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ABSTRACT: Protein crystallization is important for
structural biology. The rate at which a protein crystallizes
is often the bottleneck in determining the protein’s
structure. Here, we give a physical model for the growth
rates of protein crystals. Most materials crystallize faster
under stronger growth conditions; however, protein
crystallization slows down under the strongest conditions.
Proteins require a crystallization slot of ‘just right’
conditions. Our model provides an explanation. Unlike
simpler materials, proteins are orientationally asym-
metrical. Under strong conditions, protein molecules
attempt to crystallize too quickly, in wrong orientations,
blocking surface sites for more productive crystal growth.
The model explains the observation that increasing the net
charge on a protein increases the crystal growth rate. The
model predictions are in good agreement with experiments
on the growth rates of tetragonal lysozyme crystals as a
function of pH, salt concentration, temperature, and
protein concentration.

The growth of diffraction-quality crystals is the major
obstacle in determining the atomic structure of folded

proteins.1−4 Of the proteins purified through the Protein
Structure Initiative, fewer than a third are crystallized, and only
15% yield diffraction-quality crystals.5 The difficulty stems from
the fact that proteins will only crystallize in a small range of
solution conditions. Under such conditions, the second virial
coefficient of the protein lies in a narrow range of values, called
the “crystallization slot”.6 With a better understanding of the
physical mechanism, we might be able to go beyond current
trial-and-error protocols for protein crystallization. Here we
present a theory describing the kinetics of protein crystal
growth as a function of protein concentration, pH, temperature,
and salt. We show that crystallization rates depend on pH,
temperature, salt, and protein concentration in a way that can
be explained if strong growth conditions drive proteins to stick
so fast to the growing crystal that they bind incorrectly,
blocking further crystallization. Thus, while protein crystals are
not stable if the crystallization solution conditions are too weak,
protein crystals will also not form if conditions are too strong.
It is well established that protein crystals grow by extending

2D clusters on the surface of the crystal.7,8 We define J as the
rate that clusters form and vstep = d(r+ − r−) as the rate they
grow, where r+ is the rate of addition of monomers (here,
individual protein molecules binding to a step edge), r− is the
rate of monomer dissociation, and d is the diameter of the
protein. We model the formation rate J using classical

nucleation theory in which the growth of clusters is treated
as a diffusion process on a free energy landscape defined by a
bulk term favoring growth and a surface tension opposing
growth. For a two-dimensional cluster of radius r, this free
energy is ΔF(r) = −π(r/d)2Δμ + 2rγ/d, where γ is the surface
tension of the cluster and Δμ = kBT ln c/cs is the chemical
potential difference that drives the protein to crystallize, where
T is the temperature, kB is Boltzmann’s constant, c is the
protein concentration, and cs is the concentration of soluble
protein after the solution has reached equilibrium with the
crystals. The nucleation rate is the net flux of clusters that
diffuse over the peak in the free energy. This is given by9

= −Δ ⧧
J wZ e F k T/ B (1)

where, F⧧ is the activation barrier given by the maximum in
ΔF(r), and Z is the Zeldovich factor, which is the probability
that a supercritical cluster continues to grow without dissolving
back to subcritical size. The factor w is the rate at which a
critical cluster grows to supercritical size; it is given by r+ times
the number of addition sites on the perimeter of the critical
cluster.
The perpendicular growth rate v for adding one new layer of

protein onto the crystal is v = d/t, where t = (3/πJ(r+ − r−)
2)1/3

is the time required to lay down a layer of protein.10 The 1/3
exponent arises from the fact that the area covered by the
growing clusters is proportional the number of clusters (which
is proportional to t) and the area of the individual clusters
(proportional to t2). Overall, the classical expression for the
crystal growth velocity is10

= π − Δμ
+

−
+

− πγ Δμ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )v r d
r
r k T3

1 e d k T
1/3 2/3

B

1/6
/32 2

B

(2)

