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Studio Physics Laboratory Demonstrations and Numerical Problems 
 
 Success in physics is based on three elements:  conceptual understanding, problem solving 
skills, and the concepts of measurement.  Studio Physics has been created to integrate these three 
elements.  It consists of you, your fellow students with whom you will interact, the instructors and 
a series of specially created laboratory demonstrations and accompanying numerical problems.  
Each of the laboratory demonstrations has been created to give tangible example to what may be 
considered standard problems in fundamental physics.  These problems contain key concepts that 
reside at the core of physics.  By solving problems and then experimenting with the real thing, the 
conceptual foundation of the problem will grow by example along with problem solving abilities.  
Moreover, quantitative measurement will, through experimental uncertainty, teach realistic 
expectations.  Once exact agreement is deemphasized, the trends and functionalities will appear 
and conceptual understanding can again grow. 
 Your tasks for Studio Physics are straightforward.  Problems for situations similar to these lab 
demonstrations will be given as the assignment for that day's work.  These are best done the night 
before the Studio class.  Many problems, which relate directly to the lab demonstrations, are 
included in this book.  Your studio instructor may also assign some of these problems as in-studio 
group activities.  Next, the lab demonstration should be performed, measurements made and trends 
in the data discerned.  Numerical results and trends should be compared to the calculation. 
 Many of the laboratory demonstrations ask questions or suggest data manipulation procedures.  
These should be used as guides for further insight into the physics of the situation.  Very important 
to this enterprise is your interaction with your lab partners to discuss the physics and procedures of 
the demonstration.  With your peers, teach and be taught. 
 Integral to your studio experience is your lab notebook.  Record your data and observations on 
what happened (right or wrong).  Make graphs and straightforward conclusions, answer and 
perhaps pose questions.  Keep it spontaneous and simple!  A notebook is for notes, not refined 
dissertations. 
 Lastly, as you work on physics, remember to integrate as you learn the three basic elements of 
conceptual understanding, problem solving, and an appreciation how numbers can describe the 
physical world. 
 Acknowledgments:  The creation of these laboratory demonstrations owes a great deal to 
Alice Churukian, William Hageman, Chris Long, Farhad Maleki, Corrie Musgrave and Jason 
Quigg.  More recently, Peter Nelson, Dr. Kirsten Hogg, Dr. Rebecca Lindell and Professor C.L. 
Cocke have made valuable suggestions.  This lab manual was revised during the Fall 2003 
semester by Kevin Knabe, and during the Spring 2005 semester by Amit Chakrabarti.  Dave Van 
Domelen has also contributed with minor revisions.  This work was supported by a grant from 
NSF (CCLI) to Susan Maleki and Chris Sorensen. 
 
 
        Chris Sorensen 
        University Distinguished Professor 
 
 
        Amit Chakrabarti 
        Professor 
 
Copyright 2007 C. M. Sorensen and A. Chakrabarti. 
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Guidelines for Lab Notebooks in Studio 
 
Observation is the essence of science, and controlled observation is experimentation.  A Dutch proverb 
says elegantly:  “Meten is Weten” which translates to:  “measuring is knowing.”  When you perform your 
lab work in Studio, controlled observation to measure and thereby know will be emphasized. 
 
Integral to this experimental process is a written record of your experimental work.  Your Lab Notebook 
is a working, written record of experimental work.   It should contain sufficient information so someone 
else can understand what you did, why you did it and your conclusions.   
Also, pragmatically, it is inevitable that the assessment of your experimental work in the Studio is largely 
based upon it. 
 
 
The following is an outline of the expectations we have for the records you will keep in your Lab 
Notebooks. 
 
Description of Experimental Work 
 
1. The date should be recorded at the beginning of each session in the studio. 
2. Each experimental topic should be given a descriptive heading. 
3. A BRIEF introduction describing the purpose of the experiment, description of apparatus and 

experimental procedures should be included. 
4. Schematic or block (rather than pictorial) diagrams should be included where appropriate. 
5. Circuit diagrams should be included. 
 
Records of Observations and Data 
 
1. The lab notebook must contain the original record of all observations and data – including 

mistakes!  Never erase ‘incorrect’ readings; simply cross them out in such a way that they can be 
read if need be.  There is no such thing as bad data. 

2. All relevant non-numerical observations should be clearly described.  A sketch should be used 
whenever it would aid the description. 

3. The nature of each reading should be identified by name or defined symbol, together with its 
numerical value and unit. 

 
Tables 
 
1. Observations and data should be gathered and tabulated whenever appropriate. 
2. Each table should have an identifying caption. 
3. Columns in tables should be labeled with the names or symbols for both the variable and the units 

in which it is measured.  All symbols should be defined. 
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Graphs 
 
1. With graphs we often discover functionalities.  Don’t hesitate to graph your data or numerical 

results if you think it will help you see what’s going on, even if it is not your “final,” concluding 
result. 

2. Graphs should be drawn directly into your lab notebook. 
3. Each graph should have a descriptive caption.  Axes of graphs should be labeled with the name or 

symbol for the quantity and its unit.  Numerical values should be written along each axis. 
 
Analysis and Results 
 
1. The organization of calculations should be sufficiently clear for mistakes (if any) to be easily found. 
2. Results should be given with an estimate of their uncertainty whenever possible.  The type or nature 

of each uncertainty should be specified unambiguously. 
3. Results should be compared, whenever possible, with accepted values or with theoretical 

predictions. 
4. Serious discrepancies in results should be examined and every effort made to locate the reason. 
 
Summary/Conclusions 
 
1. A BRIEF summary should be written for each experiment. 
2. The summary should report the results and contain a comparison with accepted values or with 

theoretical predictions.  Any discrepancies should be mentioned. 
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 21.1.  Electrostatics 
 
Lab Demonstration 
 
Mess around with a number of simple electrostatic demonstrations.  Rub a piece of PVC and a piece of 
acrylic with wool.  Then: 
 • Show, using the electrometer, that these two plastics obtain different signs of charge. 
 • Attract an empty pop can and roll it across the table. 
 • Pick up small pieces of paper.   
 •    Charge two pith balls that are attached to the same string. 
 • Deflect a thin stream of water. 
 • Charge the electrometer by directly touching the charged plastic rod to it.  Then ground the 

electrometer by touching it with your hand.  Where did the charge go? 
 • Charging by induction.  With an uncharged electrometer bring the charged plastic rod near the 

metal sensing disk at the top.  Touch the other side of the disk with your finger and as soon as the 
electrometer needle falls to zero deflection, remove the rod and your finger.  What happens and 
why?  What is the charge on the electrometer compared to that on the plastic rod? 

 
Problems (5) 
 
21.1.1.  How many e-‘s would have to be removed from a neutral plastic rod to give it a charge of 1 nC? 
 
21.1.2.  What is the magnitude of the electrostatic force between two charged objects each having a 
charge of 1 C  and separated by 1 cm? 
 
21.1.3.  (a) Two small non-conducting spheres have a total charge of  +90.0 C .  When placed at a 
distance of 1.0 m apart, the force each exerts on the other is 16.2 N and is repulsive.  What is the charge 
on each?  (b) Two small non-conducting spheres have a total charge of  +90.0 C .  When placed at a 
distance of 1.0 m apart, the force each exerts on the other is 19.8 N and is attractive.  What is the charge 
on each in this case? 
 
21.1.4.  If you bring a positively charged plastic rod near a small piece of paper on a table, the paper is 
attracted to the rod and can be lifted off the table.  One explains this by saying that the piece of paper gets 
polarized in the presence of the positively charged rod, i.e., one side of the paper gets a net positive 
charge and the other side gets a net negative charge.  The negative side of the paper is attracted by the 
rod.  But there should be repulsion between the positive side of the paper and the positively charged rod 
as well.  Why don’t these attractive and repulsive forces cancel? 
 
21.1.5.  A negatively charged ball is brought close to a neutral isolated conducting rod.  The far end of the 
conducting rod is then grounded while the ball is kept close.  What will be the charge on the conducting 
rod (a) if the ground connection is first removed and then the ball taken away and (b) if the ball is taken 
away first and then the ground connection is removed? 
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21.2.  The Van de Graaf Generator 
 
Lab Demonstration 
 
Run the Van de Graaf generator (VdG) to create large electrostatic charges. 
 • Insulate from the ground someone with long, dry hair and have them touch the upper globe of the 

VdG as it charges (i.e., discharge the VdG, touch your hand to the globe, then turn it on).  Why does 
their hair stand on end? 

 • Try placing foil plates on the top of the VdG face down, then face up.  Why do the reactions differ? 
 • Throw a spark.  A spark results when the electric field ionizes or "breaks down" the air.  The break 

down electric field of air is 6103  volts/m.  Even if you haven't learned about fields and voltages 
yet, measure the length of a spark and use unit analysis to determine the voltage on the upper globe. 

 • Put the "pinwheel" on top of the VdG and notice the direction of rotation.  How does it work? 
 
 
Problems (2) 
 
21.2.1.  A charge of q=24 C  is placed on a sheet metal cube with a side dimension of 1.0 m.  (a) What is 
the average surface charge density (i.e. charge per unit area) of each side?  (b) Qualitatively, how does 
this surface charge density at the center of each face of the cube compare to that near the corners? 
 
21.2.2.  (a) How many coulombs of positive charge are there in 1 liter of air at standard temperature and 
pressure?  (b) How many coulombs of negative charge are there in 1 liter of air at standard temperature 
and pressure?  You can consider air to be neutral and made of 80% nitrogen gas and 20% oxygen gas. 
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22.1.  Electric Fields I 
 
Lab Demonstration  
 
On large scale graph paper, plot the electric field vectors at several points around: 

 • A point charge  6q 4 10 C   at several distances from 3 to 20 cm.  Use a scale of 1 cm equals 
610 N/C.  Label all drawn vectors with their respective magnitudes (in N/C).  Note the strong 

variation of the field with distance. 

 • A dipole with C10q 6  separated by 20 cm.  With this, calculate and draw the resultant field at 
points A, B, C, D, E on the sketch below (spacings BC, CD, etc. are all 10 cm).  Take advantage of 
symmetry as much as possible!  Use both graphical vector-addition as well as x- and y-component 
vector addition to verify your results. 

 
 
 
 
 
 
 
 
 
 
 
 
 • For each case above draw Faraday's lines of force based on your vector fields and understand the 

relation between these two pictures of the field.  Compare your sketches to given drawings of 
Faraday’s lines of force.  What do these lines mean qualitatively? 

