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What are the physical limits to cell behavior? Often, the physical
limitations can be dominated by the proteome, the cell’s comple-
ment of proteins. We combine known protein sizes, stabilities,
and rates of folding and diffusion, with the known protein-length
distributions PðNÞ of proteomes (Escherichia coli, yeast, andworm),
to formulate distributions and scaling relationships in order to
address questions of cell physics. Why do mesophilic cells die
around 50 °C? How can the maximal growth-rate temperature
(around 37 °C) occur so close to the cell-death temperature? The
model shows that the cell’s death temperature coincides with a
denaturation catastrophe of its proteome. The reason cells can
function so well just a few degrees below their death temperature
is because proteome denaturation is so cooperative. Why are cells
so dense-packed with protein molecules (about 20% by volume)?
Cells are packed at a density that maximizes biochemical reaction
rates. At lower densities, proteins collide too rarely. At higher den-
sities, proteins diffuse too slowly through the crowded cell. What
limits cell sizes and growth rates? Cell growth is limited by rates
of protein synthesis, by the folding rates of its slowest proteins,
and—for large cells—by the rates of its protein diffusion. Useful
insights into cell physics may be obtainable from scaling laws that
encapsulate information from protein knowledge bases.

cell biophysics ∣ protein dynamics ∣ protein stability ∣
diffusion and folding ∣ proteome modeling

What physical limits are imposed upon cells by the equilibria
and kinetics of their proteomes? For example, how stable

are the proteins in the proteome? What limits the speed of cell
growth and replication? What determines the densities of pro-
teins in cells? A cell’s mass is largely protein [50% of the nonaqu-
eous component (1–3)]. So, some behaviors of cells are likely
to be dominated by the physical properties of its proteome—
the collection of its thousands of different types of proteins.
We develop here some biophysical scaling relationships of pro-
teomes, and we use those relationships to make estimates of the
physical limits of cell behavior. Our scaling relationships come
from combining current databases of the properties of proteins
that have been measured in vitro, with PðNÞ, the length distribu-
tions of proteins that are known for several proteomes. Some of
the hypotheses we explore are not new; what is previously unde-
scribed is the use of modern databases to make quantitative
estimates of physical limits. A key point, previously also made by
Thirumalai (4), is that many physical properties of proteins just
depend on N, the number of amino acids in the protein. We es-
timate the folding stabilities for mesophiles and thermophiles, the
folding rates, and the diffusion coefficients of whole proteomes,
and we compare these various rates at the end. We first consider
the folding stabilities of proteomes.

Proteomes Are Marginally Stable to Denaturation
For at least 116 monomeric, two-state and reversible folding
proteins there are calorimetric measurements of the folding sta-
bility, ΔG ¼ Gunfolded −Gfolded, enthalpy ΔH, entropy ΔS, and
heat capacity, ΔCp. Data are now available for both mesophilic
and thermophilic proteins. Taken over the full set of proteins,

these thermal quantities depend, remarkably, mainly just on the
number,N, of amino acids in the chain. The relationship is simply
linear. For both enthalpy and entropy the correlation with
chain length is found to be the best at two reference tempera-
tures, Th ¼ 373.5 K and Ts ¼ 385 K, respectively (5–7). These
linear dependencies for mesophilic proteins (59 from the list
of 116 proteins) are well-fit by the expressions (see Fig. 1) (7):

ΔHðT ¼ Th;NÞ ¼ ð4.0N þ 143ÞkJ∕mol

ΔSðT ¼ Ts;NÞ ¼ ð13.27N þ 448ÞJ∕ðmol-KÞ
ΔCpðNÞ ¼ ð0.049N þ 0.85ÞkJ∕ðmol-KÞ
ΔGðN;TÞ ¼ ΔHðThÞ þ ΔCpðT − ThÞ − TΔSðTsÞ

− TΔCp logT∕Ts

¼ ½ð4.0N þ 143Þ þ ð0.049N þ 0.85ÞðT − ThÞ
− Tð0.01327N þ 0.448Þ
− Tð0.049N þ 0.85Þ lnðT∕TsÞ�kJ∕mol:

[1]

A simple generalization of Eq. 1 also accounts for the effects of
pH, salts, and denaturants on protein stability, in addition to tem-
perature (6).