A more detailed derivation of eq 2 is given in the Supporting
Information.
Here, in order to explain how proteins differ from simpler

molecules, we modify this classical approach in two ways. First,
we account for the nonproductive binding of protein in wrong
orientations to the crystal. Unlike crystals of small molecules,
like NaCl, proteins have orientation-dependent interactions;
proteins can bind in incorrect ways. Second, protein solutions
always contain small-molecule salts. We account for the
intercalation of the companion small-molecule salt component
throughout the proteins in the crystal. Our approach is based
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on recent theory for the thermodynamic stabilities of protein
crystals.11

A protein from bulk solution adds to the edge of a growing
layer on the crystal face with rate r+. A protein dissociates from
the crystal with rate r− (Figure 1a). We assume the protein
binds to the protein in either of two ways: productively (in the
correct crystal orientation and alignment, called P), or
nonproductively (in a noncrystalline orientation, called NP);
see Figure 1b. The crystal only grows when a protein binds
productively. And a protein can only bind to a site productively
if that site is not already occupied by an unproductively bound
protein. The probability that a site is not occupied by an NP
protein is Pfree = (1 + c e−f/kBT)−1, where 1 represents the
Boltzmann weight of empty sites and c exp(−f/kBT) represents
the weight of sites occupied by NP proteins that bind with free
energy f ( f ≤ 0; see Figure 1a,b). In other words, e−f/kBT is the
partition function of all the rotational and translational ways
that the protein can bind to the crystal that are not consistent
with the correct P state.
The growth rate at a given site will be

= =
+

+ −r kcP
kc

c1 e f k Tfree / B (3)

where c is the protein concentration in solution and kc is the
rate of successful attachment of a protein in the productively
bound state to a site that is not blocked by a NP protein. This
approach assumes that the population of NP proteins
equilibrates on the time scale of P binding. This assumption
is justified by the high entropy and marginal stability of the NP
ensemble.12,13 The site partition function does not include a
term for P binding. The justification for this is that, when a P
binding event occurs, the binding site vanishes and is replaced
by a new binding site at the newly advanced edge of the
growing layer, Figure 1c. However, the previous binding site
may be recreated if the protein detaches, which occurs at a rate
r−. At equilibrium, the addition and removal rates must be equal
r+ = r−, so
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where cs is the solubility of the protein in equilibrium with the
crystal. The net attachment rate per site is r = r+ − r−.
Now, we decompose the free energy f of nonproductive

binding into a nonelectrostatic attractive component, f b, and an
electrostatic repulsion, Δfes, f = f b + Δfes. This factorization of
the electrostatic component from the NP ensemble free energy
is possible for proteins where the charge distribution is
sufficiently homogeneous that the monopole repulsion
dominates over higher order terms. The dominant contribution
to Δfes has been shown to be the entropic cost of confining
counterions within the crystal,11,14 which we compute within
the Poisson−Boltzmann approximation as follows. First, we
calculate the net signed number of charges per protein q using
average protein pKa values.

15 The entropic cost per unit volume
to perturb the ion concentration from the bulk value c0 to a

final value cf is sf = ∫c
cf
0
ln(c/c0)dc. The final concentrations are

given by the Boltzmann distribution c± = c0 e
∓ψ where ψ is the

dimensionless electrostatic potential. Accounting for both the
co-ion and counterion terms, the entropy per unit volume is

= + = −ψ ψ + ψ −+ −s k s s c/ 2 [ sinh cosh 1]B 0 (5)

Previous work has shown that it is an excellent approximation
to replace ψ with its spatial average ψ̅ within the protein
crystal.11 This approximation is likely to fail for larger proteins
where the aqueous cavities are much larger than the Debye
length. In these cases, a linearized16 or numerical treatment
may be more appropriate. The average potential can be
determined from the charge neutrality condition for the crystal

= − − = ψ̅+ −q v c c v c( ) 2 sinhw w 0 (6)