 
Problems (4) 
 

22.1.1.  The electric field vector AE


 at a point A, at a distance of 2.5 cm from the charge q is shown in 
the figure.  (a) Draw accurately, in both direction and magnitude, the electric field vector at the point B, 
which is at a distance of 5 cm from the charge q.  (b) How would the magnitude and the direction of the 
electric field vectors at A and at B change if the charge q is replaced by a charge 2q and (c) by a  
charge –q? 

 
 
22.1.2.  Two charges q1= q2=2.0 C  are held in place at x=0 and x=10 cm.  Sketch a plot of the electric 
field as a function of x (along the x-axis) from x= -10 cm to x= +20 cm. 
 
22.1.3.  Repeat problem 23.1.2 for q1=2.0 C  and q2= - 2.0 C .  
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22.1.4.  Find the net electric field at the origin due to the charges shown in Figs. (a) and (b). 
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22.2.  Electric Fields II 
 

Lab Demonstration 
 
In this demo you will have closed, plastic containers with electrodes and an oily liquid inside.  Suspended in 
this liquid are small, elongated grains of a polarizable dielectric.  In an applied electric field these grains 
develop an electric dipole moment and then align parallel to the field (so that the torque on them is zero).  In 
this way Faraday's field lines can be visualized. 
 • Charge the electrodes with the means provided (plastic rods and wool, Van de Graaf, high voltage).  

Observe and draw the field lines displayed by the alignment of the grains. 
 • How does the field orient itself relative to the surfaces of the metal electrodes (conductor)? 
 • How can you tell if the field is strong or weak?  Near what shape of surface does the field appear 

strongest?   
 
Problems (3) 
 
22.2.1.  The figure below shows several electric field lines.  (a) What is the direction of the electrostatic 
force on a proton at point A and at B?  (b) What is the direction of the electrostatic force on an electron at 
point A and at B?  (c) Where is the magnitude of the force on the proton larger, at A or at B? 
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22.2.2.  Consider the three field patterns shown.  Which of the patterns represent(s) a possible 
electrostatic field?  
 

 
 
22.2.3.  What is the magnitude and direction of the electric field necessary to suspend a rain drop of 
diameter 1.0 mm carrying a charge of –4 nC? 
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23.1.  Gauss' Law and Field Magnitude 
 
Lab Demonstration 
 
Go back to the Electric Field created by a point charge in lab 22.1.  Look at how small the field vectors 
are at r > 10 cm and how large they are at r < 5 cm.  Multiply the length of the vectors at some r by the 
surface area of the sphere centered on the charge with surface at r for a few different r-values.   
 • What do you find and why?   
 • The field’s magnitude falls quickly with increasing r, but what "compensates" for this quick fall?   
 • What remains the same, independent of r?   
 • What is the reason for the rapid variation of the field magnitude? 
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23.2.  Gauss' Law and Flux 
 
Lab Demonstration 
 
Use a flexible piece of wire to represent an arbitrarily shaped Gaussian surface for 2d pictures of fields near 
a point source (a monopole), a dipole, and a uniform field (possibly your pictures from 22.1).  Lay this 
Gaussian surface on these field examples and note qualitatively how many field vectors point into the 
"surface" and how many point out.  Consider and comment on the following cases where the Gaussian 
surface encloses: 
 •  No charge 
 •  A single charge 
 • Two like charges 
 • Two opposite charges 
Vary the position and shape of the loop and develop your intuition for Gauss' Law. 
 
Problems (6) 
 
23.2.1.  Three surfaces S1, S2 and S3 and three point charges q1=3 nC, q2= -3 nC, and q3= 10 nC are shown 
in the figure.  Find the electric flux through the surfaces S1, S2 and S3. 
 

 
23.2.2.  A point charge q=6 nC is placed at the center of a hollow plastic sphere of radius 5 cm.  (a) What 
is the electric flux through the surface of the plastic sphere?  (b) If the point charge is displaced by 1 cm 
from the center of the sphere, what will be the net flux through the surface? 
 
23.2.3.  The flux through the Gaussian surface A is 10 units.  What are the fluxes through the surfaces B 
and C. 
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23.2.4.  A point charge q1= 4 nC is placed at the center of a hollow plastic sphere of outside radius 5 cm. 
Another point charge q2 of unknown magnitude is placed 10 cm from q1.  (a) Does the electric flux through 
the surface of the sphere depend on the magnitude of q2?  (b) Does the electric field on the surface of the 
sphere depend on the magnitude of q2?  (c) Explain how the results of (a) and (b) are consistent with 
Gauss’ Law. 
 
23.2.5.  A point charge q = 4 nC is placed at the center of a cube of side a=2 cm.  (a) What is the electric 
flux through the top surface of the cube?  (b) Is the flux different for any other surface of the cube?  If so, 
which one? 

 
 
23.2.6.  A cubic box of side L=20 cm is placed in an electric field as shown.  The electric field is pointing 
downwards but it is not uniform.  The magnitude of the electric field on the top surface of the cube is 200 
N/C while the magnitude of the electric field on the bottom surface of the cube is 50 N/C.  (a) What is the 
electric flux through each of the six surfaces of the cube?  (b) What is the electric flux through the entire 
cubic box?  (c) How much charge is enclosed by the box? 
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23.3.  Gauss' Law, Gaussian Surfaces, and Symmetry 
 
Lab Demonstration 
 
Here we explore the consequences of symmetries on electric fields and Gauss' Law.  Complete the 
following table and show all calculations of integrals and assumptions made. 
 

Charge Shape 
Charge Density 

Units and 
common symbol 

Simplest 
Gaussian Surface 

E(r) 

Sphere    

Straight Line    

Plane    

 
 • Assume the small styrofoam ball is uniformly charged, i.e., no place on the sphere's surface has 

anything other than the average charge density.  This is a statement of symmetry.  With this 
symmetry, how can Nature place an electric field emanating from the sphere?  Construct such a 
field with toothpicks, sticking them into the sphere. 

 • Now recall Gauss's Law.  Consider the E-field emanating from the sphere above, represented by 
toothpicks.  Enclose this sphere and its field in the containers provided (sphere, cylinder, box).   

- Since the containers are closed, what is dAE 


for each container (i.e. the Gaussian surface)?   

- Consider the integrand dAE 


.  For which Gaussian surface is this dot product simplest?    
What does this have to do with symmetry?   

- What is the simplest of these three Gaussian surfaces?  Solve the integral for this container only 

and find )r(E


 where r is the distance from the center of the distribution. 

- Comment on why the other shapes do not work well for calculating dAE 


. 
 • Now consider a uniform plane and uniform rod (line) of charge.  Follow the arguments above and 

answer the corresponding questions. 
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Problems (4) 
 
23.3.1.  A plastic sphere of radius 10 cm has a charge 20 C  uniformly distributed on its surface.  Find 
the magnitude of the electric field at a distance of (a) 5 cm, and (b) 12 cm from the center of the sphere.  
(c) Sketch a plot of the electric field for all distances 0-20 cm from the center of the sphere. 
 
23.3.2.  A plastic sphere of radius 10 cm has a charge 20 C  uniformly distributed throughout its volume.  
Find the magnitude of the electric field at a distance of (a) 5 cm, and (b) 12 cm from the center of the 
sphere.  (c) Sketch a plot of the electric field for all distances 0-20 cm from the center of the sphere. 
 

23.3.3.  An infinitely large plane of charge with surface charge density 22.0 C / m    resides along the 

xz plane.  Another infinitely large plane of charge 26.0 C / m     resides along the xy plane.  Find the 
electric field at the point P whose coordinate is (1 m, 2 m, 3 m). 
 
23.3.4.  A very long plastic cylinder of radius 10 cm has a charge density of 2 nC/m3 uniformly 
distributed throughout its volume.  Find the magnitude of the electric field at a distance of (a) 5 cm, and 
(b) 12 cm from the axis of the cylinder.  (c) Sketch a plot of the electric field for all distances 0-20 cm 
from the axis of the cylinder. 
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24.1.  Graphing Equipotentials 
 
Lab Demonstration 
 
In this lab you are given a voltage source and spatially separated electrodes that can be connected to the 
voltage (one to plus, one to minus).  This creates an electric field (volts/meter).  Conducting paper can then 
be placed between the electrodes.  The voltage, relative to a given electrode, at some place on this paper will 
vary with position.  Set your power supplies to 5V and find the following: 
 • Use conducting paper and a voltmeter to map out equipotential lines for different electrode shapes.  

To do this connect one probe of the voltmeter to an electrode.  Then touch the other probe to the 
paper.  The voltmeter will read the voltage difference between the electrode and the point on the 
paper.  Map out the equipotential lines for a couple voltages between 0 and 5 volts. 

 • Now draw in the electric field lines.  (How is the field related to the equipotentials?)  What is a 
typical magnitude of the field? 

 
Problems (2) 
 
24.1.1.  Drawn below are a series of equipotential lines and a 1 meter scale bar.  A small particle having 
total charge of –3 C and a kinetic energy of 75 J is moving upward as drawn.  (a) Where, if at all, will 
it momentarily stop?  (b) What is the magnitude and direction of the electric field in the region?  (c) What 
is the magnitude and direction of the force on the particle? (d) Does the force change as the particle’s 
speed changes? 
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24.1.2.  Drawn below are equipotentials for an electric field.  Find the work done by the electric field 
when a charge q = 5  C moves from (a) A to C (b) F to A and (c) A to F.  (d) Find the magnitude and 
direction of the electric field at D.  (e) Accurately draw electric field lines from A, B, and C as far as to 
the right as possible. 
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24.2.  Field and Voltage in the Parallel Plate Geometry 
 
Lab Demonstration 
 
Charge the parallel plate capacitor with the van de Graaf generator.  Use the electrometer to measure the 
"voltage" between the plates.  This voltage is approximately proportional to the angle   of deflection from 
vertical of the electrometer needle. 

 
 
 • If you start with charged plates close together and then separate them, do you expect the voltage to 

go up or down?  Why?   
 • Do this by varying the capacitor spacing ‘d’ from 1/2 to a few cm.  Plot the "voltage" (deflection 

angle) versus spacing.  Understand this result in terms of voltage, field, and the constant charge on 
the plates. 

 
Problems (3) 
 
24.2.1.  Two equal and oppositely charged parallel metal plates are placed at a separation of 10 cm (their 
separation is small compared to their sizes) from each other as shown.  Each plate has a uniform surface 
charge density of 2nC/m2. Let V=0 on the bottom plate.  Find the electric field and electric potential in the 
region between the two plates at a distance of (a) 2 cm and (b) 8 cm from the bottom plate. 
 

 
 

24.2.2.  Two metal plates of dimension 2 m x 2 m are charged with equal but opposites charge of 24 C .  
If the plates are placed parallel to each other 5 cm apart, what is their potential difference? 
 