So far, extensive studies have shown no other strong depen-
dence of the thermal properties of folding stability. Stability does
not appear to depend on amounts of secondary structure or types
of tertiary structure, or numbers of hydrophobic amino acids or
hydrogen bonds, or counts of salt-bridging ion pairs, for example.
This is remarkable because other important properties of pro-
teins—such as their native structures and biochemical mechan-
isms—often do depend strongly on details. Predicting protein
stabilities is not, in general, improved by using knowledge of the
native structure. So, we can predict the thermal stabilities of
whole proteomes just from knowledge of their chain-length dis-
tributions. The distribution of chain lengths over the proteomes
of 22 fully sequenced organisms is obtainable from genomics and
proteomics databases and is known to be well approximated by a
gamma distribution (8):

PðNÞ ¼ Nα−1e−N∕θ

ΓðαÞ:θα : [2]

The two parameters, α and θ, of the protein chain-length distri-
bution are obtained from the measured mean and variance
observed for a given proteome, using the expressions

hNi ¼ αθ and hðΔNÞ2i ¼ αθ2; [3]
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where the brackets h…i indicate averaging over all the proteins in
a proteome. ForEscherichia coli, for example, the average protein
length is hNi ≈ 325, and α ¼ 2.33 (8), so

PðNÞ ¼ ð8.5 × 10−6Þe−0.0072NN1.33: [4]

Now, by combining Eq. 1 for the stability of a protein of length N
with Eq. 2 for the distribution PðNÞ of protein lengths in a pro-
teome, we obtain an expression for the distribution of stabilities
of a proteome’s proteins, for a given temperature T, which is
plotted in Fig. 2. Below, we use these expressions to explore
how heat stresses affect cells.

Cells Are Sensitive to Small Changes in Temperature. It has been
suggested that the reason that cells undergo a sharp heat-death
transition is that their proteins all denature near the same tem-
perature (9, 10), which is around 50 °C for E. coli; see Fig. 3. Fig. 2
gives a quantitative model and predicts that under normal phy-
siological conditions the E. coli proteome is marginally stable. We
find that a significant fraction of the proteome’s proteins are
poised near a denaturation catastrophe. Around 550 of E. coli’s
4,300 proteins are less than 3 kcal∕mol stable to denaturation.
This is a statement about the shape of the distribution function,
not the average (11). The average protein at 37 °C is predicted to
be stable by 6.8 kcal∕mol. Rather, the marginal stability of the
proteome comes from the broad left side of the distribution
shown in Fig. 2; i.e., from the large numbers of proteins having
small stabilities. This is a prediction (see also ref. 12); the actual
shape of this distribution in vivo is not yet known from experi-
ments. Note that although our conclusion is based on in vitro pro-
tein stability, experiments show that protein stabilities in vivo are
not much different than in vitro (13, 14, 15).

Some cellular properties are highly sensitive to temperature.
Upshifting by only 4 °C can often induce heat shock. This is puz-
zling because the thermal behaviors of materials are typically gov-
erned by RT, which means that a change of 4 °C would cause only
a 1% effect. In contrast, the present model suggests that tempera-

ture effects are highly leveraged by the proximity of 37 °C to
the proteome’s denaturation phase boundary. The model shows
that upshifting the temperature by only 4° from 37° to 41 °C
destabilizes a proteome by nearly 16%. There are various biolo-
gical properties of cells that show such high sensitivities, including
the rates of evolution (16–18), some aspects of development
(19, 20), and are the basis for some cancer treatments (21–23).
Cells have evolved substantial machinery to handle the thermal
denaturation of the proteome, including stress-responsive signal-
ing pathways that transcriptionally up-regulate the proteostasis
capacity of cells using chaperones, folding enzymes, and coupled
disaggregation and degradation activities (24, 25). In addition,
small changes in geological temperatures can cause ecological
shifts in populations. We note that the stabilities reported here dif-
fer slightly from those given elsewhere (11) because of updated
data (7).

