amplitude at the detector is the
sum of waves, represented by e'9' 7, with amplitude
proportional to p(¥), for each differential unit of the
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distribution. The scattered intensity is the square of
the total amplitude, thus
2

(@) =c| [p(7)eT a7 (1)

In Eq. (1) ¢ is a constant related to the refractive
index and incident wavelength and g is the scatter-
ing wave vector with magnitude given by
g =2ksin(6/2}). (2)

In Eq. (2} k= 2w /A, where A is the wavelength,
and @ is the scattering angle. Eq. (1) occurs in the
weak scattering limit where intraparticle multiple
scattering is insignificant.

The next approximation involved in the Guinier
equation is that the density distribution p(¥) is
isotropic. This is satisfied by a uniform sphere but
not for irregular particles. However, scattering from
an ensemble of irregular but randomly oriented parti-
cles can be analyzed as if each particle was orienta-
tionally averaged to achieve isotropy. With isotropy,
the solid angle of &7 can be integrated in Eq. (1) to
obtain

2

I{g) =16mc qilfp(r)rsin grdr| .

(3)

The third approximation involves confining the
observation of the scattered intensity to small q.
Then the sin gr term can be expanded to two terms.
Doing this and normalizing by I{0) yields
I(g)}/1(0) =1—-g*Ry/3. (4

This is one form of the Guinier equation. To
achieve Eq. (4) from Eq. (3) use was made of

isotropy and the definition of the radius of gyration
of the particle or aggregate

R2= [p(7)r*a¥/ [ p(F)dF. (5)

The Guinier analysis involves inverting Eq. (4)
which yields with gR, <1

1(0)/1(q) =1+ q°Ry/3. (6)

3. Calculational results

We used the BHMIE program of Bohren and
Huffman [6] to create scattered intensities from ho-
mogeneous, dielectric spheres. These calculations

were performed for the common experimental ar-
rangement of incident and scattered light polarization
perpendicular to the scattering plane defined by the
incident and scattered wave vectors. Inputs to the
algorithm are the size parameter, which we shall
write as kR, where k= 2w /A is the magnitude of
the wavevector for light of wavelength A, and R is
the radius of the sphere; m, the refractive index of
the sphere divided by the refractive index of the
medium; and @, the scattering angle.

The calculated scattered light is considered to be
not a function of @, but rather a function of the
scattering wavevector g. This parameter has signifi-
cant physical meaning because its inverse is essen-
tially the ‘probe length’ of the scattering experiment
[4,7]. Recently we have shown its significance for
Mie scattering from spheres in that is uncovers use-
ful patterns and functionalities heretofore unde-
scribed [8).

The Guinier analysis proceeds by plotting the
inverse, normalized intensity versus g* to create a
Guinier plot, which according to the Guinier equa-
tion in the form of Eq. {6), should be a straight line
with slope equal to R; /3 when gR, <1. Using the
Mie results of BHMIE we find such plots to have a
slight upward curvature, the degree of which is
dependent upen kR and m. This causes us to mea-
sure the slope in the limit of gR, — 0.

Fig. 1 shows a Guinier plot for a size parameter
of kR =50 with different refractive indices m. The
slopes of the plots increase with m indicating that
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Fig. 1. Guinier piot of calculated Mie scattering data for spheres
with size parameter kR = 50 and different refractive indices m. To
give the plot some physical relevance we assume A==0.5 pm,
thus R=3.98 um and R, =3.08 pm.
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the R, values inferred from these plots is increasing.
Of course, the size of the sphere is not changing with
m, s the apparent change must be an artifact of the
Guinier analysis applied to the sphere in a regime
where the assumptions behind the analysis are break-
ing down. Despite this obvious breakdown, the R,
inferred from the Guinier plots might still be useful
for sizing spheres with light scattering if some pat-
tern in their behavior can be found.