24.2.3.  (a) What is the potential difference necessary between two large metal plates separated by a 
distance of 5 cm to suspend a rain drop of diameter 1.0 mm carrying a charge of 4nC  in between them?  
(b) Which plate should be positively charged? 
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25.1.  Capacitor Charge and Energy Storage 
 
Lab Demonstration 
 

This is a quicky.  Charge a large capacitor ( F10~ 4 ) with a DC power supply with at least 10 volts (the 
more, the better!).  REMOVE THE POWER, then short the terminals ("crowbar it") with a piece of metal 
(e.g., a screw driver).  What happens and why? 
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25.2.  Charging and Discharging a Capacitor 
 
Lab Demonstration 
 
Arrange a DC voltage source, galvanometer and capacitor 
(C~0.05 to 5.0 F) in series as drawn, leaving the circuit open at 
B.  Now connect the wire to B while watching the galvanometer.  
The galvanometer is a device that sensitively measures current, 
which is the flow of charge.  At the moment of connection, the 
needle on the galvanometer will impulsively swing or kick over, 
indicating charge flow, but will then swing back with diminishing 
swings about zero indicating no charge flow.  This demonstrates 
important characteristics of capacitors in DC circuits: an initial 
transient of charge flow (as C is being charged) and a steady state, 
zero charge flow (after C is fully charged). 
 
The kick during the transient is proportional to the total charge that flowed onto the capacitor, q.  Hence you 
can determine the functionality of q with the applied voltage V and capacitance C.  Do this: 
 • measure the galvanometer kick as a function of V (graph kick vs. V while keeping C constant) 
 • measure the galvanometer kick as a function of C (graph kick vs. C while keeping V constant) 
 • After you have charged a capacitor remove the connection at B and shortly thereafter reconnect to 

A.  This discharges the capacitor.  What do you observe on the galvanometer?  Why? 
 • Measure the kick (remember, proportional to q) for a capacitor and then put it in series and then 

parallel with an identical capacitor.  Then measure the kicks for these combinations.  How do the 
kicks compare?  What can you conclude about the equivalent (or effective) capacitance of series 
and parallel combinations? 

 
 Problems (5) 
 
25.2.1.  (a) When a battery is connected to a parallel-plate capacitor, why do both plates acquire charges 
of same magnitude?  (b) Will this be true if the two plates are of unequal size and/or shape? 
 
25.2.2.  A parallel plate capacitor has rectangular plates of size 10 cm x 8 cm.  The separation between 
these two plates are 1.5 mm.  (a) Calculate the capacitance.  (b) What charge will appear on the plates if a 
potential difference of 100 V is applied across the two plates?  (c) When fully charged, how much energy 
is stored in the capacitor?  
 
25.2.3.  Consider a parallel-plate capacitor connected to a battery.  How does the charge in this capacitor 
change if (a) plate separation is doubled, (b) potential difference is doubled (by varying the voltage of the 
battery), and (c) if both plate separation and potential difference are doubled?  d) How does the energy 
stored change for a, b, and c, above? 
 
25.2.4.  Consider a parallel plate capacitor fully charged and isolated from the battery.  a) How does the 
charge change if the plate separation is doubled?  b) How does the energy stored change? 
 
25.2.5.  You are given two identical capacitors to be connected to one battery.  Will the capacitors store 
more energy if connected in series or in parallel? 
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25.3.  Dielectric Capacitors 
 
Lab Demonstration 
 
Use the VdG to charge the parallel plate capacitor.  Use the electrometer to measure the "voltage" on the 
capacitor by the angle   of the needle on the electrometer. 
 • Slide a dielectric between the plates of the capacitor (e.g., a notebook).  What happens?  What if the 

dielectric doesn't entirely fill the gap?  Measure (approximately) the dielectric constant. 
 

 
 
Problems (2) 
 
25.3.1.  A parallel plate capacitor of plate area A and plate separation d is connected to a battery supplying a 
potential difference V.  A dielectric slab of thickness d and dielectric constant   will now be inserted in the 
capacitor.  (a) How will the charge stored in the capacitor change if the capacitor remains connected to the 
battery when the dielectric slab is inserted?  (b) How will the charge stored in the capacitor change if the 
capacitor is first detached from the battery and then the dielectric slab is inserted?  c)  How does the stored 
energy change for a and b, above? 
 
25.3.2.  In the parallel plate arrangement shown, two metal plates of area A are separated by a distance d.  
On the lower plate is a slab of plastic dielectric with dielectric constant   and thickness d/2.  The plates 
are charged with opposite charges +Q and –Q.  Answer the following questions in terms of Q, A, d, and 
  only.  (a) Find the magnitude of the electric field in the air space between the plates.  (b) Find the 
magnitude of the electric field in the dielectric between the plates.  (c) Find the voltage potential on the 
top of the dielectric (the lower plate is grounded). 
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25.4.  Capacitor Circuits 
 
Lab Demonstration 
 
Hook up two different capacitors in series to a DC source.  
This experiment works best with large ( F1000 ) 
capacitors. 
 • Measure, calculate, and compare the voltage across 

each capacitor (see "Note on Voltmeters," below). 
 

Now disconnect the capacitors from the battery (while they are still charged) 
and connect them in the following configurations: 
  
 • Connect the positive end of one capacitor to the negative end of the 

other.  Measure, calculate and compare the voltage across the 
capacitors. 

  
 • Now recharge the capacitors in series and disconnect from the 

battery.  Then connect the positive terminals together, and the 
negative terminals together.  Measure, calculate and compare the 
voltages. 

 
 
Note on Voltmeters.  Voltmeters are high resistance (or more generally impedance) devices used to 
measure the voltage across a circuit element or device.  To do this the voltmeter is put across, i.e., in parallel 
to, the circuit element, as drawn below.  As you learn more about circuits the following characteristics will 
become clear to you: 
 
1. Since the voltmeter is in parallel to the circuit element, it and the circuit element have the same voltage 

across them.  Thus we measure the voltage across that circuit element. 
2. The larger the impedance of the voltmeter, the better.  Since the voltmeter is in parallel to the circuit 

element, a large impedance ("ohmage") will draw little current hence perturb the circuit only slightly.  In 
fact, the ideal voltmeter would have infinite impedance, hence draw no current and cause no 
perturbation.  When you learn about parallel resistors, revisit this 
paragraph and answer the question, "large relative to what"? 

3. Because the voltmeter is placed in parallel to circuit elements, it can 
probe the system without physical modification of the circuit.  The 
voltmeter probes simply touch each end of the element, voltage is read, 
and probes removed.  Compare this to an ammeter which, because it 
must be placed in series to read the current, requires cutting and 
reconnecting the circuit to include the ammeter. 
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Problems (3) 
 
 25.4.1.  You are given three capacitors of capacitances 6 F, 4 F and 3 F, respectively.  List the 
different capacitances that can be generated by connecting these elements in various combinations. 
 
25.4.2.  A group of identical capacitors are connected first in series and then in parallel.  The equivalent 
capacitance of the parallel combination is 144 times larger than the equivalent capacitance of the series 
combination.  How many capacitors are there in the group? 
 
25.4.3.  Find the (a) equivalent capacitance and (b) the total charge and c) the total energy stored in the 
capacitance network shown.  Find also (d) the charge on each capacitor and (e) the voltage across each 
capacitor. 
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27.1.  Series and Parallel Resistor Combinations 
 
Lab Demonstration 
 
This is fairly quick.  Use an ohmmeter to measure the resistance of a few resistors. 
 • Connect some in series and measure the series combination.  Compare to theory. 
 • Connect some in parallel and measure the parallel combination.  Compare to theory. 
 • Pay attention to the fact that R (series combo) > R (any individual) and R (parallel combo) < R (any 

individual). 
 • As a rough rule does the physical size of a resistor have anything to do with its value of resistance?   
 
Problems (2) 
 
27.1.1.  A group of identical resistors are connected first in series and then in parallel.  The equivalent 
resistance of the parallel combination is 100 times smaller than the equivalent resistance of the series 
combination.  How many resistors are there in the group? 
 
27.1.2.  Find the equivalent resistance between the points A and B in each of the situations shown below. 
 

 
 
 
 



  27

27.2.  Series Circuits 
 
Lab Demonstration 
 
Set up a simple series circuit with a battery, three different resistors, 
and an ammeter (A) (see "Note on Ammeters," below). 
 • Measure and calculate the current. 
 • Measure with a voltmeter (V) and calculate the voltage drop 

across each resistor.  What is the total of the voltage drops?  
What would happen if the voltmeter's resistance was about the 
same as the resistor it was measuring across (i.e., what makes a 
good voltmeter)? 

 
 
Note on Ammeters.  Ammeters are low resistance (more generally, impedance) devices used to measure 
the current through a circuit element or device.  To do this an ammeter is put in series with the circuit 
element as drawn below.  As you learn more about circuits the following characteristics will become clear to 
you: 
 
1. Since the ammeter is in series with the circuit element, it and the circuit 

element have the same current through them.  Thus we measure the 
current through that circuit element. 

 
2. The smaller the resistance of the ammeter, the better.  Since the ammeter 

is in series with the circuit element, a small resistance will drop very little 
voltage hence perturb the circuit only slightly.  In fact, the ideal ammeter 
would have zero resistance hence have no voltage drop across it and cause 
no perturbation.  When you learn about series resistors, revisit this 
paragraph and answer the question, "small relative to what"? 

 
3. A drawback to the DC ammeter is that it must be placed in series to read 

the current.  This requires cutting and reconnecting the circuit to include 
the ammeter.  This is not necessary with an AC ammeter.  When you learn 
about induction see if you can design a "non-cut-and-paste" AC ammeter. 

 
 
Problems (2) 
 
27.2.1.  Two resistances 1R 3   and 2R 6   are connected in series with an ideal battery supplying 

an EMF of 9 volts.  (a) What is the current I1 in R1?  (b) What is the current I2 in R2?  (c) What is the 
potential difference V1 across R1?  (d) What is the potential difference V2 across R2?  (e) How are V1 and 
V2 related to the battery EMF?  Next, the series circuit is replaced by an equivalent resistance R 
connected to the same battery.  (f) What is current I in R?  (g) What is the potential difference V across 
R?  (h) How are I1 and I2 related to I?  (i) How are V1 and V2 related to V?   

 
27.2.2.  A resistance R is connected to an ideal battery with EMF E.  If one connects another identical 
resistances R in series, how does the current and voltage across the original resistance change?  
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27.3.  Parallel Circuits 
 
Lab Demonstration 
 
Set up a simple parallel circuit with a battery, three different resistors and an ammeter (A). 
 • Measure and calculate the current.  How do these compare?  What would happen if the ammeter’s 

resistance was about the same as the resistors in the circuit? 
 • Measure and calculate the voltage drop across each resistor.  How do they compare? 
 • Disconnect a resistor or two and see what happens to the current and voltages. 
 

