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Electrostatics and aggregation: How charge can turn a crystal into a gel
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The crystallization of proteins or colloids is often hindered by the appearance of aggregates of low
fractal dimension called gels. Here we study the effect of electrostatics upon crystal and gel forma-
tion using an analytic model of hard spheres bearing point charges and short range attractive inter-
actions. We find that the chief electrostatic free energy cost of forming assemblies comes from the
entropic loss of counterions that render assemblies charge-neutral. Because there exists more accessi-
ble volume for these counterions around an open gel than a dense crystal, there exists an electrostatic
entropic driving force favoring the gel over the crystal. This driving force increases with increasing
sphere charge, but can be counteracted by increasing counterion concentration. We show that these
effects cannot be fully captured by pairwise-additive macroion interactions of the kind often used
in simulations, and we show where on the phase diagram to go in order to suppress gel formation.
© 2011 American Institute of Physics. [doi:10.1063/1.3626803]

I. INTRODUCTION

Crystallizing proteins or colloids is difficult in part
because the growth of kinetic aggregates called gels can
compete with crystal nucleation.1–3 Considerable insight into
the competition between crystallization and gelation has been
obtained from models of spherical particles in implicit solvent
with pairwise-additive interactions, modeling both the forces
(hydrogen bonds, hydrophobic effects, etc.) that drive asso-
ciation, and the electrostatic repulsions4 that act to suppress
association.5–9 Such models have shown how the phase dia-
gram varies with interaction strength and range, and have re-
vealed the presence of kinetically-arrested gels and glasses.10

While pairwise-additive “screened” potentials capture much
of the important physics of electrostatics, they neglect
explicit counterion degrees of freedom. Here we show that
accounting for counterion entropies reveals that electrostatics
does more than simply prevent association: it can induce a
thermodynamic driving force that favors a gel over a crystal.

II. MODEL

We consider a collection of hard spheres (macroions) of
radius a in aqueous solution with added salt (we set a = 1.6
nm, appropriate for a small protein). Spheres carry a point
charge q at their centers, and interact with square-well at-
tractions of depth −ε and range 2a(λ − 1). We are interested
in three phases: the solution phase of dissociated spheres,
a close-packed three-dimensional crystal, and a kinetically
stabilized gel that we model as a one-dimensional rod of
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associated spheres. We describe a crystallization window
that is bounded on one side by the thermodynamic stability
of the crystal, and on the other by the appearance of the
kinetically favored gel. We approximate the kinetic threshold
for gelation as the regime in which the chemical potential
of a linear aggregate drops below that of the solution; since
one-dimensional objects lack a nucleation barrier, we expect
gelation to pre-empt crystallization in this regime.31 This
threshold reproduces qualitatively the gelation boundaries de-
termined from numerical and experimental studies of colloids
and proteins3, 7, 11–13 while allowing efficient computation of
electrostatics.

We write the chemical potentials of the zero-, one-, and
three-dimensional phases (shown in Fig. 1) as

μ0 = ln ρ + ρ(4 − 3ρ)(1 − ρ)−2 solution,

μ1 = −ε − kBT ln(λ3 − 1) + �f es
1 gel, (1)

μ3 = −zε/2 − 3kBT ln(λ − 1) + �f es
3 crystal.

These expressions account for free energies of binding
and electrostatic free energies �f es

d associated with each
d−dimensional assembly (d = 0 refers to solution-phase
monomers, d = 1 refers to chain-like aggregates and d = 3
describes the crystal phase). The chemical potential μ0 for the
solution phase contains the Carnahan-Starling expression for
the free energy of hard spheres as a function of ρ, the volume
fraction of spheres in solution.14 The expression μ1 for the rod
phase accounts for the fact that each particle makes two pair-
wise contacts of energy −ε. It also contains an entropic term
that accounts for the fact that a new particle can add to the end
of a rod anywhere within a shell of volume ∼ (2aλ)3 − (2a)3

around the existing end particle. This contribution accounts
for both bending and vibrational entropies (we neglect unim-
portant constant terms). We also neglect rod branching,15
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FIG. 1. Counterion entropies dominate the electrostatic free energies of d-dimensional assemblies. We plot per-particle electrostatic energies, ud , entropies,
sd , and free energies, fd , for each d-dimensional assembly (pictured left; the case d = 2 is included for comparison only). We have assumed a macroion charge
q = 5e and have considered four different salt concentrations c. The electrostatic free energy cost for establishing each assembly is dominated by the entropy
loss upon counterion confinement, and not by macroion-macroion repulsion energies.