Such a pattern exists when the behavior of the
Guinier inferred radius of gyration, which we will
designate as R, g, is normalized by the true radius of
gyration of the sphere, R, = y3/5 R, and is plotted
as a function of the phase shift parameter p as shown
in Figs. 2 and 3. This parameter is defined by the
equation

p=2kRlm— 1|, (7

and represents the difference in phase between a
wave that travels a distance equal to the diameter of
the particle in the medium and a wave that travels
the same distance through the particle. We are find-
ing with this and past work that p is quite an
illustrious parameter. It is also the parameter that
determines the range of validity for Rayleigh-De-
bye—Gans theory for scatiering from a sphere, valid
for p <1, and when the full Mie theory is required,
necessary when p> 1 [6]. In recent work [8] we
have found that the Mie differential scattering curves

change p by m
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Fig. 2. The ratio of the Guinier inferred to real radius of gyration,
R, g /R, versus phase shift parameter p for spheres with three
different size parameters. The refractive index m was vatied to

vary p.
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Fig. 3. The ratio of the Guinier inferred to real radius of gyration,
R, s /Ry, versus phase shift parameter p for spheres with three
different refractive indices. The size parameter kR was varied to
vary p.

plotted as a function of g showed a quasi-universal
behavior when parameterized by p. Now we find, as
illustrated in Figs. 2 and 3, that R, ; /R, plotted as a
function of p again yields quasi-universal behavior.
By ‘quasi-universal’ we mean that regardless of the
values of the size parameter kR and the relative
refractive index m, nearly the same functionality
with p is seen. Close inspection of Figs. 2 and 3
shows that the universality is not perfect in that the
details of R, /R, vs. p vary with kR and m. The
general trends, however, are the same regardless of
kR and m; hence a pattern has presented itself,
which we now explore.

Fig. 4. Detailed behavior of R, /R, at small size parameter kR
and phase shift parameter p.
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Figs. 2 and 3 show that R, /R, is oscillatory
with its first peak near p= 7 and a period of approx-
imately 6.6. The oscillation is slowly damped at
large p and slowly approaches an asymptotic value
of about R, /R, =112 as p—> = As p—0, R,
— R, as expected since this is the weak scattering
limit and there none of the assumptions leading to
the Guinier equation are violated by the dielectric
sphere. Remarkably, values of R, /R, > V5/3 =
1.29... exist to imply R, 5> R.

The behavior of R, /R, at small p is not uni-
versal especially for kR = 1 as shown in Fig. 4. As
kR =0, R,5/R, =100 at small p, but as kR in-
creases R,;/R, vs. p develops first a negative
slope which maximizes at kR = 1.2, then this slope
swings back to zero for kR = 2.5 and continues to
increase to a positive slope for all kR > 2.5. This
accounts for the difference at small p between Figs.
2 and 3. Fig. 3, where 4R is varied and m held
constant, shows an initial decrease in Rg,G /Rg with
increasing p, whereas Fig. 2, in which m is varied
and kR held constant, does not. The minimom in
Fig. 3 at small p occurs near kR = 1.

The patterns of Figs. 2 and 3 are quite similar 1o
the behavior of the scattering efficiency plotted ver-
sus p. The scattering efficiency @ is the total scat-
tering cross section ¢ divided by the geometric
cross section of the sphere, wR?, thus Q0 = o/wR™.
Plots of @ vs. p are also quasi-universal. In Fig. 5
we compare O and R, /R, for m=1.33 and 1.5
spheres and see that the damped oscillatory behav-
iors versus p of each are 180° out of phase.

R4,

Fig. 5. Comparison of the behaviors of R, /R, and the total
scattering efficiency Q.

The large p limit of R,/R, should represent
the geometric limit. In this limit the large sphere acts
as a circular obstacle and Fraunhofer diffraction
occurs. Then, the diffraction intensity is given by [9]

J(gR)
qR

2

I{q) =1(0) (8)

where J,(x) is the first Bessel function. Expansion
of Eq. (8) for small gR [10], the forward scattering
Limit, vields

1) =101 - 0% %)

For a uniform sphere, Eq. (5) yields R?=
(5/3)R;. Then the Guinier analysis, Eq. (4), applied
to Eq. (9) yields

R, /R, =1.12. (10)

This is in agreement with the calculational results
of Figs. 2 and 3 as p grows large.

4. Discussion

We ask why the Guinier analysis of Mie scatter-
ing yields radii of gyration different and, for the
most part, bigger than the true, geometric radii of
gyration of the spherical particles? The general an-
swer lies in the assumptions that go into the deriva-
tion of the Guinier regime, discussed above and
summarized here as: (1) the volume of the sphere is
uniformly illuminated; (2} the particle is isotropic;
and (3) only the small (gR, < 1) regime is consid-
ered.