 
Problems (2) 
 
27.3.1.  Two resistances 1R 3   and 2R 6   are connected in parallel with an ideal battery supplying 

an EMF of 9 volts.  (a) What is the current I1 in R1?  (b) What is the current I2 in R2?  (c) What is the 
potential difference V1 across R1?  (d) What is the potential difference V2 a cross R2?  (e) How are V1 and 
V2 related to the battery EMF?  Next, the parallel circuit is replaced by an equivalent resistance R 
connected to the same battery.  (f) What is current I in R?  (g) What is the potential difference V across 
R?  (h) How are I1 and I2 related to I?  (i) How are V1 and V2 related to V? 
 
27.3.2.  A resistance R is connected to an ideal battery with EMF E.  If one connects another identical 
resistances R in parallel, how does the current and voltage across the original resistance change? 
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27.4.  A Kirchhoff Circuit 
 
Lab Demonstration 
 
Set up the circuit drawn below. 
 • Measure and calculate the voltage drop across each resistor.  Don’t forget to measure the voltage 

that your batteries are actually supplying. 
 
 

 
 
 
 
Problems (2) 
 
27.4.1.  (a) Calculate the current through each resistor in the circuit shown.  (b) Calculate Va-Vb. 

 
27.4.2.  (a) Calculate the current through each resistor in the circuit shown.  (b) Calculate Va-Vb. 
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27.5.  Real Batteries 
 
Lab Demonstration 
 
 • Measure with a voltmeter (V) the terminal voltages of two 

common "1.5 volt" batteries, AAA and D cells.  A good 
voltmeter will have a very high resistance and hence will not 
be a significant load for the batteries. 

 • Connect each battery in turn to resistors with R=100, 10, 3, 
and 1 ohm.  Connect for only a short time (2-3 sec.) so as not 
to wear down the battery.  In each case measure the terminal 
voltage.  Qualitatively, what is happening and which battery 
is "best"? 

 • Assume each battery has an internal resistance r and derive an 
expression for the terminal voltage TV  in terms of the ideal EMF, E 

and r and R of the load resistor.  Show that a plot of E TV/  versus 
1R   should be linear with slope equal to r.  Plot your data this way, 

and determine r for the AAA and D cells.  What does battery 
physical size tell you about r?  What makes a good battery? 

 
Problems (3) 
 
27.5.1.  A battery of EMF 9 volts and internal resistance r is connected to an external resistance 
R 10  .  (a) If the voltage across R is 8.82 volts, find r.  (b) If the 10  resistor is replaced by a 1  
resistor, what will be the voltage across this new resistor. 
 
27.5.2.  Repeat Problem 28.2.2 when the battery is a real battery with an internal resistance. 
 
27.5.3.  Repeat Problem 28.3.2 when the battery is a real battery with an internal resistance. 
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27.6.  RC Circuits 
 
Lab Demonstration 
 
Set up the RC circuit drawn below.  Use a battery for the voltage source to avoid grounding problems.  Pick 
values of R and C so that RC is on the order of a couple of seconds.  Use the data studio to detect both the 
voltage across the resistor RV  and across the capacitor CV  simultaneously. 

 

 
 

 • Set the switch SW to position ‘a’ and record RV  and CV  as a function of time.  Which voltage 

indicates current and which one indicates charge?  Determine the time constant for both, compare 
them and compare to RC. 

 • Repeat for the switch moved to position b. 
 
 Problems (4) 
 
27.6.1.  Find the time constant for the three circuits shown.  In each case R=10,000   and C=10  F.  

 
27.6.2.  Consider the circuit shown in the figure.  The capacitor is initially uncharged.  At t=0, the switch 
SW is set to position a.  (a) How many time constants must elapse for the capacitor to have 90% of its 
final, equilibrium charge?  After the capacitor is fully charged, the switch is now set to position b.  (b) 
How many time constants must elapse for the capacitor to lose 90% of its charge?  (c) How much charge 
is left after twice this time?  Thrice? 
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27.6.3.  Consider the RC-circuit shown to the right.  Initially switch S has been open for a long time.  (a) 
What is the charge on the capacitor when the switch SW has been open for a long time?  (b) Next the 
switch S is closed for a long time.  What is the charge on the capacitor after the switch SW has been 
closed for a long time? 

 
27.6.4.  Consider the RC-circuit shown to the right.  Here, E=120 V, 1R 4,200  , 2R 4,000  , 

3R 1,000  , and C 4,700 F  .  Initially the switch SW is open for a long time and the capacitor C is 

uncharged.  The switch then is closed at t=0.  (a) Find the values of i1 and i2 immediately after closing the 
switch, i.e., at t=0.  (b) Find the values of i1 and i2 a long time after closing the switch. 
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28.1.  Force on a Current Carrying Wire in a Magnetic Field 
 
Lab Demonstration 
 
Place a strip magnet on the table.  If a strip magnet is not available, use a series of disk magnets all with the 
same pole up.  In this configuration they will repel and flip so you will have to hold them down with tape.  
Lay two metal rods along each long side of the magnetic strip, parallel to each other.  Tape the rods to the 
wooden blocks.  Place a small rod on the parallel rods perpendicular to them.  All three rods should be free 
of dirt, oxide, etc. (use steel wool to clean them).  Connect a DC power supply to the parallel rods, with one 
terminal to each long rod (make sure the power supply is off at this time). 

 
 • Use the Hall probe to measure the magnetic field just above the strip magnet at the level of the 

small rod.  By symmetry, what is the direction of the magnetic field? 
 • Set the current limit on the DC power supply as described by your instructor (before you connect 

the power supply to the circuit).  Apply a voltage to the parallel rods.  Reverse the voltage.  What 
does the small rod do? 

 • Measure the current.  Calculate the force on the small rod.  Mass it.  Calculate the acceleration 
(magnitude and direction).  Measure the acceleration.  (This will be rough, but better than no 
measurement.)  Compare. 

 
Problems (2) 
 
28.1.1.  A 2.0 m straight wire is carrying a current of 10.0 A in a direction perpendicular to a 0.2 T 
magnetic field.  (a) What is the magnitude of the force per meter on the wire?  (b) What will be the 
magnitude of the force per meter on the wire if the angle between the current direction and the magnetic 
field is changed to 30o?  
 
28.1.2.  One can show that the force on a current-carrying 
loop of arbitrary shape is zero when placed in a uniform 
magnetic field.  (If you are curious as to how, try to work it 
out.)  Use this result to show that the force on an arbitrarily 
shaped wire 1 carrying a current i and placed in a uniform 
magnetic field B is the same as the force on the wire 2 which 
is constructed by connecting the two end points of wire 1 and 
which carries the same current i. 
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28.2  A DC Motor (Torque on a Magnetic Dipole) 
 
Lab Demonstration 
 
 • Starting about 3 inches from the end of a piece of magnet wire, 

wrap it several times around a D battery.  Remove the battery.  
Cut the wire, leaving a 3-inch tail opposite the original starting 
point.  Wrap the two tails around the coil so that the coil is held 
together and the two tails extend perpendicular to the coil.  See 
illustration to the right. 

 • On one tail, use sandpaper to completely remove the insulation 
from the wire (do not sand the tabletops!).  Leave about 1/4" of insulation on the end and where the 
wire meets the coil.  On the other tail, lay the coil down flat and lightly sand off the insulation from 
the top half of the wire only.  Again, leave 1/4" of full insulation on the end and where the wire 
meets the coil. 

 • Bend two paper clips into the following shape. 

 
 • Use a rubber band or masking tape to hold the loop ends of the paper clips (on the left in the above 

drawing) to the terminals of a "D" Cell battery: 
 • Stick a magnet on the side of the battery as shown. 

 
 
 • Place the coil in the cradle formed by the right ends of the paper clips.  You may have to give it a 

gentle push to get it started, but is should begin to spin rapidly. 
 • Try to make the best motor in class. 
 • Explain how the motor works. 
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Problems (4) 
 
28.2.1.  Drawn below is a 5 turn circular coil of radius 0.2 m with a current of 2.5 Amp immersed in a 
0.01 T magnetic field.  What is the magnitude of the torque on the coil? 
 

 
 
 
 
28.2.2.  Drawn to the right is a rectangular, single turn loop of wire, 0.2 m by 0.3 m.  The loop is on the 
perimeter of a door, which is free to rotate on hinges on the z-axis.  The current in the loop is 3 Amp and 
the magnetic field is 0.4 T in the +x direction.  (a) Find the magnitude of the magnetic moment of the 
loop.  (b) Find the magnitude of the torque on the loop. 
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28.2.3.  Drawn below is a circular current loop lying in the xy plane.  It is free to move. A uniform 
magnetic field is directed along the +x axis.  Describe the equilibrium orientation of the loop including 
the direction of the current. 

 
28.2.4.  A single turn current loop, carrying a current of i=5.00 A, is in the shape of a right triangle with 
sides 50.0, 120 and 130 cm. (see figure).  The loop is in a uniform magnetic field of magnitude 80 mT 
whose direction is parallel to the current in the 130 cm side of the loop.  (a) Find the magnitude and 
direction of the magnetic dipole moment of the loop.  (b) Find the magnitude of the torque acting on the 
loop.  (c) Find the magnitude and direction of the magnetic force acting on the 130 cm side.  (d) Find the 
magnitude and direction of the magnetic force acting on the 120 cm side. 
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29.1.  Amperes' Law 
 
Lab Demonstration 
 
Put a large current into the square loop.  Place some paper, on which you can draw, on the horizontal board.  
Draw two connected squares, 5 cm per side as drawn below.  Now take time to understand what the probe 
measurement is telling you.  Use the hall probe to measure the magnetic field (magnitude and direction) at 
the center of each side of each square (i.e., A, B, C, D, E, F and G as drawn).  Measure only the component 
of the field parallel to the square side. 

 
From these data you can approximate Ampere's integral, which is the left hand side of Ampere's Law 

      inside) (total i    dlB o


 

Note that BdlB 


 (parallel to side) dl.  The + or - is determined by whether dl  is parallel or 

antiparallel to B


 (parallel to side). 
 
 • Walk around the square loop which encloses the wire and determine ampere's integral as the sum of 

the four values of B (parallel to side) dl using B at the side center and dl=side length as an 
approximation.  Compare this to io  (total inside) and see how well Ampere's Law works. 

  
 • Do this again for the square loop that does not enclose the wire.  Be careful with signs.  Verify 

Ampere's law. 
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Problems (3) 
 
29.1.1.  Each of the wires (perpendicular to the plane of the page) carries a current of 5 A. Compute 

B ds
   for the paths P1 and P2 shown in the figure. 