which at the level of electrostatics amounts to assuming the
characteristic linear extent of a gel is long compared to the
Debye length. The chemical potential μ3 of the close-packed
crystal accounts for the energetic contacts between each par-
ticle and its z nearest neighbors (we set z = 12), and the fact
that each particle can vibrate a distance of order 2a (λ − 1) in
each direction.6 We set λ = 1.2 in our calculations, motivated
by the recognition that proteins typically possess interactions
of short range.6, 16–18

To these expressions we add the electrostatic free en-
ergies �f es

d of each d-dimensional assembly. We calcu-
lated these free energies using the Poisson-Boltzmann (PB)
equation,

∇2
x�d = sinh(�d ), (2)

which we have written in terms of scaled spatial coordinates
x ≡ κ r and a dimensionless potential �d ≡ eψd/kBT . κ−1

is the Debye length, given by κ2 ≡ 2e2c/ (εkBT ), where c is
the concentration of ions in a reservoir of solvent in osmotic
equilibrium with the system. We assume our charged particles
to be in aqueous solution with positive and negative salt ions
of local concentration c±

d (r) ≡ ce∓�d (r). To determine the po-
tential �d we solved Eq. (2) for given assembly geometry.
To simplify the solution of the PB equation we approximated
the rod as a smooth cylinder. For the crystal we used a cell
model.16, 19, 20 We have also considered a two-dimensional as-
sembly to gain insight into the scaling behavior of the elec-
trostatics, although we stress that one would need to consider
an anisotropic particle-particle interaction to stabilize such a
structure (see, e.g., Refs. 21 and 22). The electrostatic calcu-
lations are presented in detail in the Appendix.

We then computed the electrostatic energy Ud and en-
tropy Sd associated with each assembly. The energy Ud stored
in the electric field is

Ud = ε

2

∫
d3r (∇rψd )2 , (3)

where ε ≡ 80ε0 is the permittivity of water (ε0 is that of free
space). The entropy Sd quantifies the cost of confining coun-
terions and excluding coions from the screening layer associ-
ated with a d-dimensional assembly.23 The entropy cost per
unit volume of maintaining a screening layer of ion concen-
tration cs in thermal contact with a reservoir of ions at con-

centration c is

−S/kB =
∫ cs

c

dc′ ln(c′/c)

= cs ln(cs/c) − cs + c. (4)

The electrostatic free energy can then be written Fd = Ud

− T Sd = ∫
d3rFd , where the free energy density is

Fd = ε

2
(∇rψd )2 + kBT

{
c+
d ln(c+

d /c)

+ c−
d ln(c−

d /c) − c+
d − c−

d + 2c
}
. (5)

Note that the minimization of Eq. (5) with respect to ionic
concentration results in Eq. (2).24

Finally, to compute the electrostatic free energy cost of
assembling spheres into each d−dimensional structure, we
computed the free energy per particle in the assembly, fd

= Fd/N , and subtracted from this the electrostatic free energy
of the monomeric building blocks in solution (determined by
solving the PB equation for an isolated sphere). The result is
�f es

d .

III. RESULTS

A. Counterion entropy dominates the electrostatic
free energy of assembly

Figure 1 shows the electrostatic free energy fd of a d-
dimensional assembly, and its components, the electrostatic
energy ud , and entropy sd (the case d = 2 is included for
comparison, but it will not appear in our phase diagram). We
see that the energy per particle is non-monotonic in aggregate
dimensionality: the energy change upon condensation from
the free particle state to the crystalline state is negative, be-
cause the macroion-macroion repulsion is overcome by the
attraction between macroions and the counterions confined
within the crystal’s cavities (assumed to be small compared
to the Debye length). By contrast, the electrostatic entropy
cost increases monotonically with aggregate dimensionality.
Furthermore, these entropies are much larger in magnitude
than their energetic counterparts, and so the electrostatic free
energy cost becomes larger as the structure increases in di-
mensionality. Although it seems intuitively obvious that as-
sembling charged spheres into a crystal should meet with an
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electrostatic free energy cost, it is not obvious, a priori, that
the origin of this cost is entropic, and not energetic.25