Combining eq 5 and eq 6 and using Δfes = −vwTs, we have
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where q is the protein charge and vw is the solvent volume per
protein in the crystal (11.7 nm3 for tetragonal lysozyme
crystals17).
The protein crystal growth rates are given by eqs 2−4, and 7

with f = f b + Δfes.
We are interested in the growth rate as a function of pH,

temperature, salt, and protein concentration. Because the
surface tension γ has been shown experimentally to vary weakly
with these quantities,18 we treat it as a constant. We compute
the driving force Δμ from,11 which gives cs as a function of pH,
salt concentration, and temperature. The two fitting parameters
are k and f b. The best fit value of f b is −26 kJ/mol, which is
within ∼2kBT of the binding energy in the crystals11 suggesting
that there is a large entropic component stabilizing the NP
ensemble. The values we find for k are on the order of 105 s−1

mol−1 (see Figure 2). This is to be compared with ∼109 s−1
mol−1 that would be expected for a diffusion-limited collisions
between noninteracting 3 nm spheres. This 10−4 reduction is
comparable to the 10−5 factor found in previous work on larger
proteins.13

Figure 2 shows how lysozyme crystal growth rates depend on
bulk protein concentration. These plots show the well-known

Figure 1. Schematic representation of: (a) row of free binding sites,
(b) one site is blocked by a protein molecule in a nonproductive (NP)
configuration, and (c) crystallization advances when one protein
molecule binds productively (P).
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general features that increasing protein concentration speeds up
crystallization, but the rate reaches a saturating value at high
concentrations. At concentrations just above the solubility limit
(≈ 10−4 M), the driving force Δμ is small, so the sizes of
transition-state clusters are large, and thus costly in free energy.
Therefore, such systems grow only slowly. This is the 2D-
nucleation-limited regime.10 At higher concentrations, above
≈10−4 M, 2D-cluster formation becomes appreciable and the
growth rate increases exponentially with further increases in
concentration. At the highest protein concentrations, the
growth rate reaches a plateau and, in some cases, declines
with further increases in concentration. This is due to blocking
of binding sites by NP proteins. The concentration at which the
plateau occurs depends strongly on the solution pH. Proteins
having higher net charge (lower pH) plateau at higher protein
concentration. Previous work explains the plateaus as a change
in the growth mechanism: first, layer nucleation and growth,
then random deposition of proteins on the surface.19 The
present model is simpler: the plateau arises because the NP
proteins block the growth surface for productive binding. In the
Supporting Information, we show the small errors can be
reduced further by accounting for the cooperativity in binding
of NP proteins to the growth step.
Figure 3 shows the dependence of protein-crystal growth

rates on temperature. At high temperatures, the growth rate
decreases with increasing temperature due to the decreased
driving force Δμ (see the Arrhenius factor in eq 2). At colder
temperatures, crystallization conditions are stronger, causing
substantial binding of NP proteins, which become kinetically
trapped, inhibiting further growth.
The present work provides an explanation for the

crystallization slot identified by George and Wilson.6 George
and Wilson measured the second virial coefficients of proteins,
a measure of their strength of interaction under different
conditions. They found that, for proteins to crystallize, the
solution crystallization conditions must be neither too strong
nor too weak. It is well understood that proteins should not
crystallize if the thermodynamic driving force is too weak. But it
has not been so clear why strong crystallization conditions can
also reduce protein crystallization. We explain this as a kinetic
effect. Under strong-growth conditions, proteins stick to the

crystal-growth surface rapidly in incorrect orientations, “self-
poisoning” the sites from more productive binding.13 To see
this, take the limit of large c in eq 3 to find the maximum
monomer-addition rate for a given set of conditions

=r k e f k T
max

/ B (8)

where f ≤ 0 is the free energy of binding the NP proteins to the
crystal. Two conclusions follow from this expression. First, it
shows that stronger binding of NP proteins leads to slower
crystallization rates. And, second, since f is predominantly an
equilibrium binding affinity among two proteins, it shows why
protein crystallization rates should be related to the second
virial coefficient. To make this latter argument, we observe that
the ensemble of binding states described by f will bear a strong
resemblance to the ensemble of collision states between two
proteins in solution. Clearly, the presence of the crystal will
perturb the ensemble somewhat, so the connection is only
qualitative.
Previous explanations of the kinetic arrest under strong

binding conditions have focused on the formation of
noncrystalline precipitates. The appearance of such precipitates
is expected to be a sharp transition, akin to a first-order phase
transition, signifying that cooperative density fluctuations drive
the condensation. In the Supporting Information, we explore
the onset of such cooperative behavior; however, the primary
finding of our theory is that the kinetic arrest begins when the
interactions are sufficiently weak to be treated as independent
events.
Although we have focused on electrostatic considerations, eq