 
29.1.2.  The figure shows a cross section of a long conducting coaxial cable with its radii (a,b,c).  Here 
a=0.40 cm, b=1.8 cm, and c=2.0 cm.  Equal but opposite currents i =5 A are uniformly distributed in the 
two conductors.  Find the magnetic field B(r) for various values of radial distance r. (a) r = 0.1 cm. (b) r = 
1.6 cm. (c) r =1.9 cm.  (d) r=25 cm. 

 
29.1.3.  The current density inside a long, solid, cylindrical wire of radius R is in the direction of the 
central axis and varies linearly with radial distance r from the axis according to J=J0 r/R, where J0 is a 
constant and its unit is A/m2.  Here R=4.0 cm and the wire carries a current of i =50 A.  (a) Find the 
magnitude of the constant J0.  (b) Find the magnetic field B(r) at a distance r=3.0 cm from the central axis 
of the cylinder.  (c) Find the magnetic field B(r) at a distance r=5.0 cm from the central axis of the 
cylinder. 
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29.2.  Magnetic Field of a Current Carrying Loop 
 
Lab Demonstration 
 
Put a measured current into the square loop. 
 • Use the magnetic field sensor (the Hall probe) to measure the magnetic field at the loop's center. 
 • Measure the loop's dimensions and calculate the magnetic field at the center of the loop.  Compare. 
 • Repeat the experiment and theory above for an arbitrary point on the perpendicular axis of the loop. 

 
 

  A = center of loop 
  B = arbitrary point on perpendicular axis 

 
 

Problems (2) 
 
29.2.1.  A straight wire of length L =10 m carries a current of 2 A.  Find the magnitude of the magnetic 
field at the points P1 and P2 at distances of (a) 5 m and (b) 0.1 m from the wire segment along a 
perpendicular bisector.  (c) How much error would incur in each of the above cases if one considers the 
wire to be infinitely long? 
 
29.2.2.  A square loop of wire of edge length 0.3 m carries a current of 5 A.  Find the magnitude of the 
magnetic field produced (a) at the center of the loop and (b) at a point on the axis of the loop and at a 
distance of 0.1 m from the center.  
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29.3.  The Solenoid 
 
Lab Demonstration 
 
Measure the number of turns per unit length for the air-cored solenoid.  Also measure the total length and 
diameter.  Compare and discuss whether it is an "infinite" solenoid. 
 • Put a current of as much as 2 amps into the solenoid.  Use the magnetic field detector (the Hall 

probe) to measure the field (magnitude and direction) near the center of the length of the solenoid, 
off the central axis, along the axis to the end and outside, but next to the solenoid.  Compare to 
theory.   

 • How does the end compare to the center?  Make a symmetry argument for the ratio of the field at 
the end and the center. 

 • How does the outside compare to the inside?  Is the solenoid infinite?   
 • Make a graph of the axial field inside as a function of position.    
 • Now put a wood dowel in the solenoid.  What is the field at the end? 
 • Now put an iron rod in the solenoid.  What is the field at the end?  Is this result useful?  How can 

you use the rod to extend the reach of the solenoid? 
 
Problems (2) 
 
29.3.1.  Drawn below is a large planar array of very long, parallel wires going into the plane of the paper, 
each carrying a current of 1.5 A.  There are 100 wires per meter.  Find the magnetic field a small distance 
above the array at the point P. 

 
29.3.2.  Below is a solenoid drawn in cross section parallel to its axis.  The wires on top carry current out 
of the plane of the paper, those below into the plane.  The magnetic field magnitude at position c inside 

the solenoid is B=0.230 T.  (a) What is the direction of B


at c? (b) What is the field (a vector) at position 
d, e, and f? 
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29.4. The Solenoid Continued 
 

Lab Demonstration 
 
For this lab, we will measure the relationship between the current through a solenoid and the B Field 
created by this current.   
 
 • You should have a wooden rod and at least one metallic rod (ideally we should have at  
  least two types of metals).   
 •   Now, with each of the 4 cores (air counts as one), measure the B Field while varying  
  the current from 0 to 2 Amps.  Measure at least in 0.5 Amp increments (but you  
  can do smaller if you like).   
 •   How can you determine the B Field at the center of the solenoid by measuring the B Field at one 

end?  Comment on this in detail in your lab book. 
 •   Don’t forget to label the different curves you get, and explain why the curves are  
  different. 
 •   Consider the slope of the curve of the air core.  What is this value?  What should it be? 
 
For the next part of this experiment, take one of the metallic cores and slowly strike a magnet along one 
end.   
 
 • Try to pick up paperclips (or something metallic).  Why did this happen?   
• Drop the rod from a couple of feet in the air onto the floor.  Why does the rod become demagnetized?
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30.1.  Induction 
 
Lab Demonstration 
 
Connect a wire loop to a galvanometer. 
 • Use a bar magnet and move one of the poles into the loop; leave it there.  Describe the current flow 

as indicated by the galvanometer. 
 • Remove the magnet; what happens? 
 • Switch poles and repeat the experiment above. 
 • Vary the rates of movement.  Vary the angles at which the magnet is in the center of the loop.  Use 

more than one magnet.  Deduce a law of induction.  Does your law depend on the magnetic field or 
that rate at which it changes? 

 
Problem (1) 
 
30.1.1.  A bar magnet moves with constant velocity along the axis of a conducting loop as shown.  
(a) Make a sketch of the magnetic flux  B through the loop as a function of time. Indicate the time t1/2 
when the magnet is halfway through the loop.  (b) Make a sketch of the current induced i through the loop 
as a function of time.  Consider the current to be positive when it is counterclockwise viewed from the 
left.  Indicate the time t1/2 when the magnet is halfway through the loop. 
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30.2.  Induction and Lenz's Law 
 
Lab Demonstration 
 
(This is a quicky.) 
 • Drop one of the rare-earth magnets down a vertical brass tube.  What happens?  Why? 
 • Place a thin piece of aluminum metal on top of a stiff piece of paper.  Hold one of the rare-earth 

magnets under the paper below the aluminum.  Note that there is, of course, no attraction of the 
aluminum to the magnet.  Now move the magnet quickly, horizontally.  What happens, why? 

 • Place the magnet on the thick sheet of aluminum, and let gravity slide it down.  Compare this to 
letting the magnet slide down a thick book cover of the same inclination. 

 
Problems (4) 
 

30.2.1.  A rectangular conducting loop is hung in a uniform magnetic field B


 directed into the page.  The 
magnetic field only exists above the dotted line.  The loop is then dropped.  (a) Find the direction of the 
induced current during its fall.  (b) Find the direction of the magnetic force on this current during the fall. 
 

 
30.2.2.  A metal rod is forced to move with constant velocity v


 along two parallel metal rails, connected 

with a strip of metal at one end.  A uniform magnetic field B


 points out of the page.  Find the (a) 
direction of the induced current in the rod and (b) the direction of the magnetic force on the rod. 
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30.2.3.  In the figure, a circular loop moves at constant velocity through regions where uniform magnetic 
fields of the same magnitude are directed into or out of the page.  The induced EMF at locations, 2, 4, 6, 
7, are (pick one): 
 a.  clockwise, 
 b.  counterclockwise,  
 c.  zero. 

 
 
30.2.4.  A single turn rectangular loop of wire with length a=10 cm, width b = 5 cm and resistance 
R 20    is placed near an infinitely long wire carrying current i=5 A, as shown in the figure.  The 
distance from the long wire to the center of the loop is r= 20cm.  (a) Find the magnitude of the magnetic 
flux through the loop.  (a) Find the magnitude of the current in the loop as it moves away from the long 
wire with a constant speed v= 5 cm/s.  Write down the direction of the current (clockwise or 
counterclockwise) induced in the loop.  
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30.3.  Electrical Generators 
 
Lab Demonstration 
 
 • Spin the crank of the hand generator with no electrical connection (i.e., no load).  Note the torque 

you must apply. 
 • Now connect the generator to various loads of about 100 ohms, 10 ohms, and short-circuited ( loadR  

~ wires resistance).  Note the qualitative torque you must apply.  For what value of load is the 
torque the greatest and the least?  Use conservation of energy to explain your observation. 

 • Is a large load a big resistance or a small resistance?  Explain why the crank is harder to turn when 
the load is there.  To do this use conservation of energy, conversion of mechanical to electric 
energy, and rotational work being torque times angle turned. 

 • Connect the hand generator to the oscilloscope function of the lab computer.  This will give you an 
instantaneous picture of the output voltage as a function of time.  Crank it at different rates and 
explain what you see. 

 
Problems (3) 
 
30.3.1.  A rectangular loop of wire (one turn) with side lengths 0.20 m and 0.10 m is placed half way in a 
magnetic field as drawn below.  The field as a function of time is also plotted below.  Find the induced 
EMF at (a) t=1 s (b) t= 3 s (c) t=6 s.  (d) At t=1 what is the force (a vector) on the loop if the resistance of 
the loop is 2  ? 

 
30.3.2.  A long solenoid of 2000 turns/meter and radius 0.05 m passes through a single turn loop with 
resistance of 1  and radius of 0.15 m.  The current in the solenoid is i(t)=(10 Amps) sin(400t), t in 
seconds.  (a) Find an expression for the EMF induced in the loop.  (b) If instead this current was in the 
loop, what do you expect, by symmetry, the EMF induced in the solenoid to be? 
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30.3.3.  The horizontal component of the earth’s magnetic field is 50 T , North.  A bicycle traveling 
west has wheels with spokes 0.25 m long.  (a) Find the induced EMF across a spoke if the wheel is 
turning at 1 rev/sec.  (b) Which end of the spoke is positive (see drawing)? 
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31.1.  LC Oscillator 
 
Lab Demonstration 
 
Connect a capacitor to a switch where in one position the capacitor is in parallel with the voltage source, 
and in the other position it is in parallel with an inductor. 
  
 •  Draw a graph of the voltage response. 
 •  Measure and calculate the natural frequency and the period. 
 •  Why does the graph of the experimental voltage differ from the theoretical?  What could we do to 

make a “better” LC oscillator? 
 
 
 
 
 
 
 
Problems (5) 
 
The information given below is relevant for questions 1, 2, and 3.  In a certain oscillating LC circuit, one 
of the plates of the capacitor (say, plate A) has maximum positive charge at t=0.  The time period of 
oscillation is T. 
 
31.1.1.  At what times t > 0 will the plate A again have maximum positive charge? 
 a.  T/2, 3T/2, 5T/2, 7T/2 ....  
 b.  T/4, 3T/4, 5T/4, 7T/4 ....  
 c.  T, 2T, 3T, 4T ....  
 d.  T/2, T, 3T/2, 2T ....  
 e.  T/4, 5T/4, 9T/4, 13T/4 .... 