Thermophilic Proteomes Are Different from Mesophilic Proteomes.
Above, we described the stabilities of mesophiles, organisms that
grow at temperatures between 25 and 40 °C. The same approach
can be applied to thermophiles, organisms that grow at tempera-
tures higher than 40 °C. There is now a substantial database of
two-state monomeric thermophilic proteins. What is the differ-
ence between the proteomes of mesophiles vs. thermophiles? A
study of 59 mesophilic proteins and 57 thermophilic proteins in-
dicates some systematic differences (7). Whereas the free energy
of folding mesophilic proteomes is given by Eq. 1, we find that the
free energy of folding thermophilic proteomes is given by

ΔGðN;TÞthermo ¼ ½ð3.30N þ 112Þ þ ð0.051N − 0.26ÞðT − 373.5Þ
− Tð:0109N þ 0.291Þ

− Tð0.051N − 0.26Þ log
�

T
385

�
�kJ∕mol: [5]

Fig. 1. Thermal protein properties depend linearly on chain length. (A) ΔH, enthalpy of unfolding at 100.5 °C, (B) ΔS, entropy of unfolding at 112 °C, and
(C)ΔCp, temperature independent heat capacity of unfolding. (D) Free energy of folding at 37 °C determined for 59 different proteins are plotted as a function
of chain length, N. The red lines in A, B, and C are the linear regressions. The red line in D is the predicted ΔG; it combines the best-fit values of changes in
enthalpy, entropy, and specific heat on chain lengths obtained in A, B, and C. Reprinted from ref. 7, Copyright 2011, with permission from Elsevier.

0 10 20 30 40
0

100

200

300

400

N
um

be
r 

of
 p

ro
te

in
s

∆G (RT)

Fig. 2. Distribution of free energies of folding of the proteins in the pro-
teomes of E. coli at 37 °C. The free-energy bin size is 1RT. Area under the curve
equals the total number of proteins in the proteome (4,300 for E. coli).
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Fig. 3. The fraction of proteins that are unfolded in the proteomes of E. coli,
yeast (SCE), and worm (CEL) as a function of temperature. Solid circles
show experimentally measured fraction denatured proteins as a function
of temperature for mammalian V79 cells using differential scanning calori-
metry (9). The blue dashed line shows the results based on domain length
distribution (69) in E. coli genome.
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Comparing Eq. 1 with Eq. 5 and analyzing the database show that
thermophilic proteomes have less positive entropies and enthal-
pies of unfolding, on average, than mesophilic proteomes (7).
This suggests that the denatured states of thermophilic proteins
may be more compact than the denatured states of mesophilic
proteins. The reasons for these differences are not yet known,
but may include differences in hydrophobic residues, disulfide
bonds, electrostatic interactions (7, 26–36), different amino acid
flexibilities (37–41), or loop deletions (42).

A Model for the Optimal Growth Temperatures of Cells. A cell has
an optimal growth temperature. That is, cells grow fastest at
one particular temperature, and slower at either higher or lower
temperatures. The general view is that this optimum follows from
a balance of two factors (7, 11, 43). On the one hand, biochemical
processes have activation barriers, so heating a cell should accel-
erate its cellular metabolism. On the other hand, if a cell is heated
too much, its proteome will denature. Here, we give a quantita-
tive expression for cell growth vs. temperature, based on the
stability expressions above. We model the growth rate, rðTÞ, of an
organism as a function of temperature T using the expression

rðTÞ ¼ r0e−ΔH
†∕RT

YΓ
i¼1

f ðNi;TÞ; [6]

where r0 is an intrinsic growth-rate parameter, ΔH† is a dominant
activation barrier, Γ is the number of proteins that are essential to
growth, and

f ðNi;TÞ ¼
1

1þ expð−ΔGðNi;TÞ∕RTÞ
[7]

is the probability that the ith essential protein (having chain
length Ni) is in the folded state. Following earlier work (43),
Eq. 6 expresses the assumption that there are essential proteins,
all of which, by definition, must be folded independently at a
sufficient level for a cell to be viable. By definition, if any one
essential protein is not folded, the cell is not viable. We compute
f ðNi;TÞ using Eq. 7 for the folding free energy ΔGðNi;TÞ. We
simplify this expression by taking the logarithm and approximat-
ing the product by averaging over the entire proteome distribu-
tion (7, 11, 43). The result is

hlog rðTÞi ¼ log r0 −
ΔH†

RT
þ Γ

Z
log f ðN;TÞPðNÞdN; [8]

where PðNÞ is the proteome chain-length distribution and f ðN;TÞ
is computed usingGðN;TÞ following Eq. 1 for mesophiles or Eq. 5
for thermophiles.