3 can be used to predict the effect on crystal growth of other
variables that affect protein−protein interactions. Consider, for
example, the effect of denaturants like urea or GdnHCl at low
concentrations (insufficient to denature a significant fraction of
the proteins). At high protein concentrations (within the
plateau regime), the addition of denaturant would be expected
to accelerate crystal growth by destabilizing NP proteins.
However, this acceleration would be diminished at lower
concentrations where the primary effect would be to destabilize
the crystal.
We expect that similar models may also be used to describe

the initial appearance of crystals from a supersaturated
solution.20 In this case, the nucleation rate J features a three-
dimensional cluster free energy with the same kinetic prefactor
given by eq 3. The increased dimensionality will result in a
larger free energy barrier and, thus, exacerbate the problem of
finding conditions strong enough to nucleate, but not so strong
to self-poison the potential binding sites. We expect that crystal
nucleation rates will follow the same trends as crystal growth,
namely, increasing with protein charge, concentration, and salt
concentration and decreasing with temperature. These trends

Figure 2. Growth rates of the (110) face of tetragonal lysozyme
crystals18,19 compared to eq 2. Colors indicate different pH conditions
as follows: 4.0 (orange), 4.2 (green), 4.6 (blue), 4.8 (purple), 5.0
(red), 5.4 (black). Error bars show one SD. Fitting parameters: f b =
−26 kJ/mol, k3% = 1.2 × 105 s−1 mol−1, and k5% = 6.8 × 105 s−1 mol−1.

Figure 3. Growth rates of the (110) face of tetragonal lysozyme
crystals18,19 plotted against eq 2 as a function of temperature and
concentration. Parameters taken from Figure 2.
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are observed in lysozyme nucleation;21 however, due to factors
not included in our model, like the presence of nearby phase
transitions,22 the agreement is only qualitative (data not
shown).
A key question is how to optimize conditions to maximize

the chances for successful crystallization. In this regard, eq 8
paints a bleak picture; attempts to promote nucleation by
stabilizing the crystal will necessarily poison the kinetics. It
would seem that efforts to promote crystallization are best
spent optimizing k. Here we have seen that k is strongly
perturbed by salt concentration and weakly by pH (see
Supporting Information). Therefore, a combination of high salt
to maximize k with a large protein charge to enhance binding/
unbinding kinetics would seem to be the optimal scenario.16

More work is required to determine how other precipitation
agents affect k.
In summary, we have developed a theory for the kinetics of

protein crystallization. The theory begins from classical
nucleation theory and the established observation that proteins
deposit as 2-dimensional clusters on the surfaces of growing
crystals. However, our treatment deviates from models of small-
molecule crystallization in two respects: (1) we account for the
fact that proteins, unlike small molecules, have different binding
affinities in different orientations (proteins are not spherically
symmetric). That is, some proteins bind nonproductively,
poisoning the surface, while other proteins bind productively.
And, (2) we treat the strong effects of small-molecule salts on
protein crystallization rate. We treat the latter at the level of
Poisson−Boltzmann theory.
The theory gives a good accounting of the experimental data

on the crystallization of lysozyme as functions of protein
concentration, temperature, pH, and salt concentration. In
particular, we explain the counterintuitive observation that
increasing the protein charge increases the growth rate. The
model gives a microscopic explanation for the observation of
George and Wilson and others that there are optimal
conditions, called the‘crystallization slot’. In short, under
weak conditions, proteins do not crystallize because there is
no sufficient thermodynamic driving force, and under strong
conditions, proteins do not crystallize because unproductive
binding is so strong that it prevents productive binding.
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