 
31.1.2.  At what times t > 0 will the other plate of the capacitor have maximum positive charge? 
 a.  T/2, 3T/2, 5T/2, 7T/2 ....  
 b.  T/4, 3T/4, 5T/4, 7T/4 ....  
 c.  T, 2T, 3T, 4T ....  
 d.  T/2, T, 3T/2, 2T ....  
 e.  T/4, 5T/4, 9T/4, 13T/4 … 
 
31.1.3.  At what times t > 0 will the magnitude of the current through the inductor be a maximum? 
 a.  T/2, 3T/2, 5T/2, 7T/2 ....  
 b.  T/4, 3T/4, 5T/4, 7T/4 ....  
 c.  T, 2T, 3T, 4T ....  
 d.  T/2, T, 3T/2, 2T, … 
 e.  T/4, 5T/4, 9T/4, 13T/4,… 
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31.1.4.  A 20  F capacitor is initially charged by a 12 V battery by keeping the switch connected between 
the points a and b for a long time (see the adjacent figure).  Then, at t=0, the switch is thrown from b to d so 
that points a and d are now connected and we have an oscillating LC circuit.  Here L=0.25 H. 
 a.  Find the maximum charge on the capacitor. 
 b.  Find the maximum current in the inductor. 
 c.  Compute the energy stored in the capacitor at t=1.5 ms.  
 d.  Compute the energy stored in the inductor at t=1.5 ms. 

 
31.1.5.  In an oscillating LC circuit, L=3.00 mH and C=2.70  F.  At t=0 the charge on the capacitor is 

100  C and the current is 1.00 A.  The capacitor is charging.  
 a.  What is the maximum charge on the capacitor?  
 b.  What is the maximum current? 
 c.  If the charge on the capacitor is given by q= Q cos( t +  ), what is the phase angle  ?  Is 

it positive or negative? 
 d.  What is the first time t >0 when the capacitor attains its maximum charge? 
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31.2.  AC Circuit 
 
Lab Demonstration 
 
The "breadboard" for this experiment has an inductor with L=0.33 H (and a 
resistance of 480~ -- its a real inductor!).  A capacitor with C=10nF and a 
resistor with R=1000 .  Connect these in series in the order L, C, and R.  
Connect the variable voltage output of the lab computer to the series 
combination.  Turn on the output voltage and set the frequency near 1000Hz.  
Use an AC voltmeter to measure the voltage across the resistor as you 
increase the frequency.  Dividing this voltage by the resistance gives you the 
current in the circuit (this is easy to do in your head because R=1000 ). 
 • Make a graph of I vs. f.  What is the measured resonance frequency?  

Compare to theory.  What is the current at resonance?  Compare to 
theory. 

 • At resonance measure the voltages, LV , CV , RV , across all three elements, L, C and R.  Phasor 

(vector) add them and compare to the applied voltage.  (Don't get faked out.  Your voltmeter is 
probably measuring RMS, whereas an oscilliscope display--e.g., your voltage source from the 
computer--is showing you peak voltages.) 

 • Measure the voltage across the combination of L and C at resonance.  Explain your result with 
phasors.  If the inductor was ideal, i.e., if it had no resistance, what would CL VV   equal? 

 • Both increase and decrease the frequency from resonance by a factor of 2 to 3.  Measure LV , CV , 

RV  and show that these voltages, acting like phasors, add to the applied voltage. 
 • Use the oscilloscope function of the lab computer to measure the voltage across the entire LRC 

combination, and a second trace for the voltage across the resistor.  This voltage tells you, with 
ohms law, the current in the circuit (why?).  The dual sweep trace shows you the applied voltage 
and the current.  Now vary the frequency from below resonance to above.  Watch both the 
amplitude of the current and its phase relative to the applied voltage.  Make sense of what you see. 

 
Problems (3) 
 
31.2.1.  Consider the AC circuit shown in the figure containing R 40.0  , L=30.0 mH, and 
C 10.0 F  , and a generator whose EMF is given by m dsin t E E .  This generator has a peak voltage 

of 120.0 V.  The frequency is fd=200Hz.  The current in the circuit can be written as i=I  sin  (  t -  ).  
(a) Find the peak current I for this frequency.  (b) Find the peak voltages across each element of the 
circuit.  (c) Find the phase angle  .  (d) In the phasor diagram shown in the figure, first draw VC and VL 
approximately to scale. VR is shown in the figure and this sets the scale of the figure.  Next, complete the 
phasor diagram by drawing Em, and I, and showing  . 
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31.2.2.  Consider the AC circuit shown in the figure containing R 60.0  , L=50.0 mH, and 
C=80.0 F, and a generator whose EMF is given by m dsin t E E .  This generator has a RMS voltage 

of 120.0 V and the frequency fd can be varied.  (a) Find the RMS current at resonance.  (b) At resonance, 
draw the RMS VC and VL approximately to scale in the phasor diagram shown in the figure (RMS VR is 
shown in the figure and this sets the scale of the figure).  (c) What is   in this case? 
 

 
 
31.2.3.  Current i and driving EMF E are shown in the figure for an AC circuit. 
 a.  The phase constant   in this case is: 
  1.  zero  
  2.  positive  
  3.  negative  
 b.  The frequency of the generator fd in this case is: 
  1.  equal to the natural frequency. 
  2.  more than the natural frequency. 
  3.  less than the natural frequency. 
 c.  In this case 
  1.  VL > VC 
  2.  VL = VC 
  3.  VL < VC 
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32.1.  Magnetic Materials 
 
Lab Demonstration 
 
 • Try balancing a plastic rod that has either bismuth or copper sulfate located at the ends of the rod.  

Now place a magnet close to one end.  What do you observe?  What is the orientation of the rod 
relative to the magnetic field?  Explain your observations. 
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33.1.  Polarization in Nature 

 
Lab Demonstration 
 
Use a sheet polarizer to check the polarization of natural light sources.  Hold the polarizer in front of your 
eye and rotate it back and forth through 90 as you look at: 
 
 • Room lights, 
 • Light reflected from the tile floor, 
 • Light reflected at a glancing angle from the black board, 
 • Light from the blue sky at various angles from the sun, 
 • Light from clouds. 
 
What is an easy way to tell if advertised polarizing sunglasses are in fact polarizers and not just tinted 
glasses? 
 
Problems (4) 
 
33.1.1.  What does polarization tell us about the nature of light? 
 
33.1.2.  What is the advantage of a pair of polarizing sunglasses over a tinted pair of sunglasses?  How 
can you tell if a pair of sunglasses is polarizing or not? 
 
33.1.3.  How far above the horizon is the Moon when its image reflected in a calm Tuttle Creek lake is 
completely polarized? 
 
33.1.4.  The peak value of electric field for sunlight on Earth is about 1000 V/m.  (a) Calculate the peak 
value of the magnetic field of sunlight on earth.  (b) Which one is larger, the electric field or the magnetic 
field?  (Pause for 10 seconds before you answer this question).  
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33.2.  Polarized Light 
 
Lab Demonstration 
 
 • Look through two polarizers and rotate one relative to the other to qualitatively demonstrate the 

2cos  functionality (the Law of Malus). 
 • Cross two polarizers, i.e., arrange them so that their optical axes are perpendicular and hence no 

light is transmitted.  Now place a third polarizer between the two crossed polarizer and rotate its 
optical axis.  How are the transmitted intensity and polarization related to the orientation of the third 
polarizer? 

 
Problems (3) 
 
33.2.1.  Unpolarized light with an intensity of 100 units is incident on polarizer A with polarization axis 
tipped 30o to the vertical.  (a) What is the intensity and polarization of the light that passes through?  (b) A 
second polarizer, polarizer B, is placed behind A so that the light from polarizer A is incident upon it.  
Polarizer B has its polarization axis parallel to the vertical.  What is the polarization and intensity of the 
light after it passes through this second polarizer, polarizer B?  (c) A third polarizer, polarizer C, is now 
placed between polarizers A and B at an angle  from the vertical.  How does the polarization of the light 
that finally comes out of polarizer B depend on  ? 
 
33.2.2.  Unpolarized light propagating along the x-axis with intensity I0 passes through the following 
polarizer combinations.  Find the resulting intensity and polarization direction as a function of   at point 
A. 

 
33.2.3.  A beam of polarized light of intensity 43.0 W/m2 is sent through a system of two polarizing 
sheets.  Relative to the polarization direction of that incident light, the polarizing directions of the sheets 
are at angles   for the first sheet and 90o for the second sheet.  If the intensity of the final, transmitted 
light is 8.6 W/m2, what is the value of  ? 
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33.3.  Refraction 
 
Lab Demonstration 
 
Use the ray optics projector and shine rays at various angles (at least 3) from the normal.  Measure the 
refracted angles, verify Snell's Law, and measure the refractive index of the material. 
 

 
Problems (4) 
 
33.3.1.  For the drawing below:  (a) Find the refractive indices of material A and B.  (b) Find the angle  . 
 

 
33.3.2.  The critical angle of a certain material (say, a piece of glass of unknown refractive index n) in air 
(refractive index of air is 1.0) is 400.  What is the critical angle of the same glass if it is immersed in water 
(refractive index of water is 1.33)? 
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33.3.3.  Consider a beam at an angle  from the vertical direction in water of index of refraction 1.33.  A 
5 mm layer of kerosene with n=1.30 is floating on top of the water.  What is the minimum angle   
necessary to achieve total internal reflection (a) at the water-kerosine and (b) at the kerosine-air interface?  

 
33.3.4.  When green light in vacuum is incident at the Brewster's angle on a certain glass slab, the angle 
of refraction is 30o.  What is the index of refraction of the glass?  
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33.4.  The Prism 
 
Lab Demonstration 
 
A prism can be used to demonstrate a variety of interesting phenomena.  Here we use a common 45-45-
90 prism. 
 • Dispersion.  Shine a white beam of light through one of the 45 corners as drawn.  What is the order 

of increasing refraction of the colors.  In other words, what color of light gets bent more by 
diffraction?  Observe the beauty of the spectrum. 

 

 
 

 • Total Internal Reflection.   
a) 90 deviation.  Shine light into one face toward the hypotenuses as drawn.  Light is totally  
  reflected from the clear glass hypotenuse.  Look through it this way too.   
b) 180 deviation.  Shine light into the hypotenuse toward the 90 corner.  Look into this 

corner too.  Move from side to side.  Hold a printed page under your nose and look at this 
reflection through this corner.  Where is the inversion?   

c) Dove prism.  Look through the prism as drawn.  Rotate the prism about an axis through the 
prism, parallel to the hypotenuse.  What happens?  Explain with ray diagram. 
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Problems (3) 
 
33.4.1.  Find the deviation angle   for red light,  =700 nm, and blue light  =400 nm, for the two 
situations below.  The prism refractive index is given in the graph. 