Of these assumptions the most glaring weakness
for spherical particles is the first. It is well known
that as the sphere increases in either size, refractive
index or both, as parameterized by p, the interior
distribution of the electromagnetic field becomes
nonuniform [5]. This occurs when the regime of the
Rayleigh—Debye—Gans (RDG) theory, for which Eq.
(1) is valid, is left, i.e., when p > 1. This nonuni-
formity can be thought of as a result of the electro-
magnetic boundary conditions or, more intuitively,
as due to intrasphere multiple scattering between
different differential elements of the sphere. Regard-
less of the physical origin of the nonuniformity, the
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nonuniform interior illumination means that each
differential unit of the sphere does not contribute
equally to the scattered field, hence Eq. (1), the
beginning equation to the Guinier result, cannot hold.

The redistribution of the interior field away from
uniform as p increases can be qualitatively de-
scribed as an enhancement near the inner surface of
the sphere. Given this, it is reasonable to propose
that the edges of the scattering sphere are more
heavily weighted by the field than the interior hence
the ‘interior-field-weighted’ radius of gyration is
larger than the geometric radius of gyration. It could
be that it is this interior-field-weighted radius of
gyration that is seen in the Guinier regime and
responsible for R, ; > R,.

This argument may be made quantitative by in-
cluding interior field weighting in Eq. (1). For sim-
plicity we assume p(7) =1 everywhere within the
sphere and ignore the proportionality constant. We
embody the interior field weighting by including it
within the integral. Thus, if E_(7) is the interior
field,

13) = | B e a7 an

Eq. (11) generalizes the RDG notion that the
scattering is the Fourier transform of the sphere, to
the concept that the scattering is the Fourier trans-
form of the interior field of the sphere. Given Eg.
(11) the Guinier analysis can proceed as for Eq. (1)
through (6) to yield

R} = fEim(”)rzd?'/fEim(r)dr. (12)

In Eq. (12) we use R, to designate the radius of
gyration of the interior-field-weighted sphere.

As for the derivation of the Guinier equation,
derivation of Eq. (12) also assumed isotropy, not
only of p(¥), but now also of E, (¥). Our Mie
calculations show that E,_(7) is very anisotropic so
out optimism for Eq. (12} must be guarded. Indeed,
calculation of R, with Eq. (12) as a function of p
does not compare well to R, from the Guinier
analysis; the only favorable quality being that R, ¢
increases with p.

The above analyses imply that R, is larger than
R, at least in part due to the redistribution of the
interior field toward the inner surface of the sphere,
but the anisotropy of this redistribution (not to men-

2

tion its complexity) has thwarted our attempt to find
a straightforward physical interpretation.

5. Particle sizing

These results have significance for particle sizing
with light scattering. For example, if one were to
apply the Guinier analysis to light scattering data
from particles with a size parameter of kR =12 and
a relative refractive index of m = 1.33, an R, value
approximately 40% larger than the true R, would be
measured. This is seen by the result in Fig. 3 for
m = 1.33 and the calculated value of p=8.

Obviously curves such as those in Figs. 2-4 can
be used with Guinier measurements to yield accurate
values of the spherical particle radius. A good proce-
dure would be to use the Guinier analysis to deter-
mine an R, ;. Then calculate p. (Note this requires
some low precision knowledge of the refractive in-
dex.) With p use plots like Figs. 2—4 to determine
the ratio R, /R,. Then use this ratio and the mea-
sured R, to determine the true R,. We have used
this procedure with success, and have never found a
second iteration necessary since the improvement for
a second iteration is usually less than a few percent,
within typical experimental error.

6. Conclusions

Guinier analysis of scattered light from spherical
particles is valid only in the limit of the phase shift
parameter p < 1. This analysis breaks down for p > 1
since then the interior of the sphere is no longer
uniformly illuminated.

Fitting of the Guinier equation to Mie scattering
intensities for homogeneous spheres with p> 1
yields radii of gyration larger than the true, geomet-
ric radius of gyration. The ratio of these two quanti-
ties, R, /R,, is a quasi-universal function of p.
The functionality is oscillatory with R, /R, =1 as
p—0and R, /R, = 1.12 as p — o, the Fraunhofer
diffraction limit. Plots of R, ;/R, vs. p are very
similar to ¢ vs. p where Q is the total scattering
efficiency, but the oscillatory behaviors are 180° out
of phase. Experimental sizing of spherical particles
using the Guinier analysis of scattered light must
account for these effects when p is in the range of
pz L
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