Fig. 4 shows that this model provides reasonable fits to growth
curves for cells using two parameters, ΔH† and Γ, for each cell
type (7). It appears that cells have evolved to run as “hot” as pos-
sible for maximizing the speeds of their biochemical reactions,
while remaining just cool enough to avoid a denaturation cata-
strophe. The reason this optimum growth temperature can be so
close to the death temperature is because the denaturation of the
proteome is so sharply cooperative (see Fig. 3).

Proteome stability models such as this may be useful for ex-
ploring other properties of cells. For example, Drummond et al.
have proposed a relationship between the stability and rate of
evolution of a protein. They argue that the most highly expressed
proteins are optimized for stability; this enables those proteins to
avoid misfolding and aggregation from sporadic mistranslation
events. Stable proteins (which are highly expressed) have slower
rates of evolution than less stable proteins (which have lower ex-
pression levels) (44–47).

Diffusional Transport of Proteins Within Cells
A limitation on the rates of a cell’s biochemical processes is the
rate at which proteins can diffuse throughout the cell. For the
purpose of computing diffusion rates, native proteins are often
treated as being approximately spherical. The diffusion constant
of a sphere is given by the Stokes–Einstein expression

D ¼ RT
6πηRh

; [9]

where η is the viscosity of the solvent in a dilute solution, RT is
Boltzmann’s constant multiplied by temperature, and Rh is the
radius of hydration of the sphere. Eq. 9 shows how the diffusion
coefficient depends on the radius of the molecule. In the sections
below, we simplify by expressing the radius, RhðNÞ, of a native
protein as a function of its number of amino acids, N, in the pro-
tein chain.

Native-Protein Sizes Scale as Rn ≈ N2∕5. If native proteins were per-
fect spheres, their radii, Rn, should scale with chain length N as
RnðNÞ ≈ N1∕3 (48–50). However, recent studies of the Protein
Data Bank show instead a scaling approximately with N2∕5 (51):

RnðNÞ ¼ 2.24N0.392; [10]

based on an analysis of 37,000 protein structures, where N is
the number of amino acids in the protein and Rn is given in ang-
stroms. No major dependence was found of the native-state radius
on the type or degree of secondary structure in the protein (51).
The physical basis for the exponent of 2∕5 is not fully clear, but can
be rationalized either as being due to a balance between excluded
volume and intermonomer elastic interactions (51) or because of
the multidomain nature of many proteins. The difference in expo-
nents between 1∕3 and 2∕5 would lead to negligible differences in
fitting diffusion coefficients, of interest here; we use Eq. 10 below.

Now, in order to compute the diffusion properties, we need to
obtain the hydrodynamic radius, Rh. We could adopt the expres-
sion for a perfect sphere, Rh ¼ ð5∕3Þ1∕2Rn ≃ 1.3Rn. However, in
a survey of native proteins, Tyn and Gusek demonstrated that a
better approximation is Rh ¼ 1.45Rn (52). Fig. 5 compares theory
(combining this approximation with Eqs. 9 and Eq. 10) to experi-
mental diffusion coefficients measured in vitro. The agreement is
quite good. Combining the Tyn and Gusek expression with Eq. 10
and with the standard diffusion expression gives, for the time t
required for a native protein of N amino acids to diffuse an
rms distance of ℓ0 ¼ hx20i1∕2,

t ¼ ℓ2
0

6D
¼ c0ℓ2

0ηN
0.392

RT
; [11]

where c0 ¼ π × 1.45 × 2.24 ¼ 10.2 Å. Combining Eq. 11 with the
chain-length distribution, Eq. 4, gives the distribution of native-
protein diffusion coefficients, at infinite dilution, for a proteome.
However, to treat proteins in the cell, we must also account for
the density of the molecular obstacles inside the cell. A protein
will diffuse less distance in a given time in a crowded environ-
ment. We approximate the cell’s internal viscosity in terms of
monodisperse hard spheres (53),

η ¼ η0ð1 − ϕ∕ϕcÞ−2; [12]

where η0 is the viscosity of water in the absence of crowding
agents, and ϕc ≃ 0.58 is the critical concentration at which the
glass transition occurs (54). The volume fraction of macromole-
cules in the cell is known to be ϕ≃ 0.2 (55–57). Using Eq. 12 for
the viscosity, Eq. 9 gives a reasonable approximation to diffusion
rates for proteins in the cell for many purposes; see Fig. 6. We
neglected attractive interactions between proteins. This is consis-
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tent with the conclusions of Ando and Skolnick who argued for
the dominance of excluded volume and hydrodynamic factors
(58), but other work indicates that attractive forces can contribute
more significantly (15).