 
 
33.4.2.  Complete the path of the incident ray in the diagram below.  
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33.4.3.  Light enters an equilateral glass prism (n=1.56) at point P with incident angle   and then refracts 
at point Q grazing along the face as shown in the figure. 
 

 
 

 a.  Find the incident angle  . 
b.  Mark the true answer below.  If the incident angle   is increased by 1o from what is shown in 

the figure, then: 
1.  Nothing new will happen at Q; light will still come out grazing along the face as 

shown in the figure. 
  2.  Light will not come out at Q; it will be totally internally reflected at Q. 
  3.  Light will emerge into air at Q. 

c.  Mark the true answer below.  If the incident angle   is decreased by 1o from what is shown in 
the figure, then: 

1.  Nothing new will happen at Q; light will still come out grazing along the face as 
shown in the figure.  

  2.  Light will not come out at Q; it will be totally internally reflected at Q. 
  3.  Light will emerge into air at Q. 
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33.5.  Fibers 
 
Lab Demonstration 
 
Mess around with the optical fibers. 
 
Problems (1) 
 
33.5.1.  Consider an optical fiber of refractive index n1 = 1.6 with a coating of index n2 =1.4 shown in the 
figure below.  The incident angle for a ray at point A is  =30o .  The radius of the optical fiber is r=0.5 
cm.  (a) Find the critical angle for refraction at the point B.  (b) It turns out that for the value of   given 
above, the light ray will be totally reflected back into the fiber at point B.  The next reflection will take 
place at point C.  Find the distance of the path BC traveled by light between successive reflections.  (c) 
Find how much time light takes to travel the distance BC.  (d) Compare this (make a ratio) to the time it 
takes a light ray to travel along the fiber axis from B  to C . 
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34.1.  Ray Optics 
 
Lab Demonstration 
 
 • Use the ray optics projector to create three parallel beams of light.  Project these beams toward the 

lens and mirror cross sections to see how refraction and reflection can cause either convergence or 
divergence of rays hence focal points.  Draw each case and label the focal point. 

 
Problems (1) 
 
34.1.1.  Draw the three principal rays, find the image, and describe it as either real or virtual for the 
situations below.  

 



  61

 
34.2.  Mirrors 

 
Lab Demonstration 
 
 • Use the concave mirror to form a real image of a distant object.  Draw a ray diagram to explain your 

observation. 
 • Hold the concave mirror close to your eye to form an image (real or virtual) of your eye (i.e., look 

into the mirror).  Hold it far from your eye.  What do you see?  Why? 
 Mess around with a convex mirror.  Can it ever form a real, enlarged image? 

 
Problems (2) 
 
34.2.1.  A concave shaving mirror has a focal length of 20.0 cm.  It is positioned so that the upright image 
of a man's face is 2 times the size of the face.  (a) How far is the mirror from the face?  (b) What is the 
image distance?  (c) Is the image real or virtual? 
 
34.2.2.  A small cup is positioned on the central axis of a spherical mirror.  The magnification of the 
image of the cup is +0.250, and the distance between the mirror and its focal point is 2.00 cm.  (a) What is 
the distance between the mirror and the image it produces?  (b) Is the mirror concave or convex?  (c) Is 
the image real or virtual? 
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34.3.  Lenses 
Lab Demonstration 
 
Set up a luminous object, a lens, and an observation screen on the optical bench. 
 • Form an image of the object on the screen using a positive lens.  Measure the image and object 

distances.  Verify the thin lens formula.  Draw a ray diagram and show consistency with both the 
calculation and the measurement.  Measure the image and object size and compare to calculation 
and your ray diagram. 

 • Calculate the distance your lens should be placed from the luminous object to form a large, 
projected, real image on a distant wall.  Try it and make it work. 

 • Now calculate the distance your lens should be placed from a screen to produce an image if the light 
source is far away.  Try it and make it work.   

 • Mess around with a negative lens.  Can you form a real image?  Can you ever magnify (enlarge) 
with such a lens? 

 
Problems (4) 
 
34.3.1.  Does the focal length of a lens depend on the fluid it is immersed in?  What about the focal length 
of a spherical mirror? 
 
34.3.2.  Two converging lenses with the same focal length of 27.0 cm, are placed 16.5 cm apart.  An 
object is placed 35.0 cm in front of lens 1.  Where will the final image be formed?  
 
34.3.3.  A converging lens with a focal length of 20 cm is located 10 cm to the left of a diverging lens 
having a focal length of 15 cm.  (a) If an object is located 40 cm to the left of the converging lens, find the 
location of the final image.  (b) What is the final magnification of the image?  (c) Is the image upright or 
inverted? 
 
34.3.4.  A planoconvex lens forms an image of a nearby object.  Does the image change if the lens is 
turned around? 
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34.4.  The Telescope 
 
Lab Demonstration 
 
 • Mount two lenses on the optical bench.  Use fo = 20 to 30 cm and feye = 3 to 5 cm.  Place them 

approximately fo + feye apart.  This is a telescope.  Look through the eye lens (i.e., the eyepiece -- the 
one with feye) with the telescope pointed toward a distant object (many times fo).  Adjust slightly the 
distance between the objective lens (the one with fo -- closest to the object) and the eye lens until the 
view is sharp (i.e., focus the telescope). 

 

 
 

 • Determine (approximately) the magnification of the telescope by viewing the image of the object 
with one eye through the telescope and the object directly with the other eye simultaneously.  Relax, 
your mind will overlap these two images in your brain.  Comparing sizes will allow a reasonable 
estimation of the magnification.  Compare to calculation. 

 • With the telescope pointed toward a bright area (e.g., a window), hold a viewing screen (a piece of 
paper) behind the eye lens (about feye distance away) until a nice round circle of light forms.  This is 
the exit pupil.  Measure its diameter.  Measure the diameter of the objective lens.  Their ratio is the 
magnification.  Compare to above. 

 
Problems (1) 
 
34.4.1.  If the angular magnification of an astronomical telescope is 40 and the diameter of the objective 
lens is 75 mm, what is the minimum diameter of the eyepiece needed to collect all the light entering the 
objective lens from a distant star located on the axis of the telescope? 
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34.5.  The Microscope 
 
Lab Demonstration 
 
Mount two lenses on the optical bench.  Use focal lengths for both of ca. 2 to 4 cm and place them 20 to 30 
cm apart.  Look through one lens and hold an object (e.g., some print) in front of the other, slightly more 
than one f away.  Adjust the distance between the object and this objective lens carefully until you see an 
image while looking through the eye lens.  You are focusing your microscope (compare to how one focuses 
a telescope). 

 
 
 • Using two eyes simultaneously, one looking through the microscope the other looking at the object, 

estimate your microscope's magnification.  Using fo, feye and the distance between the two lenses, 
calculate the magnification and compare. 

 
Problems (1) 
 
34.5.1.  Drawn below is a lens arrangement for a microscope, fe=5.0 cm and fo=2.0 cm.  The distance 
between the lenses is 20.0 cm.  (a) the objective lens forms a real image of the object in front (to the left) 
of the eyelens.  Where should this image be, relative to the eyelens, so that after light passes through the 
eyelens it can be viewed by a normal human eye, i.e. find the distance y.  (b) What is the magnification of 
the eyelens?  (c) Find x under the condition of part (a).  (d) What is the magnification of the objective 
lens?  (e) What is the total magnification of the microscope? 
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35.1.  Young's Double Slit Experiment 
 
Lab Demonstration 
 
Set up a laser to shine its beam toward the double slits.  Adjust until the spot of the beam falls across both 
slits.  Place an observation screen about 0.5 meter or more behind the slits (the larger the distance to the 
observation screen, the better your experimental results will be).  Observe and describe the fringe pattern. 

 
 • Measure the distance between consecutive fringes and the distance between the double slit and the 

observation screen and calculate the angular spacing in radians.*  Compare this to theory. 
 • Very delicately use a sharp edge (e.g., the edge of a piece of paper or a knife blade) and try to block 

just one of the slits.  If you can do this, what do you see?  Explain. 
 
*Digression on small  .  You're big kids now and, when dealing with small angles, its time to wean 

yourself from trigonometry.  For example in the diagram below, which is related to the fringe spacing 
problem above, what is the angle  ? 

 
From a strictly trigonometric approach one can show 
 (x/2D) arctan 2  
not particularly aesthetically pleasing.  Instead, if I approximate the side x as an arc, I find  
 D/x  
with   in radians.  This is clean, simple, and hence beautiful!  I can also do the calculation in my head.  
But, you might protest, is it correct, i.e., accurate?  It is for small  , i.e., 1  radian 57~ deg.  As an 
example let D=0.5m and x=1cm.  We find 
    2 arctan (x/2D)=0.0199993 rad. =1.14588 deg. 
     x/D =0.0200000 rad. = 1.14592 deg. 
These are essential equal, differing by only 4 parts in 100,000.  Another way of saying this is that for 

1 rad. 57    deg, 
 sin    
 tan   
 cos 1  . 
Thus arctan    and we have 2  arctan (x/2D)=2x/2D=x/D. 
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Problems (3) 
 
35.1.1.  In a double-slit arrangement the slits are separated by a distance equal to 1000 times the 
wavelength of the light passing through the slits.  What is the distance between the second-order and 
third-order maxima on a screen placed 2.0 m from the slits? 
 
35.1.2.  Drawn below is a set of interference fringes observed on a screen 3.0 m away from a double slit 
arrangement.  If the wavelength of light used is 633 nm, find the separation between the slits. 
 

 
 

35.1.3.  A thin flake of transparent plastic (n=1.6) is used to cover one slit of a double-slit interference 
arrangement.  The central point on the viewing screen is now occupied by what had been the 8th bright 
fringe before the plastic was used.  If the wavelength of the light used is 489 nm, what is the thickness of 
the plastic? 
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35.2.  Thin Film Interference 
 
Lab Demonstration 
 
 • Clean two microscope slides with chem-wipes.  Press them together with your fingers and look at 

the reflection of the overhead lights in them.  You should see interference fringes.  What color are 
they and why?  What happens when you press harder?  Why? 

 • Suspend a soap film on a wire frame in a vertical plane and let it sit for a while (with preferably 
little air movement around it).  Look for interference fringes.  Record (draw) these fringes at various 
times after the initial suspension.  What is the thickness of your film? 

 • Blow some soap bubbles.  What gives bubbles their iridescent color? 
 