Figure 1 reveals that the electrostatic entropy alone is
a reasonable approximation of the electrostatic free energy
cost of assembly, a fact that has been long appreciated in
polymeric systems.26, 27 The behavior of the entropy with d

can be understood from the following simple argument. Elec-
troneutrality requires that q counterions be confined near each
macroion. Counterions are free to extend a distance κ−1 in
each of the 3 − d dimensions extending away from the as-
sembly, but are confined within a distance of order the par-
ticle size a in each of the d dimensions of the assembly.
Thus the volume vlocalize within which q counterions must
be localized scales as vlocalize ∼ adκd−3, and so the entropic
cost per macroion of building the screening layer scales as
−sd/k ∼ q ln(c(aκ)d/qκ3), or

− sd/k ∼ qd ln(aκ). (6)

This cost increases with d.

B. Electrostatic interactions are not pairwise additive

One immediate consequence of the fact that counte-
rion entropies dominate the free energy cost for assembling
charged particles is that effective macroion interactions are
not in general pairwise-additive: the free energy difference
�f es

d depends on the volume of space accessible to counte-
rions, but does not necessarily vary linearly with the number
of contacts made by particles in each assembly. We can define
�31 ≡ z�f es

1 /2�f es
3 as a measure of the relative electrostatic

cost of making a macroion-macroion contact in a gel versus
a crystal. When �31 is unity there is no difference in this
cost, the electrostatic effects can be absorbed into an effective
pairwise interaction, such as a Yukawa potential.28 However,
when �31 �= 1 the electrostatic free energy is non-additive,
rendered so by counterion degrees of freedom.

In Fig. 2 we plot �31 as a function of salt concentra-
tion c and particle charge q. �31 is in general less than
unity, indicating that it is easier, per macroion contact, to
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FIG. 2. Relative electrostatic cost of making a macroion-macroion contact in
a gel versus a crystal, �31, as a function of salt concentration c and macroion
charge q. Only when �31 is unity is the electrostatics of assembly effectively
pairwise-additive, which in general is not the case.

fit counterions around a gel than within a crystal. �31 is
also non-monotonic: in principle, at large salt concentration
strong electrostatic screening will ensure that macroion sites
are independent, with electrostatic free energies becoming
pairwise-additive (as seen in the plot, though such concentra-
tions can be unattainably high). At low salt concentration �31

again approaches unity. This can be understood by consider-
ing Eq. (6) for a cubic packing arrangement. In this case d

is proportional to the number of nearest neighbors and each
additional pair of neighbors reduces the volume accessible
to the counterions by a factor κa. This results in an electro-
static free energy linear in the number of nearest neighbors.
However, at finite salt concentration the volume occluded by
the macroion (neglected in Eq. (6)) becomes a significant per-
turbation to vlocalize, and the approximation of pairwise addi-
tivity fails.

C. Model phase diagram: How does one avoid
gelation?

We turn now to calculation of the model’s phase dia-
gram. We found the solution-crystal coexistence line by set-
ting μ0 = μ3, and estimated the nonequilibrium solution-
gel coexistence line by setting μ0 = μ1. This line does not
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FIG. 3. (a) Phase diagram in the temperature-density plane showing
solution-gel (red) and crystal-solution (gray) coexistence lines, for macroion
charges q = 0 (solid), and q = 6e (dotted) for salt concentration 0.1 M. As
macroion charge increases the crystal can be rendered stable by decreasing
temperature, but counterion entropy increasingly favors the gel over the crys-
tal. The “window” (shaded) within which the crystal is stable and the solution
is stable against gelation therefore shrinks as charge increases. (b) Phase di-
agram in the charge-salt concentration plane for two bond strengths ε/kBT .
As charge increases, adding salt lessens the entropic difference between gel
and crystal, widening the desired shaded region between the sol-gel and sol-
crystal lines. Note that this region narrows as bond strength increases.
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describe an equilibrium coexistence: what we mean by it is the
location at which there exists a driving force for monomers to
aggregate in a disordered way. The crystal may be thermo-
dynamically stable, but at moderate degrees of supercooling
or supersaturation it is separated from the solution phase by
a free energy barrier, and may require considerable time to
appear. By contrast, there exists no free energy barrier to the
formation of a linear aggregate, and so we expect a gel to
form readily below the nonequilibrium solution-gel coexis-
tence line.