Now, using Eq. 12, the expression for the diffusion time be-
comes

t ¼ c0ℓ2
0η0N

0.39

RTð1 − ϕ∕ϕcÞ2
: [13]

Using the proteome length distributions, PðNÞ, we compute the
distribution of diffusion times for different cells, i.e., having dif-
ferent values of ℓ0 (1 μm, 10 μm, and 100 μm). We now apply this
model to a question of protein densities in cells.

Why Are Cells so Crowded with Proteins? We explore here the fol-
lowing hypothesis: Perhaps evolution maximizes the speed of bio-
chemical reactions by varying the size of a cell so as to optimize
the density of proteins inside the cell. On the one hand, if the
cell’s protein density were too low (cell size is too large), reactions
would be slowed by the time required for the proteins to diffuse
and collide with each other. On the other hand, if the cell’s
protein density were too high (cell size is too small), diffusion
would be slow because of the crowded medium through which the
proteins must move.

Here is a model of that hypothesis. Consider the rate at which
diffusion-limited reactions occur. Such rates are proportional to
the product of the concentration of the reactants and the diffu-
sion constant. For example, a stationary reactant of radius a will

Fig. 4. Black circles denote growth rate as a function of temperature for species listed. On the Y axis, we plot growth rate normalized with respect to max-
imum growth rate, whereas on the X axis we plot temperature. Solid lines are fit to data from Eq. 8. Red graphs denote thermophilic species, whereas blue
curves are for mesophiles. Sources of the data are given in table 2 in the supplemental material of ref. 7. Reprinted from ref. 7, Copyright 2011, with permission
from Elsevier.
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react with mobile particles at a rate rd ¼ 4πacD, where c and D
are the concentration and diffusion constant of the mobile reac-
tants. Using the volume fraction ϕ instead of c, the rate is

rd ∼ cD ∼ ϕ

�
1 −

ϕ

ϕc

�
2

: [14]

Now, we treat this as an optimization problem. If we suppose that
the number of protein molecules is fixed, then evolution can
change a cell’s protein density by inversely changing the cell’s
volume. A large cell would have a low concentration, and a small
cell would have a high concentration. To find the optimal (max-
imum) reaction rate, we set the derivative to zero,

drd
dϕ

¼
�
1 −

ϕ

ϕc

�
2

− 2

�
1 −

ϕ

ϕc

��
ϕ

ϕc

�
¼ 0. [15]

rd has a maximum at ϕ ¼ ϕc∕3 (59). Because ϕc ¼ 0.58 for hard
spheres (54), this model predicts the optimal density for maximal
reaction rates would be ϕ ¼ 0.19. This is close to the protein den-
sities (ϕ ≈ 0.2) observed in cells (55–57).

Protein Folding Kinetics
The physical dynamics within a cell is also limited by the rate at
which its proteome folds. In a well-known observation, Plaxco,
Simons, and Baker (PSB) (60) showed that the folding rates of
two-state proteins correlate with the topology of the native struc-
ture: Proteins that have more local structure (such as helices) fold
faster than proteins that have more nonlocal structures (such as
β-sheets).

Alternatively, in equally good agreement with the experimen-
tal data, Thirumalai explained that folding rates correlate with
chain length N, through the form kf ∼ expð−N1∕2Þ based on the-
ory of random systems (61). Ouyang and Liang (62) looked at a
broader set of proteins than PSB, including multistate folders.

Other studies also give folding rates (63) under unifying condi-
tions and study rates as a function of chain length (64–68). Here
we use the Thirumalai expression to best fit the Liang data, giving

ln kf ¼ 16.15 − 1.28N0.5; [16]

where kf has units of second−1. This shows that folding rates,
kf ðNÞ, are relatively well predicted (correlation coefficient of
0.78) simply as a function of chain-length N (see Fig. 7). Hence,
we can combine this expression with PðNÞ, the proteome chain-
length distribution, to predict the folding rates of proteomes over
whole proteomes (here, taken at the denaturation temperature
for each protein). Fig. 8 shows the predicted folding rate distri-
bution for E. coli using the domain distribution (11, 69). We use
this treatment below for comparing the time scales of various pro-
cesses in the cell.