Problems (4) 
 
35.2.1.  What is the minimum, non-zero thickness of a soap film (n=1.34) that would appear black if 
illuminated normally with red light of wavelength 630 nm.  Assume there is air on both sides of the soap 
film. 
 
35.2.2.  Antireflective coatings are used on lenses to eliminate various colors on reflection.  What is the 
minimum, non-zero thickness for such a coating (n=1.4) applied to a glass lens (n=1.55) such that red 
light of wavelength 630 nm will be eliminated for light at normal incidence? 
 
35.2.3.  A thin layer of nickel is optically transparent and has a refractive index of 1.58.  Professor 
Klabunde of KSU Chemistry makes thin layers of nickel on glass (n=1.50), which are 180 nm thick.  
Upon reflectance what color do these films of nickel appear to be, i.e., what wavelength(s) (measured in 
air) of visible light are reflected?  Give both wavelength and color. 
 
35.2.4.  Two pieces of flat glass touch at one end.  They are separated at the other end by a thin spacer as 
drawn.  When illuminated with orange light of wavelength 600 nm, one observes interference fringes due 
to this wedge of air between the glass plates.  A dark fringe appears where they touch and a total of four 
dark fringes (labeled D) are seen, the fourth being next to the spacer.  How thick is the spacer? 
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36.1.  Single Slit Diffraction 
 
Lab Demonstration 
 
Set up a laser to shine its beam on a single slit.  Place an observation screen about 0.5 meter or more behind 
the slit.  Observe, draw, and describe the pattern on the screen. 

 
 • Measure the width of the diffraction pattern and the distance between the slit and the screen and 

calculate the angular width in radians.  Compare to theory. 
 • Try different wavelengths if available. 
 • Measure the width of a human hair with diffraction by holding a hair in the beam and measuring the 

diffraction pattern.  Note that a hair is a "negative" (a reverse) of a slit.  Then by Babinet's principle 
the diffraction patterns are very similar.  Human hair should be on the order of 70 microns. 

 • Rest your arm on the table and let the laser beam pass between your thumb and index finger.  
Squeeze down on the beam and observe the diffraction pattern on a distance screen. 

 
Problems (3) 
 
36.1.1.  A screen is placed 50.0 cm from a single slit, which is illuminated by red light of wavelength 
700 nm.  If the distance between the first and the third minima in the diffraction pattern is 3.00 mm, what 
is the width of the slit? 
 
36.1.2.  Why can you hear around corners but not see around them? 
 
36.1.3.  Which is more easily diffracted around buildings, AM or FM radio waves?  Why? 
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36.2.  Circular Aperture Diffraction 
 
Lab Demonstration 
 
Repeat 36.1 but for a circular aperture.  Compare theory and experiment. 
 
Problems (3) 
 
36.2.1.  (a) How small is the angular separation of two stars if their images are barely resolved by a 
telescope with lens diameter of 76 cm and focal length of 14 m?  Assume  =550 nm.  (b) Find the 
distance between these barely resolved starts if each of them is 10 light years away from the earth.  
(c) For the image of a single star in this telescope, find the diameter of the first dark ring in the diffraction 
pattern, as measured on a photographic plate at the focal plane. 
 
36.2.2.  In laser welding operations one desires to focus the laser to as small of a spot as possible to create 
the largest intensity (power per unit area).  The size of the spot is determined by diffraction. Consider a 
CO2 laser beam with  =10.6 .  The beam is 20 mm in diameter and uniformly illuminated across its 
diameter.  What is the diameter of the central maximum spot if this beam is focused by a lens with focal 
length f=50 cm?  What could one do to achieve a smaller spot size with this laser? 
 
36.2.3.  (a) Calculate and compare the theoretical minimum angles of resolution of an optical telescope 
(400 nm     700 nm) of diameter 1.0 m to a radio telescope operating at  =21 cm and diameter 
50 m.  Which telescope has a better resolving ability?  (b) By placing two radio telescopes far apart and 
mixing their signals electronically, the effective size of the telescopes becomes equal to the distance 
between the two individual telescopes as far as resolving power is concerned (so-called “Long Baseline 
Interferometry”).  Find the approximate distance between two radio telescopes operating at  =21 cm 
necessary so the angular resolution is the same as the 1.0 m optical telescope. 
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36.3.  Diffraction Grating 
 
Lab Demonstration 
 
 • Shine a laser through a diffraction grating.  Describe the diffracted spot pattern.  Measure the angles 

for each diffraction order.  Find the wavelength of the light using these data, the specified grating 
lines per unit length, and the diffraction grating formula.  Compare to the known wavelength.   

 • Shine a white light beam through the grating.  Observe the spectrum.  Measure the angle and 
calculate the wavelength at the limit of visibility at the blue end of the spectrum. 

 • Shine a laser through a piece of woven material (e.g., a thin shirt).  What do you see?  What is the 
thread spacing? 

 
Problems (2) 
 
36.3.1.  A Diffraction grating has 350 rulings per millimeter.  If it is illuminated by light of wavelength 
600 nm at normal incidence, how many maxima are there in the full diffraction pattern? 
 
36.3.2.  A diffraction grating has 300 rulings per mm.  For m=1 what is angular separation of 400   
and 700 nm (i.e. between the two extremes of the visible spectrum). 
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36.4.  Diffraction 
 
Lab Demonstration 
 
 • Place a piece of window screen in front of the objective lens of a telescope.  Look through the 

telescope at a bright, distant object.  What do you see, that isn't there without the screen.  Why? 
 • Look at a bright light through a piece of fine screen, cloth, or tissue.  What do you see and why? 
 
Problems (4) 
 
36.4.1.  Light of wavelength 630 nm passes through a double slit.  Consider the interference of light from 
the two slits and also the diffraction of the light through each slit.  The intensity I versus angular position 
  for this experiment is shown in the figure.  (a) Calculate the slit width. (b) Calculate the slit separation. 
 

 
 
36.4.2.  Drawn below is a diffraction pattern (an array of bright spots) obtained by shining a laser with 
light of wavelength 488 nm through a wire screen.  The distance from the screen to the diffraction pattern 
is 2.0 m.  What is the vertical spacing of the screen wires? 
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36.4.3.  In a darkened room you observe the rectangular diffraction pattern shown here.  The pattern is 5 
meters from the tiny hole that made it.  Find the approximate x and y dimensions of the hole, and describe 
its shape assuming  = 600 nm. 

 
 

36.4.4.  Drawn below is a two-slit interference/diffraction pattern due to  =600 nm light.  This pattern is 
observed 5.0 m from the two slits.  (a) What is the width of either slit given that the slits have an equal 
width?  (b) What is the center-to-center separation of the slits?  (c) A flood occurs in the lab!  The 
apparatus is immersed in water with refractive index n=1.33.  What happens, if anything, to the 1 cm 
fringe spacing? 
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37.1.  Time Dilation 
 
Lab Demonstration 
 
Run as fast as you can.  While running note that everybody else's time seems to run slower than yours.  
When they observe you, what do they see?  When you stop and compare times notice that they appear to 
have aged more than you.  Is this because running is good demonstration and helps keep you young?  By the 
way, did you feel more massive while you were running?   
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38.1.  The Photoelectric Effect 
 
Lab Demonstration 
 
In this experiment you will shine light on the emitter of a photocell.  If the photons of light have enough 

energy, electrons will be emitted from the emitter (one e  per photon), pass through a vacuum in the 
photocell and be collected by the collector.  Thus current will be measured with an ammeter.  Depending on 
the energy per photon and the work function of the cathode material, the electrons will jump out of the 
cathode with a certain energy.  This emission energy can be opposed by a voltage applied across the 
photocell with a bias such that the collecting electrode is negative (hence repels the electrons).  The voltage 
which completely stops the electron flow (current) tells us the emission energy of the photo-electrons (recall 

VqU   and electron volts). 
 • Turn on the mercury lamp and let it warm up.  Avoid looking at the lamp since its UV light can hurt 

your eyes. 
 • Connect the circuit as drawn below. 

 
 • Set the filter wheel on the box to one of the wavelengths.  This allows only that wavelength of the 

Hg lamp to pass to the photocell.  Put the lamp right next to the filter.  Increase the voltage until the 
current stops decreasing and levels of at some small, but probably not zero value.  If the apparatus 
was purely dependent on the photoelectric effect, the large voltage would make the current zero, but 
the device is not perfect and a little, nonzero, "leakage" current is present.  The critical measurement 
comes when you slowly decrease the voltage.  The small current should remain constant for a while 
and then begin to change.  This change is due to photoelectrons.  Hence the voltage you want to 
measure is that when the current just begins to change.  This is the stopping voltage.  Record this 
stopping voltage.  What is its significance? 

 • Repeat for the other two wavelength filters. 
 • Look at the photoelectric effect formula and find a way to plot stopping voltage and wavelength so 

that the graph is linear.  From this graph find the work function and Planck's constant. 
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Problems (2) 
 
38.1.1.  The work function of cesium is 2.14 eV.  (a) What is the cut off wavelength, i.e., the light 
wavelength above which photoelectrons are not emitted?  (b) If light with wavelength of  =420 nm 
shines on bare cesium metal, what will be the energy of the emitted photoelectrons?  (c) If the intensity of 
the  =420 nm light is increased, will the energy of the photoelectrons increase? 
 
38.1.2.  When light of wavelength 400 nm shines upon a lithium surface, electrons with an energy of 
0.83 eV are emitted.  (a) When the light intensity is doubled, what changes occur, if any, in the energy 
and the number of electrons emitted?  (b) When the wavelength of light is changed to 450 nm, what is the 
energy of the emitted electrons? 
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39.1.  Line Spectra 
 
Lab Demonstration 
 
Use the spectroscope to observe: 
 • Emission lines from the discharge tubes provided.  Draw the line spectra observed, labeling each 

line with the wavelength as measured from the scale in the spectroscope. 
 • Pay special attention to hydrogen.  Fit its lines to the Balmer series. 
 • Observe a white light spectrum.  Place colored filters between the light and the spectrometer and 

explain your observations. 
 • Look at the spectra of the photodiodes provided.  Emissions from photodiodes occur when electrons 

jump across an energy band gap.  Calculate these band gap energies (in joules and eV) from your 
spectroscopic measurements. 

 
Problems (2) 
 
39.1.1.  In the energy level diagram to the right which transition yields the “bluer” photon, A or B?   

 
 
39.1.2.  Drawn to the right is an energy level diagram for an atom.  (a) What is the ionization energy from 
the ground state?  (b) If the atom is in the ground state and is hit by a 5.0 eV neutron, how much energy is 
transferred from the neutron to the atom?  (c) What is the wavelength of the photon that is emitted when 
the atom falls from the n=3 level to the n=2 level? 

 