Our phase diagram in the temperature-density plane is
shown in Fig. 3(a), for fixed salt concentration and for two
macroion charges. The close-packed crystal is stable below
the gray solution-crystal coexistence lines, but we expect a
driving force for gelation below the red solution-gel coexis-
tence lines. This behavior is similar to that seen in simula-
tions of spheres with short range attractions.12 The resulting
“window” of crystal stability and accessibility (shaded region
between the red and blue lines) is narrow, and becomes nar-
rower as macroion charge increases. This is a key finding of
our study. As noted before, the reason for this narrowing is
the increasing cost of confining counterions within a close-
packed crystal relative to around an open gel.

D. High salt concentrations promote crystallization

We have seen that there are two consequences of increas-
ing macroion charge: the crystallization window narrows,
and it shifts to smaller values of kBT/ε. This latter effect is
useful for protein crystallization where we might not have
the freedom to raise temperature (lest it lead to denaturation):
increasing protein charge might be one way to move the
crystallization window into the region of kBT/ε accessible
experimentally. The tradeoff is that adding charge causes the
window to narrow, but this can be counteracted by adding salt.
Figure 3(b) shows how, for two fixed bond strengths ε/kBT ,
one can alter charge and salt concentration to widen the
crystallization window. Note that this window narrows as
bond strength increases.
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FIG. 4. Phase diagram showing the lines μ0 = μ1 (dotted) and μ0 = μ3
(solid) as a function of the attractive and repulsive contributions to the net
interaction (here �31 = 0.6 and c = 0.04).

The shrinking of the crystallization window with the
bond strength can be understood by writing the net interac-
tion between the particles in terms of the attractive and repul-
sive components εnet = −ε + εrep, where εrep = 2�f es

3 /z is
the electrostatic repulsion energy per crystal contact. In terms
of these variables we can express the solution-crystal coexis-
tence line, given by μ0 = μ3, as

εrep = ε + 2

z
(3kBT ln(λ − 1) + μ0). (7)

Similarly, we can express the solution-gel coexistence line as

εrep = ε

�31
+ 1

�31
(kBT ln(λ3 − 1) + μ0), (8)

where we have used �31 to write the electrostatic free energy
of the gel in terms of εrep.

Equations (7) and (8) are plotted in Fig. 4. We see that
strongly attractive particles (large ε) can be brought within the
crystallization window by increasing εrep. However, this win-
dow becomes narrower with increasing ε, and above a criti-
cal attraction vanishes entirely. This happens because strongly
attractive particles require large charges to weaken particle-
particle interactions enough to destabilize the gel, but large
charges in turn recruit dense screening layers which act to fa-
vor the gel over the crystal. This effect can be mitigated by
working under conditions for which electrostatic interactions
are approximately pairwise-additive (large �31). Increasing
the value of �31 decreases the slope of the solution-gel coex-
istence line (dotted line in Fig. 4). This widens the crystalliza-
tion window and increases the critical value of ε at which the
solution-gel line overtakes the solution-crystal line. In prac-
tice, �31 can be increased by simultaneously increasing salt
concentration and particle charge. For example, within our
model system a macroion charge q = 2.8 in 100 mM salt, or
a charge of q = 8.1 in 800 mM salt, both destabilize crystal
bonds by 0.5 kBT . However, the former condition destabilizes
bonds in the gel phase by only 0.17 kBT , while the latter con-
dition destabilizes bonds by 0.25 kBT . Thus, high salt/high
charge conditions are more conducive to crystallization than
low salt/low charge conditions. We speculate that the addition
of multi-valent counterions may further reduce the entropic
cost of neutralizing the crystal, although a quantitative analy-
sis of this scenario is beyond the limitations of our PB model.

IV. CONCLUSION

We have studied a minimal model of the crystallization
and gelation of charged attractive spheres in aqueous salt so-
lution. We find that there exists an electrostatic driving force
that favors the gel over the crystal, because there exists more
ion-accessible volume for confined counterions around a gel
than within a crystal. This effect renders the effective inter-
actions between macroions non-pairwise-additive, and is re-
sponsible for a narrowing of the crystallization window as
macroion charge is increased.
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APPENDIX: POISSON-BOLTZMANN FREE ENERGIES

For the environmental conditions considered in this pa-
per we find that solutions �d of the Poisson-Boltzmann equa-
tion [Eq. (2) in the main text] are closely approximated by
solutions �lin

d of its linearized counterpart, the Debye-Huckel
(DH) equation. We present numerical results derived from the
PB equation, but also present, for the reader’s convenience,
the well-known analytic solutions of the DH equation. For
completeness, we also consider a 2d membrane (in 2d the PB
equation has an analytic solution). We draw the same qualita-
tive conclusions from both levels of theory.