Comparing the Time Scales of Dynamical Processes in the Cell. Now,
we combine the various rate distributions above. Fig. 8 shows
some rate distributions (for E. coli): protein folding, protein dif-
fusion across the cell, rates of biochemical reactions (uncatalyzed
and catalyzed), and rates of protein synthesis assuming a transla-
tion rate of 15 amino acids per second (70). The vertical bar on
the right shows E. coli’s roughly 20-min replication time under
fast-growth conditions (1). By comparing different rates, Fig. 8
gives some useful insights about the physical limits on cells.

First, it can be inferred that E. coli has evolved to replicate
at speeds approaching its maximum possible “speed limit.” Here
is the argument. Imagine two limiting cases. On the one hand,
E. coli could have evolved so that each cell had only a single ribo-
some. On the other hand, E. coli could have evolved so that every
cell is full of ribosomes. In the former case, E. coli would replicate
very slowly; in the latter, E. coli would replicate very rapidly.
Here are simple numerical estimates for these two conceptual
limiting cases: (i) Slowest possible, series replication. If each E. coli
cell contained only a single ribosome, that ribosome would have
to copy every protein in the cell, one at a time, in series, before
the cell could reproduce. Taking the single protein-replication
time to be around 20 s (see Fig. 8 and ref. 2), it would take 2 y
for each E. coli cell to replicate all of its 3 million protein mole-
cules. (ii) Fastest possible, parallel replication. E. coli can replicate
much faster than this because the cell has multiple ribosomes. A
cell can “parallel process” its protein synthesis. Imagine the max-
imum conceivable parallelization: If every protein molecule in
E. coli were a ribosomal protein, then each ribosome (a 55-pro-
tein complex of about 7,400 amino acids) would need only to
synthesize its own 55 proteins in series, not 3 million. In this limit,
E. coli could replicate in around 8 min [7;400∕ð15 aa∕sÞ]. This is a
simple “ballpark” estimate, not expected to be good to better
than a factor of two or three. In reality, E. coli is able to replicate
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at a speed that is exceedingly close to this maximum possible phy-
sical speed limit. This simple estimate also illustrates how a cell’s
physical limitations can contribute to its evolutionary limitations.

Second, enzymes are highly effective. Catalyzed reactions are
rarely rate-limiting for the cell and are much faster than diffusion
and folding. A key kinetic bottleneck in E. coli is the folding of the
cell’s slowest proteins, which happens on a time scale commen-
surate with protein synthesis.

Third, what limits the sizes to which cells can grow? One argu-
ment is that cell sizes are limited by surface-to-volume ratios.
Cells that are too large in volume may be limited by the rate at
which nutrients are taken up, which in turn is limited by the cell’s
membrane surface area. Another possible factor limiting cell
growth is shown in Fig. 8: the rates at which a protein can diffuse
across it. Eqs. 11 and 13 show that every factor of 10 increase in
linear size of a cell leads to a factor of 100 increase in the time
required for proteins to diffuse across the cell’s length. Fig. 8
shows that for cells that are 100 μm in linear dimension, protein-
diffusion transit times across a cell can become rate-limiting. So,
although small cells are rate-limited by protein synthesis, large
cells may also be limited by diffusional transport of proteins
around the cell. Interestingly, prokaryotes are typically a few mi-
crometers in size, eukaryotes are a few tens of micrometers, and
there are very few cells much larger than 100 μm (2). Biology’s
need to move molecules around inside larger cells may have con-

tributed to the evolution of compartmentalization into orga-
nelles, active transport machinery, nonthermal transport (71)
systems, and chaperones for speeding up protein folding.

Summary.We use simple scaling and distribution relationships, de-
rived from recent databases, to describe some physical properties
of proteins in cellular proteomes. The data show that many proper-
ties of proteins, including their sizes, stabilities, folding rates, and
diffusion coefficients, depend simply on the chain length N. We
combine data with the chain-length distributions PðNÞ of proteins
in cellular proteomes to make simple quantitative estimates of cell
properties. We find that the death temperatures of cells, around
50 °C, coincide with a denaturation catastrophe of the proteome.
We find that the high protein densities in cells (around 20%
volume fraction) can be rationalized on the basis that it maximizes
biochemical reaction rates. And, we find that the diffusion and
folding of the slowest proteins may impose limits to cell growth
speeds and sizes.
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