To compute the electrostatic free energy cost of assem-
bling the building blocks into each d-dimensional structure,
we compute the free energy per particle in the assembly, fd

= Fd/N and subtract from this the electrostatic free energy of
the monomeric building blocks in solution. The per-particle
electrostatic free energy of assembly is then �fd = fd − f0.
To determine f0 we solve the PB equation for the potential of
an isolated sphere of radius a carrying charge q. The corre-
sponding solution of the DH equation is

�lin
0 (x) = κ	Beκa

1 + κa

e−x

x
. (A1)

Here 	B ≡ e2/ (4πεkBT ) is the Bjerrum length.

1. 1D assembly

We treat the 1D assembly as an infinitely long cylinder of
radius a and linear charge density ρ = q/2a, and obtain �1

from the PB equation in plane polar coordinates. The corre-
sponding solution of the DH equation is29

�lin
1 (x) = e

kBT

q

4πa2εκK1(κa)
K0(x). (A2)

Here x is the scaled distance from the cylinder center and Kn

is the nth order modified Bessel function of the second kind.

2. 2D assembly

We treat each surface of the 2D assembly as an infinitely
extended plane carrying areal charge density σ = qA2/2πa2.
Here A2 � 0.91 is the area occupied by close-packed spheres
in a sheet. The exact solution of the PB equation in planar

geometry at a scaled distance x from the plane surface is

�2(x) = 2 ln

(
1 + e−x tanh(φ0/4)

1 − e−x tanh(φ0/4)

)
, (A3)

where φ0 ≡ 2 sinh−1[2π	Bσ/(κe)] is the electrostatic poten-
tial at the plane surface. From Eqs. (3) and (4) in the main text
we find

U2 = Asheet
κkBT

π	B

λ2

1 − λ2
, (A4)

and

S2/kB = Asheet
8c0

κ

3λ2 − 2λ ln
(

1+λ
1−λ

)
1 − λ2

, (A5)

where λ ≡ tanh(φ0/4) and Asheet is the area of the sheet.

3. 3D assembly

Following previous work on colloidal systems16, 19, 20 we
treat the 3D assembly as a collection of spherical macroions
of radius a, each of which is surrounded by a spherical aque-
ous cavity of radius b. We assume that macroions are close-
packed at volume fraction A3 = (a/b)3 � 0.74. To calcu-
late the electrostatic free energy of this assembly we assume
that the electric field on the surface of each aqueous cavity
vanishes20 (valid for assemblies whose characteristic linear
size is much greater than the Debye length). We also assume
that the field at the macroion surface is unaffected by the pres-
ence of salt and counterions. We find the potential �3 from
the appropriate PB equation. This solution is closely approx-
imated by linearizing the PB equation around the average po-
tential between macroions. By writing �3(x) = �lin

3 (x) + φ̄,
where x is the scaled distance from the macroion center, and
the mean potential,

φ̄ ≡ sinh−1

(
3qA3

8πc0a3(1 − A3)

)
, (A6)

is given by a jellium model,20, 25 we impose the boundary con-
ditions described above and find, after some algebra,

�lin
3 (y) = α2E0

e−α+β (α + 1)(β − 1) − eα−β (α − 1)(β + 1)

×
(

eβ−y(β − 1)

y
+ ey−β (β + 1)

y

)
− tanh φ̄.

(A7)

Here E0 ≡ qeκ(cosh φ̄)1/2/ (4πεkBT ); y ≡ (cosh φ̄)1/2κr;
α ≡ (cosh φ̄)1/2κa; and β ≡ (cosh φ̄)1/2κb.

Our model is likely to become unreliable at high salt con-
centrations and at low values of the packing fractions A2,3.
Under such conditions the approximation of taking filament
and sheet surfaces to be smooth becomes unrealistic because
the aqueous volume of surface corrugations becomes compa-
rable to the total volume of the screening layer (accounting
for steric corrections to the PB equation30 then becomes nec-
essary). In order to neglect these corrugations, it is necessary
that both the Debye length and the Gouy-Chapman length,
	GC = e/2π	Bσ , exceed the characteristic length scale of the
surface cavities. For this reason we restrict our analysis to salt
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concentrations below c = 0.5 M and q = 10, for our chosen
macroion radius a = 1.6 nm.
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